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Two-dimensional turbulence – thin liquid

films, soap films, atmosphere.

∂tω + v∇ω = φ+ ν∇2ω − αω,

where ω is vorticity, ω = ∇×v, φ – pump-

ing, φ = ∇ × f, f – force, ν – viscosity

and α – friction coefficients. We assume

that the pumping force is correlated at a

scale l and is random in time.



Two quadratic dissipationless integrals of
motion – energy and enstrophy:

∫
d2r v2,

∫
d2r ω2.

Pumped turbulence – two cascades: en-
strophy flows to small scales whereas en-
ergy flows to large scales from the pump-
ing scale l, being dissipated by viscosi-
ty and friction, respectively (Kraichnan
1967, Leith 1968, Batchelor 1969).



Constancy of the energy and enstrophy
fluxes is expressed as follows

〈(v1 − v2)ω1ω2〉 ∝ r, r � l;

〈(v1 − v2)3〉 = εr, r � l.

Suggest the normal scaling v1 − v2 ∝ r

in the direct cascade and v1 − v2 ∝ r1/3

in the inverse cascade. The spectrum

〈v1v2〉 =
∫ dk

2π
eikrE(k),



Then E(k) ∝ k−3 for the direct (enstro-
phy) cascade and E(k) ∝ k−5/3 for the
inverse (energy) cascade. Direct cascade
– logarithmic correlation functions of vor-
ticity (Falkovich, Lebedev 1994). Inverse
cascade – an absence of anomalous scal-
ing (Paret and Tabeling 1998, Boffetta,
Celani and Vergassola 2000).
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The inverse cascade is terminated by the

friction at the scale Lα ∼ ε1/2α3/2 in an

unbounded system. What will happen if

the size box L < Lα? Leads to the energy

accumulation there and coherent struc-

tures. Experiment – single vortex (Shats,

Xia, Punzmann and Falkovich 2007). Nu-

merics – the vortex dipole (Chertkov, Con-

naughton, Kolokolov and Lebedev 2007).



Experiment – the vortex amplitude is de-

termined by the bottom and wall friction.

Numerics (frictionless) – the average ve-

locity profile appears at a time t ∼ tL =

L2/3ε−1/3. We consider the case α = 0,

t � tL. Then practically all the energy

produced by pumping during the time t

is accumulated in the coherent flow and

its amplitude grows as V ∝
√
t.



Coherent structures – vortices with well-

defined average velocity profile and rel-

atively weak fluctuations on their back-

ground. Both, experiment and numerics,

show that the vortices are isotropic and

are characterized by power laws V ∝ r−1/4,

Ω ∝ r−5/4, where r is separation from the

vortex center. Universality?



(A) (B)



The vorticity is a sum of the average

component Ω and of the fluctuating com-

ponents ω, 〈ω〉 = 0. Angular brackets

mean averaging over times much larg-

er than the characteristic turnover time

and much smaller than the vortex evolu-

tion time t. The average and the fluctu-

ating parts of the velocity are V and v,

respectively: Ω = ∇× V and ω = ∇× v.



We are interested in scales larger than

the pumping scale l, that is larger than

the viscous scale. Then both, the viscosi-

ty and pumping terms are irrelevant. Sep-

arating the average and the fluctuating

components, one finds the equations

∂tΩ + V∇Ω +∇〈vω〉 = 0,

∂tω + V∇ω + v∇Ω + v∇ω −∇〈vω〉 = 0.



Experiment and numerics show that the
vorticity profile Ω inside the vortex is high-
ly isotropic. Then V has only polar com-
ponent and V∇Ω = 0. Therefore

∂tΩ +∇〈vω〉 = 0.

The last term in the equation reflects
the fluctuation contribution to the av-
erage equation, supporting the average
(coherent) velocity profile.



Next, we assume a scaling behavior Ω ∝
r−1−η where η is an exponent to be de-

termined. Note that inside the vortex the

separation into the average and fluctu-

ating parts is equivalent to separation

of angular harmonics: the zero harmonic

corresponds to the average flow whereas

higher harmonics correspond to its fluc-

tuating part.



We expect that the fluctuation level is

time-independent since it is determined

by the energy flux ε, whereas the coher-

ent part of the flow grows ∝
√
t. Thus,

one can use the perturbation theory. More-

over ∂t produces small factor. Adiabatic-

ity. Thus, in the main approximation

(V/r)∂ϕω + vr∂rΩ = 0.



The equation for Ω contains the object

〈ωvr〉 that can be expressed via the pair

correlation function

Φ(t, %1, %2, ϕ) = 〈vr(t, r1, ϕ1)vr(t, r2, ϕ2)〉 ,

where ϕ = ϕ1 − ϕ2, % = ln(r/L). The

pair correlation function, as well as high-

er correlation functions, is a subject of

investigation.



