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Two-dimensional turbulence — thin liquid

films, soap films, atmosphere.
Oiw +vVw = ¢ + V20w — aw,

where w is vorticity, w = V xXwv, ¢ — pump-
Ing, o = V x f, f — force, v — viscosity
and o — friction coefficients. We assume
that the pumping force is correlated at a

scale [ and is random in time.



Two quadratic dissipationless integrals of
motion — energy and enstrophy:

/dzr v2, /dQT w2,

Pumped turbulence — two cascades: en-
strophy flows to small scales whereas en-
ergy flows to large scales from the pump-
INg scale [, being dissipated by VISCOSI-
ty and friction, respectively (Kraichnan
1967, Leith 1968, Batchelor 1969).



Constancy of the energy and enstrophy
fluxes is expressed as follows

((v1 —v2)wiwo) xr, r I,
(v —v2)?) =er, T>1

Suggest the normal scaling v{ —vp < r
in the direct cascade and vy — vo o rl/3
IN the inverse cascade. The spectrum

dk 1kr
= | —e"" E(k),
(v1v2) /2 (k)

T



hen E(k) < k=3 for the direct (enstro-
phy) cascade and E(k) « k—°/3 for the
inverse (energy) cascade. Direct cascade
— logarithmic correlation functions of vor-
ticity (Falkovich, Lebedev 1994). Inverse
cascade — an absence of anomalous scal-
ing (Paret and Tabeling 1998, Boffetta,
Celani and Vergassola 2000).
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T he inverse cascade is terminated by the
friction at the scale Lo ~ ¢1/2a3/2 in an
unbounded system. What will happen if
the size box L < L,? Leads to the energy
accumulation there and coherent struc-
tures. Experiment — single vortex (Shats,
Xia, Punzmann and Falkovich 2007). Nu-
merics — the vortex dipole (Chertkov, Con-
naughton, Kolokolov and Lebedev 2007).



Experiment — the vortex amplitude is de-
termined by the bottom and wall friction.
Numerics (frictionless) — the average ve-
locity profile appears at a time t ~ t; =
L2/3¢71/3 We consider the case o = O,
t > tr. Then practically all the energy
produced by pumping during the time ¢
IS accumulated in the coherent flow and

its amplitude grows as V o /.



Coherent structures — vortices with well-
defined average velocity profile and rel-
atively weak fluctuations on their back-
ground. Both, experiment and numerics,
show that the vortices are isotropic and
are characterized by power laws V' r—1/4,
Q o r—°/% where r is separation from the

vortex center. Universality?



Q(r), Radial vorticity profile
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The vorticity is a sum of the average
component €2 and of the fluctuating com-
ponents w, (w) = 0. Angular brackets
mean averaging over times much larg-
er than the characteristic turnover time
and much smaller than the vortex evolu-
tion time ¢t. The average and the fluctu-
ating parts of the velocity are vV and v,

respectively: 2 =V XV and w =V X v.



We are interested in scales larger than
the pumping scale [, that is larger than
the viscous scale. Then both, the viscosi-
ty and pumping terms are irrelevant. Sep-
arating the average and the fluctuating

components, one finds the equations

02+ VVQ + Vi{vw) = 0,
Orw + VVw 4+ vV 4+ vWw — V{vw) = 0.



Experiment and numerics show that the
vorticity profile €2 inside the vortex is high-
ly isotropic. Then V has only polar com-
ponent and vV 2 = 0. Therefore

8tQ -|— V(vw> = 0.

The last term in the equation reflects
the fluctuation contribution to the av-
erage equation, supporting the average
(coherent) velocity profile.



Next, we assume a scaling behavior 2 «
r~171 where 7 is an exponent to be de-
termined. Note that inside the vortex the
separation into the average and fluctu-
ating parts is equivalent to separation
of angular harmonics: the zero harmonic
corresponds to the average flow whereas

higher harmonics correspond to its fluc-

tuating part.



We expect that the fluctuation level is
time-independent since it is determined
by the energy flux ¢, whereas the coher-
ent part of the flow grows ~ +/t. Thus,
one can use the perturbation theory. More-
over 0; produces small factor. Adiabatic-

ity. Thus, in the main approximation

(V/T)agpw _I_ 'Ufraer = 0.



