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Anderson localization

e clectron transport in disordered solids
e wave propagation in a random medium
e gquantum chaos

® recent progress: cold bosons in disordered optical traps



Discrete Anderson model

d\|f
7 = EnUn+Vy4+1+ V-1

Here L}, is a ranadom on-site potential, one often takes £, as indepen-

dent random variables distributed uniformly in a range —W /2 < E;,; <
W /2

All eigenstates are exponentially localized |\;,;| ~ exp(—@)



Nonlinear effects

e Bose-Einstein condensate is described by a nonlinear Gross-PitaevskKii
equation
e wave propagation in a nonlinear disordered medium

e disordered chains of nonlinear oscillators

Q: Does nonlinearity enhance or destroy localization?



Optical experiments |

Schwartz, Bartal, Fishman and Segev, Nature 446 (2007)



Optical experiments I

r | 2D core

Lahini, Avidan, Pozzi, Sorel, Morandotti, Christodoulides and Silberberg,
PRL 013906 (2008)



Basic model: DANSE

We study Discrete Anderson Nonlinear Schrédinger Equation

d\If
dt

B characterizes nonlinearity

— EnWn+ Bl Wn [P0+ Va1 + W

In the context of optical experiments: propagation direction z plays a role

of time

dE
l Zn = EnZn+B| £n |2£n‘|’£n—|—l +Ep—1




For optical experiments

Initial value problem Scattering problem (see
Tietsche & Pikovsky, EPL 84, 10006 (2008))
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Evolution of a local initial state
How an initially localized field | ¥, (0) |?= 0y, is spreading?

One characterizes this with the averaged squared width, i.e. the second

moment ((An)?) = 6(t) = X,(n— (n))?] wu(?) |*



Wave packet spreading |

Early calculations by
M. |. Molina (Phys.
Rev. B, 58, 12547

(1998)) gave
G ~ 1927
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FIG. 1. Disorder-averaged (100 realizations) mean square dis-
placement of an initially localized excitation, for different values of
the nonlinearity parameter (—1<<e¢,<1).



Wave packet spreading Il

In  our calculations
(Pikovsky & Shepe-
lyansky, Phys. Rev.
Lett 100, 094101
(2008)) the averaging
over disorder realiza-
tions was performed
for the logarithm of
this quantity, i.e. for

logo.
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Wavepacket spreading lll

10"
10°
E(\1
10”
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10°
. A
Flach, Krimer, & Sko- 10"
kos (Phys. Rev. Lett.
102, 024101 (2009))

found ¢ ~ £9-33
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Does spreading persist at very large times?

Numerics suggests:

e Initial wavepacket spreads seemingly unboundedly
e Subdiffusion spreading with exponent ~ 0.33

But to answer questions

e Does it last forever?
e Does it depend on the nonlinearity constant?

We need to

e Study very large lattices
e At very large times
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Scaling approach to spreading
(Talk by Mario Mulansky, Thursday at 10)

Calculate spreading for different parameters
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Scaling approach to spreading

(Talk by Mario Mulansky, Thursday at 10)

Rescale coordinates to achieve collapse on one curve

(b)
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Scaling approach to weak chaos in DANSE

We try to extrapolate from small to large lattices using scaling relations

First rescale the DANSE model

Ay

l? = Enn+ VW1tV + B‘ Wn ‘Z\Vn

to keep only the relevant parameters

e by rescaling |y| we set B =1
® by rescaling time 7 we set the width of the linear band to be disorder-

iIndependent
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Rescaled DANSE |

dy, Wey Yyl tWn—1 2
a 1wVt gy Tl

I

Three relevant parameters:
Disorder strength W

Field norm N = ¥, ||

Lattice length L: 1 < n < L with periodic boundary conditions

16



Rescaled DANSE i

Intensive parameter ¥ governs localization length:
inverse participation number y~1 =3 |y,|* scales as u~ 1+ W1
for W > 5

Intensive parameter density p = %[ governs nonlinearity level

(another integral of motion — energy — is close to zero and irrelevant)

Extensive parameter lattice length L
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Characterizing regularity and chaos |