In the main approximation
(
N̂−1

1 K̂1 − N̂−1
2 K̂2

)
Φ(r1, r2, ϕ) = 0 ,

N̂ = (∂2
% + ∂2

ϕ)r = r[(∂% + 1)2 + ∂2
ϕ] ,

K̂ = V0 exp(−η%)(∂2
% + 2∂% + 2 + ∂2

ϕ − η2) ,

where we omitted the pumping and the

time derivative that are small inside the

big vortex. Here V0 ∝
√
t is an average

velocity at the vortex periphery, at r ∼ L.



Note that there are zero modes Zm of
the operator K̂m that are

Zm = exp(imϕ+ βm%) ∝ rβm,

with the exponents

βm =
√
m2 + η2 − 1− 1 .

Here m = 1,2, . . . are numbers of angular
harmonics. The sign is chosen to match
to periphery.



We are looking for solutions of the equa-
tion for Φ that are analytic at close dis-
tances and angles. We begin with the fol-
lowing obvious solution

Zm(r1)Z−m(r2) + Zm(r2)Z−m(r1)

∝ rβm1 r
βm
2 cos(mϕ),

where Zm are the above zero modes. Then
one can construct a tower of more com-
plicated constructions.



The next possible solution is

Xm(r1)Z−m(r2) +Xm(r2)Z−m(r1) +

Zm(r1)X−m(r2) + Zm(r2)X−m(r1).

Here the object Xm satisfies

Xm = exp[imϕ+ (βm + 1 + η)%],

(N̂m)−1K̂mXm = AmZm,

where Am are real numbers.



All the terms in Φ do not contribute to

〈ωvr〉 since they are symmetric in ϕ. Thus

we should find a correction δΦ to the pair

correlation function related to the non-

linear interaction of the fluctuations. The

term is suppressed in comparison with

the main contribution due to V � v.



Then we arrive at the equation

(
N̂−1

1 K̂1 − N̂−1
2 K̂2

)
Φ(r1, r2, ϕ)

= r2
1N̂−1

1 〈v(r1, ϕ1)∇ω(r1, ϕ1)vr(r2, ϕ2)〉

−r2
2N̂−1

2 〈vr(r1, ϕ1)v(r2, ϕ2)∇ω(r2, ϕ2)〉 .

We are interested in the correction δΦ

that is a forced solution of the equa-

tion related to the third-order correlation

function.



The third-order velocity correlation func-

tion is defined as

F = 〈vr(t, r1, ϕ1)vr(t, r2, ϕ2)vr(t, r3, ϕ3)〉.

The correlation function satisfies

∂

∂ϕ1
(N̂1)−1K̂1F+· · ·+

∂

∂ϕn
(N̂3)−1K̂3F = 0,

subscripts mean variables r1, r2, r3.



A simplest solution for the triple correla-

tion function is

F ∝ Zm(r1)Zk(r2)Z−m−k(r3) + permutations,

where permutations are produced over

1,2,3. However, it leads to a contribu-

tion to δΦ symmetric in ϕ that does not

contribute to 〈ωvr〉.



The next solution in the tower can be

constructed as follows

F = αmXm(r1)Zk(r2)Z−m−k(r3) + permutations

+αkZm(r1)Xk(r2)Z−m−k(r3) + permutations

+α−k−mZm(r1)Zk(r2)X−m−k(r3) + permutations.

The expression is a solution provided

αmmAm+αkkAk−α−m−k(m+k)A−m−k = 0.



We should look for a solution with slow-

est decrease to the center. The expres-

sion with the lowest power of r corre-

sponds to m = k = 1, in the case

δΦ ∝ r4η+
√

3+η2−2.

Then we find

〈vrω〉 ∝ r−1δΦ ∝ r4η+
√

3+η2−3.



Substituting the result into the equation
for Ω and accounting for Ω ∝ r−1−η one
obtains the equation

5η +
√

3 + η2 − 3 = 0.

The solution of the equation is η = 1/4.
It corresponds both to experiment and
numerics.



Note that the relation is time-independent

since δΦ ∝ t−1/2 and also ∂tΩ ∝ t−1/2.

Probably, it is related to the non-linear

mechanism of the energy transfer to large

scales that is described by the third-order

correlation function. The main contribu-

tion Φ ∝ r−3/2. Equating the typical fluc-

tuation and the average velocity, one gets

rcore ∝ t−1.



Extensive numerics is needed to check

our predictions.

Future developments: Anisotropy correc-

tions. Coriolis forces. Passive scalar.

An interesting question concerns possi-

bility/probability of appearing the coher-

ent vortices in an unbounded system.


