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Goal (elusive)

What are the conductance fluctuations at an Anderson metal-insulator
transition when dimensionality of space d is larger than or equal to 2?

Pandora box was opened with the prediction of universal conductance
fluctuations (UCF): Altshuler (1985); Stone and Lee (1985).

Key words that need to be explained:
Symmetry classes (of Anderson localization)
Universality classes (of Anderson localization)
NLσM
High-gradient operators
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Definition of the (weakly) random Hamiltonian
    

  

k

+π/2−π/2

     

   

(k)ε

k

     

   

(k)ε

≈

Hamiltonian for non-interacting and spinless fermions hopping along
an open chain at half-filling with weak static disorder:

H := −τ3i
d
dx
−

2∑
µ=0

τµvµ(x), vF = ~ = 1;

〈
vµ(x)

〉
= 0,

〈
vµ(x)vν(x ′)

〉
= `−1

µ δµνδ(x − x ′).

For any realization of the random potential, the symmetries are:
(AI) σ1 H∗ σ1 = H, i.e., time-reversal symmetry holds generically,
(BDI) σ1 H σ1 = −H if `0 = `1 =∞, i.e., chiral symmetry holds if
`0 = `1 =∞.
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The scattering matrix Sε, is defined by
ψ

i,L

ψ
o,L

ψ
o,R

ψ
i,R

L

ε ε

εε

⇐⇒
(
ψo,L

ψo,R

)
ε

= Sε
(
ψi,L

ψi,R

)
ε

≡
(

r t ′

t r ′

)
ε

(
ψi,L

ψi,R

)
ε

.

It is unitary from which follows the (non-unique) polar decomposition

Sε =

(
v ′∗ 0
0 u

)
ε

(
− tanh x sech x

sech x tanh x

)
ε

(
v 0
0 u′∗

)
ε

.

The constraints on the scattering matrix are:

Sε = (Sε)
T due to time-reversal symmetry,

S+ε =
(
S−ε

)† due to the chiral symmetry if `−1
0 = `−1

1 = 0.

The dimensionless (Landauer) conductance is:

gε := 1− |rε|
2 = 1− tanh2 xε =

1
cosh2 xε

.
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Add a slice of disordered region with the thickness δL, a� δL� `:

LL Lδ

rε,L = tanh |xε,L|e
iφε,L obeys the continuous Langevin process

dxε,L
dL

= +v1 sinφε,L − v2 cosφε,L +O
(

v2
µ

)
,

dφε,L
dL

= 2 (ε+ v0) +
2

tanh 2xε,L

(
v1 cosφε,L + v2 sinφε,L

)
+O

(
v2
µ

)
.

This follows from the composition law (Ryu, Mudry, and Furusaki 2004)

rε,L+δL = rε,δL + t ′ε,δL
(
1− rε,Lr ′ε,δL

)−1 rε,Ltε,δL,

when the width δL of the slice is much larger than the lattice spacing
a ∼ k−1

F but much smaller than the mean free path `, here defined by

1�
〈
rε,δLr∗ε,δL

〉
=:

δL
`
, `−1 = `−1

1 + `−1
2 .
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One-parameter scaling wrt l := L
` is, here, not the rule. One-parameter

scaling only holds under the non-generic assumptions:
AI (orthogonal symmetry class): φε is initially uniformly distributed in

[0,2π[ and independent of xε in which case the probability
distribution for the dimensionless conductance is (Abrikosov 1981)

G(gε; l) =

√
4

πl3g3
ε

∫ +∞

ygε

dy
y e−(l/4)−(y2/l)(

gε cosh2 y − 1
)1/2 ,

ygε := −1
2

ln
[
2g−1

ε

(
1−

√
1− gε

)
− 1
]
.

BDI (chiral-orthogonal symmetry class): ε = `−1
0 = `−1

1 = 0 while φε=0
is initially equally likely to be 0 or π and independent of xε=0 in
which case the probability distribution for the dimensionless
conductance is (Stone+Joannopoulos 1981)

G(gε=0; l) =
1√

2πl(1− gε=0) gε=0
e−

(arccosh 1/
√

g
ε=0)

2

2l .
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Approximate crossover of the mean and variance of the conductance
at the band center ε = 0 from the AI symmetry class α = 0 to the BDI
symmetry class α = 1 as a function of t = L/` after Ryu, Mudry, and
Furusaki 2004.
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Diffusive regime and universality classes

When one-parameter scaling in a symmetry class (of Anderson
localization) becomes generic at sufficiently long length scales, then
one gets a universality class (of Anderson localization).

