

2162-22

Advanced Workshop on Anderson Localization, Nonlinearity and Turbulence: a Cross-Fertilization

23 August - 3 September, 2010

Experimental Observation of the Anderson Transition and its Critical State

G. LEMARIE Service de Physique de l'Etat Condense CEA Saclay Gif sur Yvette France

EXPERIMENTAL OBSERVATION OF THE ANDERSON TRANSITION AND ITS CRITICAL STATE

Dominique Delande

Benoît Grémaud

Jean-Claude Garreau

Gabriel Lemarié

Laboratoire Kastler-Brossel Université Pierre et Marie Curie and Ecole Normale Supérieure (Paris) Hans Lignier

Julien Chabé

Laboratoire PHLAM Université de Lille

The Kicked Rotor with cold atoms: a very practical tool for studying Anderson localization

Experimental observation of the Anderson transition with atomic matter waves

Critical State of the Anderson transition: Between a Metal and an Insulator

Interplay between disorder and interference effects

The Kicked Rotor with cold atoms: a very practical tool for studying Anderson localization

The Kicked Rotor

Quantum dynamics vs. Classical dynamics

Interplay between chaos and interference effects

- Initially peaked state \Rightarrow Chaotic diffusive expansion?
- $t > t_\ell$, dynamical localization [G. Casati et al. (1979)]
- \equiv Anderson localization in 1D disordered systems [Fishman et al. (1982)]

Quasi-periodicity and effective dimensionality

The quasiperiodic Kicked Rotor [Shepelyansky (1987)]

$$H_{\rm qp} = \frac{\hat{p}^2}{2} + \mathcal{K}(t) \cos \hat{\theta} \sum_n \delta(t-n)$$

• quasi-periodic modulation with two new frequencies:

$$\mathcal{K}(t) = K \left[1 + \varepsilon \cos \left(\frac{\omega_2 t}{2} + \varphi_2 \right) \cos \left(\frac{\omega_3 t}{2} + \varphi_3 \right) \right]$$

 $\mathcal{K}(t)$

• dynamics strictly identical to that of a 3D Kicked "Rotor" $H_{3} = \frac{p_{1}^{2}}{2} + \omega_{2}p_{2} + \omega_{3}p_{3} + K \cos \theta_{1} [1 + \varepsilon \cos \theta_{2} \cos \theta_{3}] \sum_{n} \delta(t-n)$ with an initial condition taken as a plane source $\psi_{3}(\theta_{1}, \theta_{2}, \theta_{3}; t = 0) = \psi_{qp}(\theta_{1}, t = 0)\delta(\theta_{2} - \varphi_{2})\delta(\theta_{3} - \varphi_{3})$

Experimental observation of the Anderson transition with atomic matter waves

Experimental realization with cold atoms [Moore et al. (1995)]

Quantum chaos group of PHLAM laboratory, Lille: JC Garreau, P Szriftgiser, J Chabé, H Lignier

Atom-light interactions

 $\Delta_L = \omega_L - \omega_0$

- Spontaneous emission dissipative, rate $\sim \Gamma \Omega^2/\Delta_L^2$
- Stimulated emission dipole potential, amplitude $\sim \Omega^2 / \Delta_L$

I. Cooling and trapping

MOT
 ⇒ narrow initial distribution
 ⇒ negligible interactions

II. Pulse sequence

• Standing wave, $\Delta_L \gg \Gamma$

Experimental observation of localized/diffusive dynamics

Finite-time limitations on a continuous transition

How to determine K_c at 150 kicks? seems easier at long times!

• for $t \ll t_{\ell}$ not yet localized (\approx "not yet diffusive" distribution) but t_{ℓ} diverges at the transition

How to unambiguously identify the transition?

Time *t* (number of kicks)

Scaling law in time domain

Finite time effects

- Sharp transition only observable when $t \to \infty$
- At finite time, smooth crossover
- \equiv finite-size effects? [Pichard et al. (1981); MacKinnon et al. (1981)]
- Renormalization flow in time domain?