The equation for €2 contains the object

(wvr) that can be expressed via the pair
correlation function

P(t, 01,02, 9) = (vr(t, 71, 01)vr(t, 72, 92)),

where ¢ = @1 — o, 0 = In(r/L). The
pair correlation function, as well as high-

er correlation functions, is a subject of
Investigation.



In the main approximation

(N]__]"C]_ —N2_1,€2> CD(Tlaer?SO) =0,
= (95 4 92 )r—r[<8@+1>2+8 ],
K = Vj eXp(—nQ)(ﬁg 200 + 2 90 — "72) ,

where we omitted the pumping and the
time derivative that are small inside the
big vortex. Here Vy oc v/t is an average
velocity at the vortex periphery, at » ~ L.



Note that there are zero modes ~Z,, of
the operator K,, that are

Zm = exp(ime + Bmo) o rm,

with the exponents

Bmz\/mz—l—nQ—l—l.

Here m = 1,2,... are numbers of angular
harmonics. The sign is chosen to match
to periphery.



We are looking for solutions of the equa-
tion for ® that are analytic at close dis-
tances and angles. We begin with the fol-
lowing obvious solution

Zm(r1)Z—m(r2) + Zm(r2) Z_m(r1)

X rfmrgm cos(mey),

where Z,, are the above zero modes. T hen
one can construct a tower of more com-
plicated constructions.



The next possible solution is

Xm(r1)Z-m(r2) + Xm(r2) Z_m(r1) +
Zm(r1) X -—m(r2) + Zm(r2) X _m(r1).

Here the object X,,, satisfies

Xm =explimp + (Bm + 1+ n)ol,
(Nn) "R Xm = AmZm,

where A,, are real numbers.



All the terms in ® do not contribute to
(wvr) since they are symmetric in ¢. Thus
we should find a correction 0P to the pair
correlation function related to the non-
linear interaction of the fluctuations. The
term is suppressed in comparison with

the main contribution due to V > v.



Then we arrive at the equation

(N]__lla]_ —NQ_]_ICQ) ¢(T17T27 90)
= riNT ! (w(r1, 1) Vw(ry, o1)vr (12, 92))
—r3 N5 (or(r1, 01)0(r2, 92) Vw(ra, 02)) -

We are interested in the correction 0P
that is a forced solution of the equa-
tion related to the third-order correlation

function.



The third-order velocity correlation func-

tion is defined as

F = <U7°<t7 T, Spl)v’l“(t7 r2, 902)/07'(757 r3, 903>>

T he correlation function satisfies

o - . 1. 0 - 1
(N IR P+ 4+ (N3) 1Rk3F =0,
8901 8<Pn

subscripts mean variables r»q, ro, r3.



A simplest solution for the triple correla-

tion function is
F x Zm(r1)Zi(ro)Z_,,,_1.(r3) + permutations,

where permutations are produced over
1,2,3. However, it leads to a contribu-
tion to 0P symmetric in ¢ that does not

contribute to (wuvy).



The next solution in the tower can be

constructed as follows

F = amXm(r1)Zp(ro)Z_,,,_1.(r3) + permutations

+ap Zm(r1) X (ro)Z_,,_1(r3) + permutations
+a_p_, Zm(r1)Z(ro) X_,,,_(r3) + permutations.

The expression is a solution provided

ammAm+tarkAr—oa_,,,_.(m+k)A_,, . = 0.



We should look for a solution with slow-
est decrease to the center. The expres-
sion with the lowest power of r corre-

sponds tom =%k =1, in the case

P o rAnT 3+772_2.

Then we find

(vpw) o< T LD oc rHITV 34073



Substituting the result into the equation
for 2 and accounting for Q o »—1-7 one
obtains the equation

5143 4+1n°—3=0.

The solution of the equation is n = 1/4.
It corresponds both to experiment and
NnUuMerics.



Note that the relation is time-independent
since 6 « t—1/2 and also 9;Q o« t1/2.
Probably, it is related to the non-linear
mechanism of the energy transfer to large
scales that is described by the third-order
correlation function. The main contribu-
tion ® o r—3/2. Equating the typical fluc-

tuation and the average velocity, one gets

—1
Tcore X { .



Extensive numerics IS needed to check

our predictions.

Future developments: Anisotropy correc-

tions. Coriolis forces. Passive scalar.

An interesting question concerns possi-
bility /probability of appearing the coher-

ent vortices in an unbounded system.



