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INTRODUCTORY

Nonlinear Waves: «MpIpks

The Fermi-Pasta-Ulam Problem of Equipartition

and
The Fate of Anderson Localization

S. Flach, MPIPKS Dresden

Road map:

 introductory remarks

 the FPU paradox:
KAM or CHAOS?

 Anderson localization + nonlinearity:
LOCALIZATION or SPREADING?



PART ONE:

INTRODUCTORY REMARKS



Linear wave equations
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An eigenfunction of a hand
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One classical anharmonic oscillator:

10 1y vy
Ho(P, X) = 5P + 2X? + %‘X4

The oscillation frequency depends on energy:
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PART TWO:

THE FPU PARADOX:
KAM OR CHAOS?
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The equations of motion are for a nonlinear finite atomic chain
with fixed boundaries and nearest neighbour interaction

N particles, v =y = 0:

N
rn(t) = Qq(t)s 111( T ) wg = 2sin (mq/2(N + 1))

et N+1

a model ( =0, a #0): Fmodel ( 50, a=0):
N
. Z Aq,i,iQiQ; g Z 1 Cq.i.i.mQiQ;iQm

= n .;ng _ i j_ . _wz _ 1.0, M=
R N W1

The interaction between the modes is purely nonlinear, selective but
long-ranged!



The structure of the nonlinear coupling for the a-FPU model
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q I.m 2 { qxl+m,0 — q_f-r-m 7'(N+l))

The harmonic energy of a normal mode with mode number q:
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FPU-paradox Fermi, Pasta, Ulam, Tsingou(1955) :

excite ¢ = 1 mode

observe nonequipartion of mode energies

no transition to thermal equilibrium

energy is localized in a few modes for long time FPU 1
recurrence of energy into initially excited mode FPpPU 2

two thresholds in energy and NV FPU 3

two pathways of understanding:

— stochasticity thresholds, nonlinear resonances, similarity to

Landau’s quasiparticle approach lIsrailev, Chirikov (1965)
— continuum limit, KdV, solitons Zabusky, Kruskal (1965)

Movies: let us see what FPU observed



Evolution of normal mode coordinates




Evolution of normal mode energies




Evolution of real space displacements




Kolmogorov — Arnold — Moser (KAM) theory

A.N. Kolmogorov, Integrable classical HamiltonianH, d>1:

Dokl. Akad. Nauk SSSR, 1954. . . .
Proc. 1954 Int. Congress of Separation of variables: d sets of action-angle

Mathematics, North-Holland, 1957 .
variables | g =2zat;..1,,0, = 27wt;..

Quasiperiodic motion: set of the frequencies,
w,, @,,..,a,; which are in general incommensurate

Actions | are integrals of motion Jl. /0t =0

e @o.

Will an arbitrary weak perturbation
Q "V of the integrable Hamiltonian H,
" destroy the tori and make the motion
ergodic (when each J:oin‘r at the energy
shell will be reached sooner or later)

| Most of the tori survive EVINY
Vi | A. weak and smooth enough VIV
e I perturbations




Kolmogorov — Arnold — Moser (KAM) theory

Dokl. Akad. Nauk SSSR, 1954.
Proc. 1954 Int. Congress of
Mathematics, North-Holland, 1957

A.N. Kolmogorov, Q _ Will an arbitrary weak perturbation
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destroy the tori and make the motion
ergodic (when each clooirﬂ' at the energy
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Most of the tori survive JVgNV
weak and smooth enough [TIpssssa
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KAM Most of the tori survive weak and
g sl smooth enough perturbations
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Each point in the space of the Finite motion.
integrals of motion corresponds Localization in the space
to a torus and vice versa of the integrals of motion

- KAM applies to finite systems

* Does it apply to waves in infinite systems?

« How are KAM thresholds scaling with number of degrees of freedom?
* Will nonlinear waves observe KAM regime?

* If they do — then localization remains

e If they do not — waves can delocalize
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10
Galgani and Scotti (1972):

exponential localization after short transient Py

10
Galgani, Giorgilli, Benettin, Ponno, Penati, w”
and many many others (... much later ...): 10°°
slow delocalization in tails, equipartition
After potentially very long second time scale .
10°
Ivanchenko, Kanakov, Penati, SF (2005+): §
exact periodic orbits (q-breathers) exp. YR

localized in mode space (dashed line)

Casetti, Cerruti-Sola, Pettini, Cohen (1997): e
scaling of second time scale

T(e)




After 40 years of investigations: a set of NoAnswers on:
 obtaining two time scales in the thermalization process?
e relation to weakly nonintegrable systems and KAM theorem?

 why do we need spatially localized solitons to explain
exponentially strong localization in normal mode space?

(in fact there IS no reduction in the KdV approach, one needs roughly as
many solitons, as normal modes are excited)

« are there exact invariant low-dimensional manifolds for the
nonintegrable model which relate to the observations?

e are the Chirikov-lzrailev thresholds correct?