One parameter scaling hypothesis

$$\langle p^2
angle \sim t^{k_1} F \left[(K - K_c) t^{k_2} \right]$$

Asymptotic behaviours ($t \rightarrow \infty$):

- Localized, $K \lesssim K_c$: $\langle p^2 \rangle \sim \ell^2 \sim |K_c K|^{-2\nu}$
- Diffusive, $K \gtrsim K_c$: $\langle p^2 \rangle \sim Dt \sim |K K_c|^{\nu} t$

$$\langle p^2
angle \sim t^{2/3} F \left[(K - K_c) t^{1/3\nu} \right]$$

Critical anomalous diffusion

Time *t* (number of kicks, log scale)

Critical anomalous diffusion: experimental observation

How to verify
$$\langle p^2 \rangle \sim t^{2/3} F \left[(K - K_c) t^{1/3\nu} \right]$$
?

Finite-time scaling analysis of numerical results

in the same Universality Class as for the 3D Anderson model

- more refined analysis: $u = 1.59 \pm 0.01$ [Lemarié et al., EPL 87, 37007 (2009)]
- Orthogonal: 1.57 ± 0.02 [Slevin et al. (1997)]

Finite-time scaling analysis of experimental results

Experimental determination of the critical exponent ν

•
$$1/\xi = \alpha |\mathbf{K} - \mathbf{K}_c|^{\nu} + \beta$$

- β accounts for experimental imperfections
- Critical point: $K_c \simeq 6.4$
- Critical exponent: $\nu \simeq 1.4 \pm 0.3$
- Excellent agreement with numerics (no adjustable parameter)

Critical State of the Anderson Transition: Between a Metal and an insulator

Critical state of the Anderson transition?

Scale invariance? Theoretical description?

At long times, long distance: $P(0, p; t) = |\Psi(p, t)|^2 \sim ?$ $t \gg t_{\ell}$ $t \gg t_D$ $\sim \exp\left[-rac{p^2}{4Dt}
ight]$ $\sim \exp\left[\frac{-2|\rho|}{\ell}\right]$ ℓ localization length D diffusion coefficient localized phase diffusive phase K stochasticity parameter K_c $D \sim (K - K_c)^s$ $\ell \sim (K_c - K)^{-\nu}$

Standard rescalings in the localized/diffusive regimes **Experimental results**

Diffusive regime, $t \gg t_D$: Localized regime, $t \gg t_{\ell}$: $|\Psi(p,t)|^2 \sim \exp[-p^2/4Dt]$ $|\Psi(\boldsymbol{\rho},t)|^2 \sim \exp[-2|\boldsymbol{\rho}|/\ell]$ 0.025 $|\Psi(p,t)|^2$ $|\Psi(p, t)|^2$ •t=20 0.02 t = 40•••t=80 • • t=160 0.015 0.01 0.05 0.005 0 -50 -150 -100 -30 -20 -10 10 20 0 30 р $|\Psi(p,t)|^2 imes t^{1/2}$ $|\Psi(p, t)|^2$ ••• t=20 ••• t=40 0.1 • t=80 • t=160 0.05 0.05 -30 -20 -10 -10 20 30 -20 0 10 р

•t=20

• t=40

 $\cdot \cdot t = 80$

0

0

 $p/t^{1/2}$

50

t=20

t=40

• t=160

10

• t=80

p

-t=160

100

150

 $\overline{20}$

Scale invariance of the critical state

Direct observation of the scale invariance at the threshold Rescaling of all critical wave functions for *t* from t = 20 to t = 160!

Scale invariance of the critical state

Rescaling of all critical wave functions for *t* from $t = 10^3$ to $t = 10^6$!

Theoretical description of P(0, p; t)?

