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Discrete nonlinear Schrodinger equation with disorder

~dipy, . .
l m = wn¥n — QL(Wn+1 + Y1) + gwiwﬁ
| | nonlinearity
Anderson localization
HGw'w) = Y wnbivn+ Y Suniwms,  TOTON
_ Z Q (Yibnt1 + U p1tn) neargst-neighbor
o coupling

action-angle variables:  ¥n = VI, e "

HI,¢) = Y wilit Y %Ig— N QVIlg12€08(dn — dpi)



Disordered nonlinear 1D systems

Stationary solutions of NLSE: lomin, Fishman (2007); Fishman et al. (2008); Bodyfelt et al. (2010)
Transmission of a finite sample: Gredeskul, Kivshar (1992); Paul et al. (2005); Paul et al. (2007);
Tietsche, Pikovski (2008); Paul et al. (2009)
Dipole oscillations in a trap: Albert et al. (2008)
Wave packet spreading in discrete NLSE: Shepelyansky (1993); Molina, Tsironis (1994);
Kopidakis et al. (2008); Pikovsky, Shepelyansky (2008); Fishman et al. (2008);
Bourgain, Wang (2008); Wang, Zhang (2009); Flach et al. (2009); Skokos et al. (2009);
Fishman et al. (2009); Veksler et al. (2009); Krivolapov et al. (2009); Veksler et al. (2010);
lomin (2010); Skokos, Flach (2010); Flach (2010); Mulansky, Pikovsky (2010);
Laptyeva et al. (2010)
Wave packet spreading in other nonlinear disordered 1D systems: Froéhlich et al. (1986);
Kopidakis et al. (2008); Flach et al. (2009); Skokos et al. (2009);
Garcia-Mata, Shepelyansky (2009); Krimer et al. (2009); Flach (2010); Laptyeva et al. (2010)
Thermalization in NLSE and other nonlinear disordered 1D systems: Dhar, Lebowitz (2008);
Dhar, Saito (2008); Oganesyan et al. (2009); Mulansky et al. (2009);
Pikovsky, Fishman (2010)

Numerics: wave packet spreads as a power law
Wang, Zhang + Fishman et al.: slower than any power law




Given
1. Strong localization N

_ _ — worst conditions for transport
2. Weak nonlinearity

3. Arbitrary initial condition with extensive norm and energy

Question: will the system equilibrate at long distances, and how?

Answer: yes, by normal nonlinear diffusion:

dp 0 D(p) dp
ot ox 7 ox
Mechanism: CHAOS

- Arnold diffusion in the space of actions

- driven by rare local chaotic spots

- which migrate along the chain

(as seen by Oganesyan, Pal, Huse, 2009)



Assumptions

 dy)
§ = oty — Qs + Y1) + U0
disorder “tunnelling” nonlinearity
_E <y < é q = 0
2~ -2
N €2 .
1. Strong localization: — =71 assumption about
A the Hamiltonian
- PR Q|'¢'n|2
2. Weak nonlinearity: ~pKl

(nonlinear frequency shift << disorder)

note the invariance under ¥n — Ctn, g — C™2g assumptions
about the

3. Single action scale: —&Z lYn|? K H < 0 initial conditions
T

(all oscillators are excited more or less equally;
thermodynamic relations have a simple form)




Thermalization and transport

Two conserved quantities: total energy H, total action I = ) |¢n,

Local equilibration _ 5 ¢\, 1y o o~A(H—pI)

in a finite time

‘ 2

G=14T

Global equilibration: transport of the conserved quantities

z+L'}2
Macroscopic action density: ,o(w)—— B ghil
n=z—L%2

get rid of the energy density thanks to |H| < I A

dp _

a a:{: (ﬂ) o

f|n|te'
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Diffusion coefficient

1 1
D(p) ~ exp (Clngln) lgpgs
TPp P 2
stronger than any
power law
In(1/p)\17° [ ( |n(1/,9))]—2
[1+ In(1+ In(l/T))] <C<8|l+In{1+ In(1/7)

double logarithm ~ constant

" 1
D1 s self-averaging at distances L > exp (C In2 p)
TPp

A finite-norm wave packet spreads as size ~ exp [(In )/ 3]