PART THREE:

ANDERSON LOCALIZATION
+

NONLINEARITY

(DE)LOCALIZATION ?



Defining the problem P s W

sesveveee\ seveoeees

 a disordered medium
* linear equations of motion: all eigenstates are Anderson localized
« add short range nonlinearity (interactions)

 follow the spreading of an initially localized wave packet

Yes because of nonintegrability and ergodicity
Will it delocalize?

No because of energy conservation —
spreading leads to small energy density,
nonlinearity can be neglected,
dynamics becomes integrable, and
Anderson localization is restored



Model : The discrete nonlinear Schrodinger Equation

s 3
Hp = Z er[n|” + B
[

Ui* = (Vi) + U )

W W) 4 =0Hp/d(i})

€] uniformly from [—

i = ey + Bl * v — i — s

Conserved quantities: energy and norm S — Zl |’l/)l |2

Varying the norm is strictly equivalent to varying 8

Equations model light propagation and cold atom dynamics
in structured media



iy = e + Blvn|* v — i — iy

The linearcase: 3 =0 ¢ = Ajexp(—iAt)
Stationary states: )\A[ — QA[ — Al,—l — Al_|_1
Normal mode (NM) eigenvectors: Ay,l (Zl Az%l = 1)
Eigenvalues: )\, € [—2 — %, 2+ %}

Width of EV spectrum: Ap =W +4

Asymptotic decay: Av,l ~ e~ /&)
Localization length: £(\,) < £(0) =~ 100/VV2

Localization volume of NM: V >
VIWW<4)=3¢ V(W>10)=1 ,./




Equations in normal mode space:
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NM ordering in real space: X;, — Zl lA,Q/ l

Characterization of wavepackets in normal mode space:
2 = o/ S, lou? 7= 2, v

Second moment: 71l — ZU(V — 17)221/ > location of tails

Participation number: P — ]_/ ZV zg = number of strongly excited modes

P2 _|-> K adjacent sites equally excited: ( = 12

Compactness index: ( =
mo _I—> K adjacent sites, every second empty
or equipartition: C =3



Results for single site excitations ?ﬁl — 55310 €ly, = 0

DNLSW=4.8=0.0.1.1.4.5 KGW=4,E=0,0.05,04,1.5
SF,Krimer,Skokos (2009)

Skokos,Krimer,Komineas,SF (2009)
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Kopidakis, Komineas,

I A theorem for selftrapping SF, Aubry (2008)

can not uniformly spread over the entire (infinite) lattice
for the DNLS case. Indeed, with the notations

Hp =Hnr + Hr .

Hr = Z el|tn)? — (Y1) + c.c.)
I

3 , 5 —
H}JL — Z 5‘115‘4 = EP : ] (10)
l

e
o oo
—

where P is the participation number in real space, the
single site excitation at time t = 0 yields

3
Hi(t=0)=0, HNL(t:D):"E + (11)



Due to norm conservation S = 1 at all times, the har-

monic energy part ‘Hy is bounded from above and below
[9]:

W W
—2—‘—‘:_:HL§2—|—‘—+
2 2
Due to energy conservation, for all times the anharmonic
energy part ‘Hypr can therefore not become smaller than
3 W
|"' Fs i
Hyn(t) > 2 —2— = (13)
2 2
It follows with (10), that the participation number is
bounded from above by a finite number, which diverges

for 0 = A:

(12)

6

s

P(t) < if 3> A (14)

Therefore no complete delocalization for some 3 > (3. =W+4 ...



Destruction of Anderson localization in the tails of a wave packet?
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FIG. 7. (Color online) Normalized energy distributions in NM
(upper plot) and real (lower plot) space for ¢=0.05,0.2,0.8, Skokos,SF 2010
1.25,2.0,3.0 [(bl) black; (m) magenta; (r) red; (l:l_] blue; (g) green;



In a nutshell:

» strong nonlinearity: partial localization due selftrapping,
but part of wavepacket may delocalize

» weak nonlinearity: Anderson localization on finite times: similar to FPU!
After that — detrapping, and wavepacket delocalizes ?

 intermediate nonlinearity: wavepacket delocalizes without transients
* no signature of stop ?
* do results do depend on presence or absence of norm conservation ?

* is spreading is universal due to nonintegrability ?

Hint — Z )\r/ Jy + 3 Z Irzl 2,V g ‘\/Jpl Jpl Jvl Jrzl

v,Va, /3,174

gives complete localization!



Open questions, problems, controversial opinions:

* is there a KAM regime at small but finite 8, or not?

» will a spreading packet eventually enter a KAM regime, or not?

* is the spreading wave packet equilibrating inside, if yes, how?

* is the observed spreading Arnold diffusion, or not?

 will the spreading slow down into a kind of Arnold diffusion, or not?
» are the computational results affected by roundoff errors, or not?

* finite systems: how is the KAM threshold scaling with system size?
» characteristics of energy diffusion at finite norm/energy densities ?
e relation to turbulence? Lessons from there, or for it ?

* relation to quantum many body localization ?





