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Arnold diffusion.

S
53-tori don’t separate 

Can the action change by a ``large” amount for 
arbitrarily small perturbation of a completely 
integrable system?  

“The details of the proof must be formidable,
although the ideas of the proof are clearly 

outlined” (Moser’s review of Arnold’s article). 
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Arnold’s example (1964):

There exist arbitrarily small    and     for which     
changes by        .

ε μ I2

O(1)

More precisely: given any   , for all     small the action changes by ε μ O(1)



Bourgain, Bessie, Bernard, R. Douady, Delschams, de la Llave,Kaloshin, 
LeCalvez, Mather, Nekhoroshev, Sausin, Seare, Treschev, Giftankin, Xia

Much work has been done since Arnold’s original example, 
among others, by: 

Our goal.  



Arnold diffusion in mechanics/geometry/optics.

For a particle in a weak potential:  

θ̈ = −ε∇U(θ), θ ∈ R
3

the phenomenon becomes physicall transparent. Fix 
the energy, e.g.

Trajectories are geodesics in the Maupertuis metric  

θ̇2

2
+ εU(θ) =
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2

v ds = (1 + O(ε))ds

close to the Euclidean metric; these geodesics are 
nearly straight lines. 

Arnold diffusion: the existence of rays that change 
direction by        . O(1)



Diffusion in a nearly-flat metric.

A simple example (Kaloshin-L): Riemannian metric
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ρds,

ρ = 1 + ε cos z + ε3β(x, y, z, ε)
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Diffusion viewed in the configuration 
(as opposed to the phase) space: 

This geometrical representation shows a transparent view of the whiskered 
tori, of the intersection of invariant (stable and unstable) manifolds, and of 
the resonances.   



The curvature in disk
oscillates periodically in time. 

Another mechanical example:

A geodesic on a vibrating surface: some geodesics have 
unbounded velocity. 

A bead on a periodically oscillating hoop: velocity is bounded 
forever.

An aside:     Adiabatic invariants via the force of constraint.



Coupled pendula.

Torsionally coupled pendula: 

ẍj + sinxj = εβ(xj−1, xj , xj+1)

The conservative case (no forcing or friction):

An example: 

ẍj + γẋj + sin xj = k((xj−1 − 2xj + xj+1) + I

g
x1

x2 x3

x4

(Assume a periodic lattice from now on). (Josephson junction...)



KAM tori.

If the coupling perturbation in 

is small, then the tori fill ``most” of the phase space. 

ẍj + sinxj = εβ(xj−1, xj , xj+1)

A typical torus looks like a decoupled motion. 

Arnold--diffusing orbits, if they exist, ``wind” their 
way among these tori. 

The diffusion means the change of the action 
vector. This, in turn, means the exchange of energy 
between the pendula. 



The main result. 

THM (Kaloshin, Saprykina, L). Given any infinite 
sequence of integers    with                 , there exists a  

ẍj + sinxj = εβ(xj−1, xj , xj+1)

Assume that               is supported on smallβ(x, y, z)

sequence of times     such     th pendulum has energy   

R
3neighborhoods of integer points in     .

tk

1 + O(ε)

From now on, fix the energy, and to a value sufficient 
to put at least one pendulum over the top.  

jk |jk+1 − jk| = 1

jk

            , while all others have         at the time      .   O(ε) tk

 (zero energy is the top equilibrium)



A schematic description of itinerary: 
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energy transfer from 1 to 2
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A view in the configuation space: 



A view in the physical space: 

: exponentially slow

: speed = O(1)2
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Fig. 5 

Fig. 5 

I  falls asleep;
II  runs; 
III  mostly up;
IV wakes up. 

Energy transfers
from I to II; III is 
the “facilitator”. 

Energy transfers
from II to III; IV is 
the “facilitator”. 

Fig. 5 - advance

Σ−
3 ⊂ {x3 = 0}.

Σ+

3 ⊂ {x3 = 0}.

Σ−
4 ⊂ {x4 = 0}.

Σ+

4 ⊂ {x4 = 0}.

One more view in the physical space: 



A sketch of proof.

1. geodesic segments between sections exist.

2. energy distribution is ``continuous” as a 
function of displacement. 

3. variational matching of geodesic segments.

0. Construct sections.



The ``Hamilton-Jacobi” lemma

p = θ(T )

∇L = θ̇

O

L = const.

Gradient of the geodesic distance
f

L(O, p) =
∫

Op
λds

5

∇pL(O, p) = θ̇(t)

the velocity of the solution of   
θ̈ = ∇

(
λ2(θ)

2

)
with  

|θ̇| = λ(θ)

is given by 

,  

Proof.

(a) Both ∇L and θ̇ are normal to the wave front (Huygens’ principle).

(b) |∇L| = λ = |θ̇|.

Here is a convenient tool for finding normals to the wave front: 



The connection lemma

p0

p1
L0

q
Σ0

S

R
4

vL(q)

vR(q)

1. There exists a connecting geodesic for any pair of sections. 
2. If the displacement vectors are closely aligned and long enough, then the 
energy distribution for the two solutions are close to each other. 



Mending a broken geodesic via defocusing lenses: 
a variational approach. 

Consider the length of the broken geodesic:

Sε(p) = L−(p) + L+(p)

Goal: show that Sε(p) achieves minimum in the interior of Σ.
Remove the lens at Σ; denote the modified action by S0. We have

∇S0(p) = ∇L−(p) + ∇L+(p) = v− − v+.

If |v− − v+| is small, then S0 is nearly constant. Adding the lens back in
will create a desired “dip”. More preciesly:

Q.E.D.

Σ

L−(p)
L+(p)

v−

v+

p− p+

p

Sε(O) < S0(O) − εb < (S0(∂Σ) + |∇S0| · D) − εb =

Sε(∂Σ) + (|∇S0| · D − εb) < Sε(∂Σ)



Computational shadowing:

Variational construction of diffusing orbits 
overcomes computational instability 

caused by sensitive dependence on initial data
(hyperbolicity).

The extra consideration required in the case of the pendula:

S is no longer near--constant in some variables, 
but fortunately ``convex” in that direction, 

thus having an internal minimum. 



An open problem: 
prove diffusion in Hedlund’s metric that is arbitrarily close to flat. 

A bigger open problem: 
prove diffusion in a typical near-flat metric in R^3. 
(Mather announced a solution for an essentially equivalent problem.)

The end

An open problem: 
Other motions?



An aside: Symplectic Maps via Mechanics.

q
q

Q

Q

f

f

F

F

    : forces with which the system ``wants” to go.  f, F

: potential energy

f = −E(q,Q)

∂q
, F = −E(q,Q)

∂Q

E(q,Q)

0 =

∫
γ

(−f) dq +

∫
γ

(−F ) dQ = −

∫
γ

p dq +

∫
γ

P dQ

total work I do over a cycle: 