Off-resonant coupling

two-oscillator . R
Hamitonian: H = @1hi1? 2 [ ]* +waaP+2 v — T A va+ii5n)

nonlinear frequency shifts: ¢n = (wn + g|¥9|?)t

7 A\ Qe (watali)t
w2 + glY32 — w1 — gly3|?

perturbative
correction
from tunnelling:

() = Qe rbalu _

The correction to [¢1|? is small at all times unless the denominator - 0

Theorem of Kolmogorov, Arnold, & Moser:
in most of the phase space the perturbed trajectories
are small deformations of the unperturbed trajectories




2
Pendulum: H(p, o) = LN L COS ¢

2m

Phase space:

Spectrum fqﬁ(t) ol

4
~ rotations Zmo | A
| oscillatic& | ‘ ‘ |
= s 9 >
_n: !‘// ;ﬂ: ] Q (D
il
| —V2mQ ®
/—¥)

the period diverges =) the separatrix motion
at the separatrix has a continuous spectrum



Perturbed pendulum:

2

Hip i) = 2 92 cos ¢ — V cos(p — wt)
2m
A Stochastic layer area:
. p W. — dp do ” E —lwl/$2
rotations ZmQ | R N 9

layer \

Melnikov-Arnold integral

lw| > R
| Continuous spectrum
—2mQ | of the chaotic motion:
(00O 1 e
Q2

w

regular motion
ergodic trajectories  syrvives

within review: B. Chirikov (1979)
the stochastic layer



Making a pendulum out of oscillators

two-oscillator gl?

o, 1 =1l + 5l + 52 costn 2
canonical - _ O+ - hi—I L
transformation: I'=h+h ¢= 5 I'= > ¢ = @1 — @2

H = Ho(I) + (w1 — w2) + g = 278\ 12/4 — P cos

constant shift almost
= W2 —uwi constant
A I = +p
I w1+ glh =w2+gl> 2g T K1

guiding
resonance

A third oscillator:

27N/ I>13 cos(pa—d3)

small perturbation of the pendulum

P deviation

11 Three oscillators are sufficient
|
7 to generate chaos




The price of making a pendulum

To find a separatrix: To create the stochastic layer:
the shift is possible only if 11, > }.O the pendulum frequency 2 ~ /7Agl
w1+ gl = wop + gl,  Cutoff point @
H — pnl - | ||wr — wol jwo — w3 - 1
T N 2 VTP
o P unless |w2 —w3| < A
unless |wi1 —ws| € A
Look for a resonance Look for another resonance
or or
pay the thermal exponential pay the Melnikov-Arnold exponential
(guiding resonance) (layer resonance)

Chaotic oscillators are rare: | density ~ min{rp, p?}




Making a pendulum out of more oscillators

—T AT + Y53P1) + wohstho — TA(Y3eP3 + P3¢2)
(TA)?

W1l — W2

&> effective coupling 1 ¢ 3: (P13 + ¥31P1)
works when w1 & w3 #F w2

Tunnelling + nonlinearity — effective couplings of the form

V1s3Patshe — COS(Pp1+ ot d3—da—ds5—dg)

Guiding and layer resonances can be generated
in high orders of the perturbation theory

Competition: number of combinations & power of the coupling constants

size of a chaotic spot << distance between chaotic spots




Arnold diffusion

chaotic spot effective coupling ~ 7% stochastic force on

_a remote oscillator

N\

n=»~L

Effective coupling  2Vim,..my COS(m1d1 + ... + myodn)

action conservation: mi1 4+ ... +my =0

Change in actions due to the stochastic force after time ¢

(1,51, ~ t V2 My Mgy exp (_|mlwl + ...+ THN"-:JN|)

Tty... My Q Q
prObablllty = f({fﬂ}) W ghﬁglz 5('”’1? (wn? + QIR?) + ...+ m?{(wni, + Q'Iﬂi,)) H dIr
?istripution \stochastic guiding resonance n
unction
layer area Constraints on the diffusion:
W ﬁ . i W.D of 1. Total action is conserved
ot ‘ Ol T OIL 2. Total energy is conserved

3. The system stays on the
guiding resonance



Long-distance relaxation

thermalization 1 thermalization 2
R SRR TS S
bottleneck

chaotic spot 1 chaotic spot 2

Typical density of chaotic spots ~ ,02

2
Coupling between the chaotic spots and the bottleneck ~ T1/p

/

worse than activation (p o< 1")

Look for a better mechanism!




