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Experimental Observation of the Anderson Transition and its Critical State



EXPERIMENTAL OBSERVATION OF

THE ANDERSON TRANSITION

AND ITS CRITICAL STATE
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Outline
Quantum transport/localization in disordered or chaotic systems

The Kicked Rotor with cold atoms: a very practical tool for studying

Anderson localization

Experimental observation of the Anderson transition with atomic

matter waves

Critical State of the Anderson transition: Between a Metal and an

Insulator
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Interplay between disorder and interference effects

Characteristic length scales

r

r’
ℓe

λ

Mesoscopic regime: Lφ ≫ L ≫ ℓe

ℓe/λ≫ 1 ≡ “weak disorder”

An interference effect

Classical

Quantum

r’=r r’=r

Coherent backscattering

The Anderson Metal-Insulator Transition in 3D

Scale Invariance

Localization length ℓ ∼ |Kc − K |−ν

s = ν Universal

Insulator ≡ Localized

D ∼ |K − Kc |
s diffusion constant

Metal ≡ Diffusive transport

K control parameter (e.g. = ℓe/λ)Kc
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The Kicked Rotor with cold atoms: a very
practical tool for studying Anderson localization

4 / 30



The Kicked Rotor

The kicked rotor

x

t

H =
p2

2
+ K cos x

∑

n δ(t − n)

Classical CHAOTIC DIFFUSION

in momentum space, K ≫ 1

pn+1 = pn + K sin θn

θn+1 = θn + pn+1

Looks like a random walk (although

perfectly deterministic)

On average, 〈p2〉 ∼ Dt

p/2π

p/2π

p/2π

X/2π
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Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects

Initially peaked state⇒ Chaotic diffusive expansion?

t > tℓ, dynamical localization [G. Casati et al. (1979)]

≡ Anderson localization in 1D disordered systems [Fishman et al. (1982)]

〈p2〉

|ψ(p, t)|2

(log scale)

t
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Quasi-periodicity and effective dimensionality

The quasiperiodic Kicked Rotor [Shepelyansky (1987)]

Hqp =
p̂2

2
+K(t) cos θ̂

∑

n δ(t − n)

quasi-periodic modulation with two new frequencies:

K(t) = K [1+ ε cos (ω2t + ϕ2) cos (ω3t + ϕ3)]

K(t)
t

dynamics strictly identical to that of a 3D Kicked “Rotor”

H3 =
p1

2

2
+ω2p2+ω3p3+K cos θ1 [1+ ε cos θ2 cos θ3]

∑

n δ(t−n)

with an initial condition taken as a plane source

ψ3(θ1, θ2, θ3; t = 0) = ψqp(θ1, t = 0)δ(θ2 − ϕ2)δ(θ3 − ϕ3)
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Experimental observation
of the Anderson transition with atomic matter

waves
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Experimental realization with cold atoms [Moore et al. (1995)]

Quantum chaos group of PHLAM laboratory, Lille: JC Garreau, P Szriftgiser, J Chabé, H Lignier

Atom-light interactions

∆L = ωL − ω0

Spontaneous emission

dissipative, rate∼ ΓΩ2/∆2
L

Stimulated emission

dipole potential,

amplitude∼ Ω2/∆L

I. Cooling and trapping

MOT

⇒ narrow initial

distribution

⇒ negligible

interactions

II. Pulse sequence

Standing wave, ∆L ≫ Γ

∝ cos(2kLx)
Temporal forcing

laser intensity

time
Limitations

gravity, decoherence⇒ t ≤ 160

III. Watching the wave-function

Raman velocimetry⇒ |Ψ(p)|2
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Experimental observation of localized/diffusive

dynamics

Kick strength

m
o
d
u
la
ti
o
n
a
m
p
lit
u
d
e

� �� ���
�

���

���

���

���

����

〈p2〉(t)

t
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1
K = 5, ε = 0.24

K = 9, ε = 0.8

|Ψ(p, t = 150)|2

p
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Finite-time limitations on a continuous transition

How to determine Kc at 150 kicks? seems easier at long times!

for t ≪ tℓ not yet localized (≈ “not yet diffusive” distribution) but tℓ
diverges at the transition

M
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localized
regime

diffusive
regime

K
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How to unambiguously identify the transition?

What characterizes the criticality?

