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Anderson localization

• electron transport in disordered solids

• wave propagation in a random medium

• quantum chaos

• recent progress: cold bosons in disordered optical traps
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Discrete Anderson model

i
dψn
dt

= Enψn+ψn+1 +ψn−1

Here En is a ranadom on-site potential, one often takes En as indepen-

dent random variables distributed uniformly in a range −W/2 < En <

W/2

All eigenstates are exponentially localized |ψn| ∼ exp(−
|n−n0|

λ )
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Nonlinear effects

• Bose-Einstein condensate is described by a nonlinearGross-Pitaevskii

equation

• wave propagation in a nonlinear disordered medium

• disordered chains of nonlinear oscillators

Q: Does nonlinearity enhance or destroy localization?

3



Optical experiments I
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Schwartz, Bartal, Fishman and Segev, Nature 446 (2007)
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Optical experiments II

Lahini, Avidan, Pozzi, Sorel, Morandotti, Christodoulides and Silberberg,

PRL 013906 (2008)
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Basic model: DANSE

We study Discrete Anderson Nonlinear Schrödinger Equation

i
dψn
dt

= Enψn+β| ψn |2ψn+ψn+1 +ψn−1

β characterizes nonlinearity

In the context of optical experiments: propagation direction z plays a role

of time

i
dEn
dz

= EnEn+β| En |2En+En+1 +En−1
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For optical experiments

Initial value problem Scattering problem (see

Tietsche & Pikovsky, EPL 84, 10006 (2008))
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Evolution of a local initial state

How an initially localized field | ψn(0) |2= δn,0 is spreading?

One characterizes this with the averaged squared width, i.e. the second

moment 〈(Δn)2〉= σ(t) = ∑n(n−〈n〉)2| ψn(t) |2.
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Wave packet spreading I

Early calculations by

M. I. Molina (Phys.

Rev. B, 58, 12547

(1998)) gave

σ∼ t0.27
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Wave packet spreading II

In our calculations

(Pikovsky & Shepe-

lyansky, Phys. Rev.

Lett 100, 094101

(2008)) the averaging

over disorder realiza-

tions was performed

for the logarithm of

this quantity, i.e. for

logσ.
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Wavepacket spreading III

Flach, Krimer, & Sko-

kos (Phys. Rev. Lett.

102, 024101 (2009))

found σ∼ t0.33
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Does spreading persist at very large times?

Numerics suggests:

• Initial wavepacket spreads seemingly unboundedly
• Subdiffusion spreading with exponent ≈ 0.33

But to answer questions

• Does it last forever?
• Does it depend on the nonlinearity constant?

We need to

• Study very large lattices
• At very large times
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Scaling approach to spreading

(Talk by Mario Mulansky, Thursday at 10)

Calculate spreading for different parameters
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Scaling approach to spreading

(Talk by Mario Mulansky, Thursday at 10)

Rescale coordinates to achieve collapse on one curve
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Scaling approach to weak chaos in DANSE

We try to extrapolate from small to large lattices using scaling relations

First rescale the DANSE model

i
dψn
dt

= Enψn+ψn+1 +ψn−1 +β| ψn |2ψn

to keep only the relevant parameters

• by rescaling |ψ| we set β = 1
• by rescaling time t we set the width of the linear band to be disorder-

independent
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Rescaled DANSE I

i
dψn
dt

=
Wεn

1+W
ψn+

ψn+1 +ψn−1
1+W

+ | ψn |2ψn

with −1 < εn < 1

Three relevant parameters:

Disorder strengthW
Field norm N = ∑n |ψn|2

Lattice length L: 1≤ n≤ L with periodic boundary conditions
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Rescaled DANSE II

Intensive parameterW governs localization length:

inverse participation number μ−1 = ∑n |ψn|4 scales as μ≈ 1 +W−1

forW > 5

Intensive parameter density ρ = N
L governs nonlinearity level

(another integral of motion – energy – is close to zero and irrelevant)

Extensive parameter lattice length L
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Characterizing regularity and chaos I

For differentW,ρ,L we calculated the largest Lyapunov exponent λ for
many realizations of disorder, starting from uniform in space initial con-
ditions

Here the histograms forW = 10 and L= 16:
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Characterizing regularity and chaos II