A sufficient condition for a universality class (of Anderson Localization)
in a quantum wire is the emergence of the diffusive regime in the thick
quantum wire limit:

a l ξ a ∼ k−1
F � `︸ ︷︷ ︸

weak disorder

, `� L � ξ︸ ︷︷ ︸
diffusive regime
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The thick quantum wire limit

L

ε ε

εε

i,L

o,L o,R

Ψ
i,R

Ψ

Ψ Ψ

⇐⇒
(

Ψo,L

Ψo,R

)
ε

= Sε
(

Ψi,L

Ψi,R

)
ε

≡
(

r t ′

t r ′

)
ε

(
Ψi,L

Ψi,R

)
ε

,

In a quantum wire, the diffusive regime is defined by

`� L� N`

with N the number of transverse channels. For thin wires, N of order 1,
there is no diffusive regime.
The thick quantum wire limit is the scaling limit

L→∞, N →∞, L
N`

fixed.

The limit N →∞ arises as a semiclassical limit, when λF is much
smaller than the diameter of the wire, or by increasing the diameter of
the wire. In the latter case, the diameter should not exceed the
transverse localization length.
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Example 1: Class D superconducting quantum wire
Define the static random quasi-one-dimensional Hamiltonian

H := K + V , K := σ0 ⊗ γ0 ⊗ τ3 ⊗ IN i∂x , V :=

(
v ∆
−∆∗ −vT

)
with the static disorder of vanishing means and covariances

〈vij(x)v∗kl(x
′)〉 =

1
8N`v

δikδjlδ(x − x ′),

〈∆ij(x)∆∗kl(x
′)〉 =

1
8N`∆

(
δikδjl − δilδjk

)
δ(x − x ′).

Claim: The difference δ` ≡ |`∆ − `v | is irrelevant in the thick quantum
wire limit

L→∞, N →∞, L
N`

fixed with `−1 := `−1
v + `−1

∆ .
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Justification: Let (Brouwer, Mudry, Furusaki 2003)

`−1 := `−1
v + `−1

∆ , ξ∆ :=

√
``∆

8
.

In the symmetry class A defined by 0 = `−1
∆ ,

〈g〉 =
4N`

L
+ 0 +O

(
L

N`

)
, 〈g〉 ∝ e−L/(8N`), 〈ln g〉 ∝ − L

2N`
+O(1).

In the symmetry class D defined by `−1
v = `−1

∆ ,

〈g〉 =
4N`

L
+

1
3

+O
(

L
N`

)
, 〈g〉 =

√
8N`
πL

, 〈ln g〉 = −
√

2L
πN`

.

In the diffusive regime, the crossover is

〈g〉 =
4N`

L
+

1
3

+
ξ2

∆

L2 −
ξ∆

L
coth

L
ξ∆

+O
(

L
N`

)
.

In the thick quantum wire limit, ξ∆ � L� N` is always permissible so
that the crossover to the diffusive regime of class D follows.
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Universality classes in the thick quantum wire limit

L

ε ε

εε

i,L

o,L o,R

Ψ
i,R

Ψ

Ψ Ψ

⇐⇒
(

Ψo,L

Ψi,L

)
ε

=M(ε, L)

(
Ψi,R

Ψo,R

)
ε

.

The eigenvalues ofM(ε, L)M†(ε, L) come in D-degenerate pairs e±2xj (ε,L). The
dimensionless (Landauer) conductance is

g(ε, L) =
N∗∑
j=1

1
cosh2 xj (ε, L)

, N∗ =
2N
D
.

The transformation law

M(ε, L + δL) =M(ε, δL)M(ε, L)

implies that the Lyapunov exponents xj (ε, L) undergo the following Brownian motion
on a symmetric space (unique in the thick quantum wire limit):
∂P
∂L

=
1

2γ`

N∗∑
j=1

∂

∂xj
J
∂

∂xj
J−1P, [known as the DMPK (82-88) equation in the physics literature]

J =
∏

j

sinhml
(
2xj
)∏

k<j

∏
±

sinhmo± (xj ± xk ) ,

γ = (mo+ + mo−) (N∗ − 1) /2 + 1 + ml .
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The table lists the multiplicities of the ordinary and long roots mo±

and ml of the symmetric spaces associated with the transfer matrix.