No caracteristic time⇒ algebraic dependence of 〈p2〉 ∼ tγ

〈p2〉

|Ψ(p)|2

(log scale)

Time t (number of kicks)

K=9
diffusive
regime

〈p2〉 ∼ Dt

K = Kc

critical
regime

K=4
localized
regime

〈p2〉 ∼ ℓ2
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Scaling law in time domain

Finite time effects

Sharp transition only observable when t →∞

At finite time, smooth crossover

≡ finite-size effects? [Pichard et al. (1981); MacKinnon et al. (1981)]

Renormalization flow in time domain?

One parameter scaling hypothesis

〈p2〉 ∼ tk1F
[

(K − Kc) tk2
]

Asymptotic behaviours (t →∞):

Localized, K . Kc : 〈p
2〉 ∼ ℓ2 ∼ |Kc − K |−2ν

Diffusive, K & Kc : 〈p
2〉 ∼ Dt ∼ |K − Kc |

ν t

〈p2〉 ∼ t2/3F
[

(K − Kc) t1/3ν
]
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Critical anomalous diffusion

〈p2〉 ∼ t2/3 F
ˆ

(K − Kc) t1/3ν
˜

⇒ 〈p2〉 ∼ t2/3 at K = Kc
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Time t (number of kicks, log scale)

diffusive regime
→

t→∞
slope 1

critical regime
∀t slope 2/3
fit: slope ≈ 0.664

localized regime
→

t→∞
slope 0
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Critical anomalous diffusion: experimental observation

0 50 100
0

200

400

600

800

1000
〈p2〉

Localized state: 〈p2〉 ∼ ℓ2

Diffusive regime: 〈p2〉 ∼ Dt

Critical regime
anomalous diffusion: 〈p2〉 ∼ t2/3

t
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How to verify 〈p2〉 ∼ t2/3F
[

(K − Kc) t1/3ν
]

?

Existence of ξ(K ) and F such that Λ =
〈p2〉

t2/3
= F

[

ξ(K )

t1/3

]

?

lnΛ = ln
〈p2〉

t2/3

ln(1/t1/3) ln
(

ξ(K )/t1/3
)

K

diffusive

critical ln ξ(K )

lo
ca
liz
e
d
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Finite-time scaling analysis of numerical results

Scaling function F

Λ(K , t) =
〈p2〉

t2/3
∼ F

[

ξ(K )

t1/3

]

Scaling parameter ξ

4 5 6 7 8 9
0

2000

4000

K

ξ ∼ ℓ ∼ 1/D

well fitted by: ξ ∼ |K − Kc |
−ν

Critical point: Kc ≃ 6.4

Critical exponent: ν ≃ 1.6± 0.05

in the same Universality Class as for the 3D Anderson model

more refined analysis: ν = 1.59± 0.01 [Lemarié et al., EPL 87, 37007 (2009)]

Orthogonal: 1.57± 0.02 [Slevin et al. (1997)]
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Finite-time scaling analysis of experimental results

Scaling function F
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Experimental determination of the critical exponent ν

1/ξ = α|K − Kc |
ν + β

β accounts for experimental imperfections

Critical point: Kc ≃ 6.4

Critical exponent: ν ≃ 1.4± 0.3

Excellent agreement with numerics (no adjustable parameter)
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Critical State of the Anderson Transition:
Between a Metal and an insulator
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Critical state of the Anderson transition?
Scale invariance? Theoretical description?

At long times, long distance: P(0,p; t) = |Ψ(p, t)|2 ∼?

K stochasticity
parameter

localized phase diffusive phase

Kc

???

∼ exp

[

−
p2

4Dt

]

D diffusion coefficient

t ≫ tD

D ∼ (K − Kc)
s

∼ exp

[

−2|p|

ℓ

]

ℓ localization length

t ≫ tℓ

ℓ ∼ (Kc − K )−ν
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Standard rescalings in the localized/diffusive regimes
Experimental results

Localized regime, t ≫ tℓ:

|Ψ(p, t)|2 ∼ exp[−2|p|/ℓ]
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Diffusive regime, t ≫ tD:

|Ψ(p, t)|2 ∼ exp[−p2/4Dt ]
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Scale invariance of the critical state
Experimental results
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Direct observation of the scale invariance at the threshold

Rescaling of all critical wave functions for t from t = 20 to t = 160!
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Scale invariance of the critical state
Numerical results
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Rescaling of all critical wave functions for t from t = 103 to t = 106!
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Theoretical description of P(0, p; t)?