-7 -6 -5 -4 -3 -2 -1
0

0.1

0.2

ρ=0.0003
ρ=0.01
ρ=0.1

hi
st

og
ra

m
log10 λ

Close to zero values of largest Lyapunov exponent λ ≈ 10−6 indicate
regular (quasiperiodic) dynamics
Positive values of λ indicate chaos

Small density: only regularity
Large density: only chaos
Inremediate density: chaos in some realizations of disorder, regularity in
other ones
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Poor man’s characterization of regularity and chaos

Instead of calculating Lyapunov exponent one can check time-reversibility
of trajectory
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Characterizing regularity and chaos III

We calculate probability to observe regular dynamics P(ρ,W,L) as a

function of relevant parameters, by attributing all realizations with λ >

5 ·10−6 to chaos
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Scaling with lattice length L

For fixed intensive parameters ρ andW , how P(ρ,W,L) depends on lattice length L?
Suppose we divide a long lattice of length L into sufficiently long subsystems of length
L0. If L0 is much larger than localization length, interaction between subsystems is
relatively small, and we assume that
regularity in the whole lattice requires regularity in ALL subsystems
i.e. any chaotic subsystem spoils regularity. Therefore

P(ρ,W,L) = [P(ρ,W,L0)]
L/L0

Equivalently, one can introduce a length-independent, intensive quantity

R(ρ,W ) = [P(ρ,W,L)]1/L
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Checking scaling with lattice length L
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Scaling with intensive parameters

We fix L= L0 = 16 and consider dependence ofP0(ρ,W ) =P(ρ,W,16)

on intensive parameters: density ρ and disorderW
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Extended scaling function I

Because P0 has sigmoidal form, to resolve the tails it is convenient to

introduce a new function

Q(ρ,W ) =
P0

1−P0
P0 =

Q(ρ,W )

1+Q(ρ,W )
=

1
1+Q−1(ρ,W )

In the regularity limit P0→ 1 and Q→ ∞
In the chaotic limit P0→ 0 and Q→ 0
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Extended scaling function II
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Scaling ansatz I
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We adopt powers 7/4 to achieve the best collapse of curves
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Scaling ansatz II

In the considered range of parameters function Q fulfills scaling ansatz:

Q=
1
Wα q

(
ρ
Wβ

)

with α = β = 7
4 = 1.75

q(x) is a singular function at its limits:

q(x)∼ c1x−ζ for x→ 0, c1 ≈ 10−6, ζ≈ 9/4 = 2.25
q(x)∼ c2x−η for x→ ∞, c2 ≈ 10−12, η≈ 5.2
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Consequences of scaling

P(ρ,W,L) =
[
1+Wαq−1

( ρ
Wα

)]− L
L0

In the regular limit q→ ∞

− lnP(ρ,W,L)≈ Prob(chaos)≈
LWα

L0q
( ρ
Wα

)
Using the scaling q(x)∼ c1x−ζ we get

Prob(chaos)≈
LWα(1−ζ)ρζ

c1L0
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Scaling for a constant norm N

Application to spreading problem:

Norm N = ρL is constant

Probability to observe regularity/chaos

Prob(chaos)∼
L1−ζWα(1−ζ)Nζ

c1L0
=
L−5/4N9/4

c1L0W 35/16

As L→ ∞ regularity wins Prob(chaos)→ 0 and Prob(regularity)→ 1
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Estimation of maximal spreading length

Fixing probability level at which chaos extincts as Prob(chaos) = D we

can estimate the length as

Lmax = (c1DL0)
1/(1−ζ)Nζ/(ζ−1)W−α

Because of the smallness of c1 ≈ 10−6 we get Lmax ≈ 105 if other

parametersW, N are of order one and D≈ 1/L0 ≈ 0.06
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Sensitivity to averaging time

Changing averaging time from 106 to 107 slightly changes values of Q
(data forW = 10)
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Conclusion

• We studied statistics of regularity and chaos in disordered Ander-

son nonlinear Schrödinger model in dependence on disorderW , field

density ρ and lattice length L
• Probability to obesrve chaos/regularity is a scaling function of these

parameters

• For a fixed norm prob(chaos) tends to zero as L→ ∞
• We predict saturation of spreading at large L
• Very weak chaos (e.g. Arnold-like “diffusion”) is beyond our numerics

• Extension to other disordered nonlinear lattices in progress
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