Diffusive transport

• In Fourier space:
$$P(\boldsymbol{q},\omega) = \frac{1}{-i\omega + Dq^2}$$

• Interference effects
$$\Rightarrow D < D_{cl}$$

Localization

• Generalization: $D \Rightarrow D(\omega)$

• Localized state:
$$D(\omega) \underset{\omega
ightarrow 0}{\sim} -i\omega\ell^2$$

•
$$\frac{1}{-i\omega(1+\ell^2 q^2)}$$
 \Rightarrow Fourier transform $\Rightarrow \sim \exp[-2|p|/\ell]$

 $D(\omega) = ?$

- Perturbative theory to describe weak localization (low disorder $K/\hbar \gg 1$ and not too long times).
- Strong localization \Rightarrow self-consistent theory

Predictions of the self-consistent theory

Self-consistent theory for the quasiperiodic Kicked Rotor

$$D(\omega) = D - 2D(\omega) \int \frac{\mathrm{d}^3 \boldsymbol{q}}{(2\pi)^3} \frac{1}{-i\omega + D(\omega)q^2}$$

• Anderson transition with $\nu = 1$ (fluctuations are not taken into account by this mean-field theory)

- At criticality: $D(\omega) \sim_{\omega \to 0} \omega^{1/3}$, thus $\langle p^2 \rangle \sim t^{2/3}$
- Initial condition = plane source = $\mathbf{1}_{q_1} \times \delta(q_2) \times \delta(q_3)$

$$|\psi(\boldsymbol{\rho},t)|^{2} = \int \frac{\mathrm{d}\omega}{2\pi} e^{-i\omega t} \int \frac{\mathrm{d}^{3}\boldsymbol{q}}{(2\pi)^{3}} e^{i\boldsymbol{q}\cdot\boldsymbol{\rho}} \frac{\delta(\boldsymbol{q}_{2})\delta(\boldsymbol{q}_{3})}{-i\omega + D(\omega)q^{2}}$$

Analytic prediction for the critical state

$$|\psi(\boldsymbol{p},t)|^2 = \frac{3}{2} \left(3\rho^{3/2}t\right)^{-1/3} \operatorname{Ai}\left[\left(3\rho^{3/2}t\right)^{-1/3}|\boldsymbol{p}|\right]$$

Confrontation with numerics

$$|\psi(\boldsymbol{\rho},t)|^2 = \frac{3}{2} \left(3\rho^{3/2}t\right)^{-1/3} \operatorname{Ai}\left[\left(3\rho^{3/2}t\right)^{-1/3}|\boldsymbol{\rho}|\right]^2$$

- YES! No adjustable parameter: $\rho = \frac{\Gamma(2/3)}{3}\Lambda_c$
- deviations at p ≈ 0 ⇒ multifractality "≡ fluctuations" (not taken into account in the self-consistent theory)

Confrontation with the experimental results

$$|\psi(\boldsymbol{\rho},t)|^2 = \frac{3}{2} \left(3\rho^{3/2}t\right)^{-1/3} \operatorname{Ai}\left[\left(3\rho^{3/2}t\right)^{-1/3}|\boldsymbol{\rho}|\right]^2$$

• YES!

• No deviations observed for $t \leq 160$ kicks

Between a metal and an insulator: the critical state of the Anderson transition

Conclusion

Experimental observation of the Anderson transition with atomic matter waves [*PRL* **101**, 255702 (2008); *PRA* **80**, 043626 (2009); Images de la physique 2009]

• Experimental determination of the critical exponent $\nu \simeq 1.4 \pm 0.3 \simeq \nu_{Anderson} = 1.57 \pm 0.02$ New data: $\nu \simeq 1.5 \pm 0.2$

Universality of the Anderson transition with the quasiperiodic Kicked Rotor [EPL 87, 37007 (2009)]

 The quasiperiodic Kicked Rotor belongs to the same universality class as for the Anderson model

Critical State of the Anderson Transition: Between a Metal and an Insulator [*PRL* **105**, 090601 (2010)]

- Direct observation of the scale invariance at the threshold
- Analytical prediction from the self-consistent theory

Perspectives

The Anderson transition in 4D and 2D

- Quasi-periodic modulation with 3 frequencies or 1 frequency
- Critical exponent in 4D? Preliminary result: $\nu \approx 1.2$. Critical dimension?

Symmetries

- Possibility to break the Time-Reversal Symmetry! \equiv effective magnetic field
- \Rightarrow Anderson localization and transition in the Unitary class

Interactions

- Kicked Rotor with BEC
- Interactions controlled by Feshbach resonances