Diffusive transport

In Fourier space: P(q, ω) =
1

−iω + Dq2

Interference effects⇒ D < Dcl

Localization

Generalization: D ⇒ D(ω)

Localized state: D(ω) ∼
ω→0

−iωℓ2

1

−iω(1+ ℓ2q2)
⇒ Fourier transform⇒∼ exp[−2|p|/ℓ]

D(ω) =?

Perturbative theory to describe weak localization (low disorder

K/~ ≫ 1 and not too long times).

Strong localization⇒ self-consistent theory
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Predictions of the self-consistent theory

Self-consistent theory for the quasiperiodic Kicked Rotor

D(ω) = D − 2D(ω)

∫

d3q

(2π)3
1

−iω + D(ω)q2

Anderson transition with ν = 1 (fluctuations are not taken into

account by this mean-field theory)

At criticality: D(ω) ∼
ω→0

ω1/3, thus 〈p2〉 ∼ t2/3

Initial condition = plane source = 1q1 × δ(q2)× δ(q3)

|ψ(p, t)|2 =

∫

dω

2π
e−iωt

∫

d3q

(2π)3
eiq·p δ(q2)δ(q3)

−iω + D(ω)q2

Analytic prediction for the critical state

|ψ(p, t)|2 = 3
2

(

3ρ3/2t
)

−1/3
Ai

[

(

3ρ3/2t
)

−1/3
|p|

]
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Confrontation with numerics

ln |Ψ(p, t)|2

in units of 106 kicks

|ψ(p, t)|2 = 3
2

(

3ρ3/2t
)

−1/3
Ai

[

(

3ρ3/2t
)

−1/3
|p|

]

?

YES! No adjustable parameter: ρ =
Γ(2/3)

3
Λc

deviations at p ≈ 0⇒ multifractality “≡ fluctuations” (not taken

into account in the self-consistent theory)
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Confrontation with the experimental results
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〈

|Ψ(p, t)|2 × t1/3
〉

t

p/t1/3

|ψ(p, t)|2 = 3
2

(

3ρ3/2t
)

−1/3
Ai

[

(

3ρ3/2t
)

−1/3
|p|

]

?

YES!

No deviations observed for t ≤ 160 kicks
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Between a metal and an insulator:

the critical state of the Anderson transition

At long times, long distance: P(0,p; t) = |Ψ(p, t)|2 ∼?

K stochasticity
parameter

localized phase diffusive phase

Kc

No characteristic time

Scale invariance

∼ exp

[

−
α|p|3/2

t1/2

]

α critical coefficient

∼ exp

[

−
p2

4Dt

]

D diffusion coefficient

t ≫ tD

D ∼ (K − Kc)
s

∼ exp

[

−2|p|

ℓ

]

ℓ localization length

t ≫ tℓ

ℓ ∼ (Kc − K )−ν
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Conclusion

Experimental observation of the Anderson transition with atomic

matter waves [PRL 101, 255702 (2008); PRA 80, 043626 (2009); Images de la physique

2009]

Experimental determination of the critical exponent

ν ≃ 1.4± 0.3 ≃ νAnderson = 1.57± 0.02
New data: ν ≃ 1.5± 0.2

Universality of the Anderson transition with the quasiperiodic Kicked

Rotor [EPL 87, 37007 (2009)]

The quasiperiodic Kicked Rotor belongs to the same universality

class as for the Anderson model

Critical State of the Anderson Transition: Between a Metal and an

Insulator [PRL 105, 090601 (2010)]

Direct observation of the scale invariance at the threshold

Analytical prediction from the self-consistent theory
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Perspectives

The Anderson transition in 4D and 2D

Quasi-periodic modulation with 3 frequencies or 1 frequency

Critical exponent in 4D? Preliminary result: ν ≈ 1.2. Critical
dimension?

Symmetries

Possibility to break the Time-Reversal Symmetry! ≡ effective

magnetic field

⇒ Anderson localization and transition in the Unitary class

Interactions

Kicked Rotor with BEC

Interactions controlled by Feshbach resonances
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