Except for the three chiral classes, one has mo+ = mo− = mo . For

the chiral classes, one has mo+ = 0, mo− = mo . The table also lists

the degeneracy D of the transfer matrix eigenvalues, as well as the

symbols for the symmetric spaces associated to the transfer matrixM

and the HamiltonianH. The last three columns list theoretical results

for the weak-localization correction δg for `� L� N`, the average

of ln g at L� N`. The results for 〈ln g〉 in the chiral classes refer to

the case of N even. For odd N, 〈ln g〉 are the same as in class D.

Disorder Class TRS SRS mo ml D M H δg 〈− ln g〉
O Y Y 1 1 2 CI AI −2/3 2L/(γ`)

generic S Y N 4 1 2 DIII AII +1/3 2L/(γ`)
U N Y(N) 2 1 2(1) AIII A 0 2L/(γ`)
chO Y Y 1 0 2 AI BDI 0 2moL/(γ`)

sublattice chS Y N 4 0 2 AII CII 0 2moL/(γ`)
chU N Y(N) 2 0 2(1) A AIII 0 2moL/(γ`)
CI Y Y 2 2 4 C CI −4/3 2ml L/(γ`)

particle-hole C N Y 4 3 4 CII C −2/3 2ml L/(γ`)

DIII Y N 2 0 2 D DIII +2/3 4
√

L/(2πγ`)
D N N 1 0 1 BDI D +1/3 4

√
L/(2πγ`)
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Why NLσM?

Fluctuations play a key role in sufficiently low-dimensional systems,
whether classical or quantum, as they can preempt spontaneous
symmetry breaking.

When the symmetry is both global and continuous, the tool of choice to
address the role of fluctuations in low-dimensional systems is the
non-linear sigma model (NLσM).

However, the usefulness of NLσMs has come to transcend situations in
which a pattern of symmetry breaking is immediately obvious; as is the
case in the context of Anderson localization to access the transition
from a metallic to an insulating phase induced by weak disorder or to
compute probability distributions of spectral, wavefunction, and
transport characteristics in chaotic metallic grains.
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Let xµ (µ = 1, · · · ,d) be the coordinate of a point in d-dimensional
Euclidean space and let a point on a connected Riemannian manifold
M of finite dimension n have the coordinates φi(x) (i = 1, · · · , n). The
action of the NLσM is

S :=
1

4πt

∫
ddx
ad−2

(
∂µφ

i
)

(x) Gij
[
φ(x)

] (
∂µφ

j
)

(x)

where t is the dimensionless coupling constant, a is the short-distance
cutoff, and Gij [φ] is a component of the metric tensor on M,
Example 2: The O(3)/O(2) NLσM has the action

S =
1

4πt

∫
ddx
ad−2 (∂µn)2 with 1 = n2 ≡ σ2 + φ2

1 + φ2
2

=
1

4πt

∫
ddx
ad−2 (∂µφ

i)

(
φiφj

1− φ2
1 − φ2

2
+ δij

)
(∂µφ

j).

It encodes the fate of the classical ferromagnetic phase under thermal
fluctuations (t is the bare dimensionless temperature) (interacting spin
waves φ ≡ (φ1, φ2)).
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Example 3: Anderson localization with the help of fermionic replicas

RMT Class TRS SRS ChS BdG M with M,N→ 0 Topology of M could matter
O AI X X × × Sp(M + N)/Sp(M)×Sp(N) ×
S AII X × × × O(M + N)/O(M)×O(N) X π = θ term(Ryu et al)
U A × - × × U(M + N)/U(M)×U(N) X u(1)3 θ term (Pruisken)
chO BDI X X X × U(2N)/Sp(N) ×
chS CII X × X × U(N)/O(N) X π = θ term (Ryu et al.)
chU AIII × - X × U(N)×U(N)/U(N) X WZW term (Guruswamy et al.)
- CI X X × X Sp(N)×Sp(N)/Sp(N) X WZW term (Nersesyan et al.)
- C × X × X Sp(N)/U(N) X u(1)3 θ term (Senthil et al.)
- DIII X × × X O(N)×O(N)/O(N) X WZW term (Fendley)
- D × × × X O(2N)/U(N) X u(1)3 θ term (Bocquet et al.)