For different W, p, L we calculated the largest Lyapunov exponent A for
many realizations of disorder, starting from uniform in space initial con-

ditions

Here the histograms for W = 10 and L = 16:
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Characterizing regularity and chaos I
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Close to zero values of largest Lyapunov exponent A & 10~ % indicate
regular (quasiperiodic) dynamics

Positive values of A indicate chaos

Small density: only regularity

Large density: only chaos

Inremediate density: chaos in some realizations of disorder, regularity in

other ones
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Poor man’s characterization of regularity and chaos

Instead of calculating Lyapunov exponent one can check time-reversibility
of trajectory

Possible

on?
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accuracy of time reversal

experimental implementation in optics using phase conjugati-
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Characterizing regularity and chaos Il

We calculate probability to observe regular dynamics P(p,W,L) as a
function of relevant parameters, by attributing all realizations with A >
5.107° to chaos
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Here we show P(p,W = 10, L) as a function of p
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Scaling with lattice length L

For fixed intensive parameters p and W, how P(p, W, L) depends on lattice length L?
Suppose we divide a long lattice of length L into sufficiently long subsystems of length
Lg. If Ly is much larger than localization length, interaction between subsystems is
relatively small, and we assume that

regularity in the whole lattice requires regularity in ALL subsystems

i.e. any chaotic subsystem spoils regularity. Therefore

P(p,W,L) = [P(p,W,Lg)]~/ L0

Equivalently, one can introduce a length-independent, intensive quantity

R(p,W) = [P(p,W,L)]V/1
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Checking scaling with lattice length L
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(a): Fixed disorder W = 10 (b): Fixed density p = 0.01
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Scaling with intensive parameters

We fix L = L = 16 and consider dependence of Py(p, W) = P(p, W, 16)
on intensive parameters: density p and disorder W
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Dependence on p for different values of W
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Extended scaling function |

Because Py has sigmoidal form, to resolve the tails it is convenient to

introduce a new function

7o O(p, W) 1
I =Fo 1+0(p, W) 1+0 ' (p, W)
In the regularity limit ) — 1 and Q — oo
In the chaotic limit Py — 0 and Q — 0

25



Extended scaling function li

10~ 103 102 101

Field density p

Range of disorder 5 < ¥/ < 50

100
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Scaling ansatz |

10— 1072 10~4 103
p/W7/4

We adopt powers 7 / 4 to achieve the best collapse of curves
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Scaling ansatz Il
In the considered range of parameters function Q fulfills scaling ansatz:
I p
Q= o q (%)
with o= B = 7 = 1.75

g(x) is a singular function at its limits:

q(x)wclx_cforx—>0 c; ~107% {~9/4=225
g(x) ~ cox~ " for x — oo, 10712 na 5.2
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Consequences of scaling

—1( P \]L
P = (1477 (55)]
In the regular limit g — oo
e
—InP(p,W,L) ~ Prob(chaos) ~ 5
Loq (770

Using the scaling ¢(x) ~ c1x 5 we get
WOC(l—C)pC
ClL()

Prob(chaos) ~
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Scaling for a constant norm NV

Application to spreading problem:

Norm N = pL is constant

Probability to observe regularity/chaos
LI—CWOC(I—C)NC L—5/4N9/4
c1Lo e LoW35/16

As [ — oo regularity wins Prob(chaos) — 0 and Prob(regularity) — 1

Prob(chaos) ~
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Estimation of maximal spreading length

Fixing probability level at which chaos extincts as Prob(chaos) = D we

can estimate the length as
Limax = (¢1DLg) Y/ (178) N&/(6=1) pr—0

Because of the smallness of ¢ =~ 10~ we get Lygx = 10° if other

parameters W, N are of order one and D ~ 1/Ly ~ 0.06
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Sensitivity to averaging time

Changing averaging time from 10° to 107 slightly changes values of 0
(data for W = 10)
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Conclusion

e \We studied statistics of regularity and chaos in disordered Ander-
son nonlinear Schrédinger model in dependence on disorder IV, field
density p and lattice length L

e Probability to obesrve chaos/regularity is a scaling function of these
parameters

e For a fixed norm prob(chaos) tends to zero as L. — oo

e \We predict saturation of spreading at large L

e \ery weak chaos (e.g. Arnold-like “diffusion”) is beyond our numerics

e Extension to other disordered nonlinear lattices in progress
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