Changing the guiding resonance

1. Time needed to create another chaotic spot at a distance L

~ (thermalization time at the distance ) x """

2. One of the two chaotic spots is quickly quenched

hypersurface —_ 5
H = const
I =const ,/

(M9, 34+gI) =0

new guiding resonance

(M9, 8+gl) =0
old guiding resonance

Chaotic spots can randomly migrate along the chain




Variable-range hopping of electrons

A energy thermally activated hops localized
— . electronic
/\ —— levels
e
+
hopping rate ~ e~ *F—Fa/T

>

d-dimensional space

. . . 1
To find a low level one should explore large distances E ™" ~ —

v Rd
a

Competition between e ™*F and e~E/T

Ld 1/(d+1)
o(T) x max e *E-WRYT — exp _d+1 (“’ ) Mott
i d \vT (1969)

stretched exponential after optimization




Variable-range hopping of electrons

A energy thermally activated hops localized
— /\ R electronic

/N — levels
e

+

>

d-dimensional space

: : : 1
To find a low level one should explore large distances E;*" ~ Py
I
2
Competition between e % and e=%/T
g1 [ pd Y EHD]
o(T) x maxe - s / — VIOt

< 2 \u7) \ J (1969)
One dimension: stretched exponentia ization
(Y

7(1) ~ b (~37)
Kurkijarvi (1973)

Rare “bad” regions block the transport in 1D

“Breaks”



Chaotic fraction wn,

1 dl,, dc:h dl,, do
)y, = — e~ (H - f};’Tl | n — —(H- I};’TH n @@n
o Z / ’ f /= /E " h 27

chaotic(n)

y

all guiding resonances whose leftmost oscillator is n

w = e~ for chaotic spots <{mm) e~ Fa/T  for electrons
thermal coupling
exponential constants w is a random quantity
Melnikov-Arnold determined by the disorder
exponential

Probability distribution:
li[t Iﬂz(l/’rpp)])

P{w < wp} = exp ( Cipw



From A\ to o: break resistance
1

A\ — |In= slow transport over breaks
w fast thermalization /‘
between breaks

“Nens

>
a given realization of {\n} n
1. Definition of the current 2. The diffusion
J* d [ (g equation
JL JH ( JH ) _5( (H)p ) for actions

—
LR, T'r % Yy

( J* ) R ( pL/TnL — pr/Tr )
Jr ) T 1/Tr — 1/Ty,

Each break can be characterized by its “resistance”




From A to o resistors in series

Jk
R
o ° Vk’oQk ° .
T Rk T R
dQy. definition of
T k-1 — Jk the current

1 “resistance”
Jr = Ry, (Vi = Vit1) of the break

C Qr = Qi(Vi) thermodynamics

i 1
macroscopic 5 _ 1
ﬂ “charge density” = L Z @
dQ c":?

ot (V) Or macroscopic — (i -
“conductivity” 7 =~ \T, PRt
Q=Q(V)



Optimal breaks

U_1=% Z Ry =)

breaksel.

!

self-averaging at long distances

probability measure
per unit length

e
ot = [ Re({An}) dP({An})
o 1 1
AN Pp  p
increasing decreasing " -
The integral is dominated 1 1
2
by configurations close ~ In s In p
the optimal one
) - |["|2 L j

TPp



Macroscopic diffusion coefficient: three logarithms

Pendulum frequency Strength of
(guiding resonance) the perturbation o
Activation
¢ to destroy
Melnikov-Arnold the separatrix
exponential ¢
1 1
D~o~exp|—Cln?—In=
™p p

Macroscopic length scale

1 ) distance between

L'~exp(CIn®— _
TPp the optimal breaks



Conclusions

1. Anderson localization + weak nonlinearity = weak chaos
2. Rare chaotic spots play the role of a bath

3. They induce relaxation by driving the Arnold diffusion

4. They migrate along the chain

5. In 1D the transport of conserved quantities is determined
by rare breaks

D. M. Basko, arXiv:1005.5033