Wegner (1979); Efetov, Larkin, and Khemlnitskii (1980); Gade and Wegner (1993); Senthil, Fisher, Balents, and Nayak (1998)

Sketch:
1 For any fixed static random potential, represent the product of M advanced and N retarded

single-particle Green functions as a path integral over a Boltzman weight.
2 Perform the disorder average. For Gaussian white-noise correlated static disorder, this

induces a quartic interaction.
3 Introduce a matrix-valued Hubbard-Stratonovich field to decouple the disorder-induced

quartic interaction.
4 In the diffusive regime, do the saddle-point approximation (spontaneous symmetry

breaking for finite M and N).
5 Do a gradient expansion of the fermion (boson) determinant (or superdeterminant).
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The inverse 1/t of the coupling constant t in the NLσM represents the
bare value of the (mean) conductance in the diffusive regime.
The NLσM encodes the fate of the diffusive metallic fixed point in the
presence of disorder-induced fluctuations.
The signature of Anderson localization transition is to be found in the
flow of t under the rescaling

a→ (1 + dl)a, dl > 0,

i.e., one absorbs all the changes induced to the partition function

Z =

∫
D[φ]e−

1
4πt

∫ dd x
ad−2 (∂µφi)(x) Gij

[
φ(x)
]

(∂µφj)(x)

by a→ (1 + dl)a into the one-parameter infrared flow

dt
dl

= β(t) ≈ β1t + β2t2 + · · · .
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Example 4:The superconducting classes with TRS-breaking C and D

Class C, d > 2 Class C, d < 2
t t

0 0t∗

Class D, d > 2 Class D, d < 2
t t

0 0 t∗

e u e
e e u� � � � � � - - - � � �

- - - - - -� � � - - -

For class D, this is consistent with the DMPK equation in the thick
quantum wire limit:

HH
HHH

HHHH
H

6d

d = 2 e t

d = 2− |ε|e u t

d = 1 e u t

0 t∗ = 1

� � � � � � � � �

- � � � � � � �

- - - - - - � � �
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The DMPK equation yields informations about the conductance
distribution. What does the 2− |ε| expansion of the class D NLσM tells
us about conductance fluctuations?
According to Altshuler, Kravtsov, and Lerner (mid 1980’s), the scaling
of high-gradient operators controls the scaling of the cumulants of the
conductance distribution.
A high-gradient operator Os(x) of order 2s (s > 1) is any local product
of the fields that contains 2s gradients and transforms like a scalar.
Its scaling dimension xs at the critical point

〈Os(x)O†s(x ′)〉 ∼
(

a

|x − x ′|

)2xs

, xs = x (0)
s + γs,

is made of the engineering dimension x (0)
s = 2s (which is larger than 2

for s > 1) and of the anomalous dimension

γs = −(s2 − s)|ε|+O(ε2) for class D.

Ryu, Furusaki, Ludwig, and Mudry (2007)
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If we apply the analysis of the conductance fluctuations of Altshuler, Kravtsov,
and Lerner (mid 1980’s) to the stable fixed point in symmetry class D in
d = 2− |ε| < 2 spatial dimensions, there follows the conductance cumulants

〈〈gs〉〉 ∼


(ḡ)2−s, if s < s0,

As (L/`)d−x (s)
, if s > s0,

s0 ≈
2
|ε|

[1 +O(ε)],

d − x (s) = |ε|s2 − (2 + |ε|)s + (2− |ε|) +O(ε2).

On the other hand, in the thick quantum wire limit of class D [Brouwer,
Furusaki, Gruzberg, Mudry, (2000)]

〈〈gs〉〉 ∝ (L/`)−1/2, s = 1,2, . . . ,

〈〈ln g〉〉 ∝ −(L/`)1/2, var ln g ∼ L/`.
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Discussion: Class DIII behaves similarly to class D. Lamacraft,
Simons, and Zirnbauer (2004) using the one-dimensional NLσM
(which is a principal chiral model for symmetry class DIII) and
instanton methods reproduced the DMPK results from Brouwer,
Furusaki, Gruzberg and Mudry (2000). So it is is not the NLσM which
is called into question but the 2− |ε| expansion.
Assume that the 2− |ε| expansion is smoothly connected to the thick
quantum wire limit. Then

either the one-loop relevance of high-gradient operators is an
artifact of the ε-expansion. These operators are in fact irrelevant
once all orders in the ε-expansion are taken into account [Ludwig
(1990); Brezin and Hikami (1997)],
or high-gradient operators are truly relevant, however they are not
independent, for they are non-linearly coupled through their full
one-loop RG flow. Functional renormalization technique are
required to study their flow [Mudry , Ryu, Furusaki (2003)].
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Dirac fermions in one-dimension is the rule:

    

  

k

+π/2−π/2

     

   

(k)ε

k

     

   

(k)ε

≈

Although Fermi surfaces are the rule in two and more dimensions,
there are counterexamples. Example 5: Graphene
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Direct space

s1

s2
s3

Reciprocal space

kx

y

K+K-

K’+

K’’+

K’’-

K’-

b2

b1

kx

ky
K+

K-

b2

b1 G

For spinless fermions at the Dirac point, i.e., half-filling,

ν(ε) ∝ |ε|+O(ε2), g = 2× π−1.
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We begin with the assumption that the static disorder enters only through
real-valued and uncorrelated nearest-neighbor hoppings: the symmetry class
is BDI. For weak disorder and at long wave length, the product of N
single-particle Green functions averaged over disorder follows from

Z :=

∫
D[ψ†, ψ, ψ̄†, ψ̄] exp(−S),

S :=
k∑
ι=1

∫
dz̄dz
2πi

(
ψA†

ι ∂̄ ψAι + ψ̄A†
ι∂ ψ̄Aι

)
+

∫
dz̄dz
2πi

(gA
2π
OA +

gM
2π
OM

)
,

OA := −J A
A (−1)A J̄ B

B (−1)B ≡ −str J str J̄, J B
A :=

k∑
ι=1

:ψAιψ
B†
ι : ,

OM := −J B
A J̄ A

B (−1)A ≡ −str
(
JJ̄
)
, J̄ B

A :=
k∑
ι=1

: ψ̄Aιψ̄
B†
ι

where A,B = 1, · · · ,2N with k = 1, in which case gA ≥ 0 and gM ≥ 0 can be
thought of as the covariances of the disorder in class BDI. We can however
treat the case of generic integer k and generic gM ∈ R. Finally, grade(A) is 0
(bosons) for A = 1, · · · ,N and 1 (fermions) for A = N + 1, · · · ,2N.
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The theory, a two-dimensional ĝl(M|M)k Thirring model, has whenever
gA = gM = 0 the global GL(M |M) graded symmetry with currents that
realize the ĝl(M|M)k current algebra.
Can high-gradient operators become relevant in the family of
two-dimensional ĝl(M|M)k Thirring models with M and k positive
integers due to the current-current interactions?
The strategy that we followed has three steps.

1 The first step consists of identifying all the independent “classical” high-gradient operators
of order s.

2 The second step consists of normal-ordering all independent “classical” high-gradient
operators of order s. This step depends crucially on the level k of the non-Abelian Thirring
model. The inverse level 1/k plays the role of a “quantum parameter” that vanishes in the
limit k →∞. The level k = 1 is thus the most “quantum”.

3 The computation of the linearized RG flows for the high-gradient operators is the final step.

We could not solve the first step in its full generality. We were
nevertheless able to construct two sets of high-gradient operators in
the extreme “classical” limit ĝl(M|M)k with M, k →∞ and the extreme
“quantum” limit ĝl(M|M)k with M a positive integer and k = 1,
respectively, and carry out the second and third steps consistently.
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In the extreme “classical” case, anomalous one-loop scaling dimensions for
high-gradient operators of order s are distributed in a symmetric fashion
about zero with the minimum and the maximum both depending quadratically
on the order s, very much like for the family of NLσMs on the target spaces
U(M + N)/U(M)× U(N) with M and N positive integers. Hence,
high-gradient operators must become (one-loop) relevant for both signs of the
current-current interaction with increasing order s very much in the same way
as their cousins do in both the compact family U(M + N)/U(M)× U(N) and
the non-compact family U(M,N)/U(M)× U(N) with M,N > 1.

In the extreme quantum case k = 1, the spectrum of anomalous one-loop
scaling dimensions of order s is always one-sided, i.e., positive for one sign of
the current-current interaction. For ĝl(2N|2N)k=1 with N a positive integer the
sign of the current-current interaction for which high-gradient operators are
always irrelevant corresponds to the interpretation of the ĝl(2N|2N)k=1
Thirring model as a problem of Anderson localization in the symmetry class
BDI. We have thus shown that the high-gradient operators in these random
tight-binding models are irrelevant at one-loop order:
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Phase diagram projected onto the critical sector

PSL(2N|2N)∼ GL(2N|2N)/U(1)× U(1)
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Whether the apparent breakdown of one-parameter scaling due to
the relevance of high-gradient operators at one loop is an artifact
of the 2 + ε expansion or has a deeper meaning remains an
outstanding problem for the description of Anderson localization
using the NLσM approach.

We have shown that graphene with real-valued nearest-neighbor
random hopping only is, at the band center, an example of a
critical theory for Anderson localization in two-dimensions with no
relevant one-loop high-gradient operators.
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