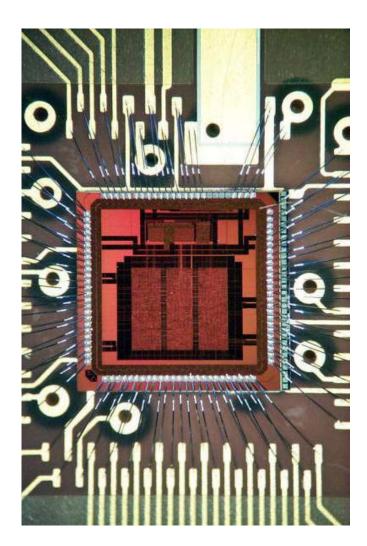
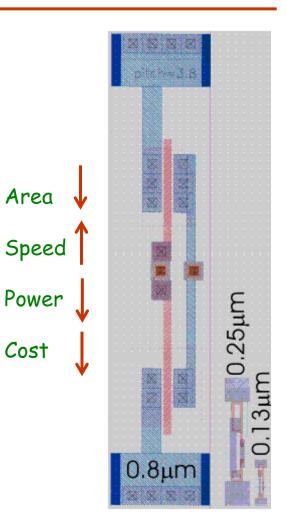


ICTP Latin-American Basic Course on FPGA Design for Scientific Instrumentation


15 - 31 March 2010

Scaling

MOREIRA Paulo Rodrigues S. CERN Geneva Switzerland


Outline

- Introduction
- Transistors
- The CMOS inverter
- Technology
- Scaling
 - Scaling objectives
 - Scaling variables
 - Scaling consequences
- Gates
- Sequential circuits
- Storage elements
- Phase-Locked Loops
- Example

Technology scaling

- Technology scaling has a <u>threefold</u> <u>objective</u>:
 - Increase the transistor density
 - Reduce the gate delay
 - Reduce the power consumption
- At present, between two technology generations, the objectives are:
 - Doubling of the transistor density;
 - Reduction of the gate delay by 30% (43% increase in frequency);
 - Reduction of the power by 50% (at 43% increase in frequency);

Technology scaling

- How is scaling achieved?
 - All the device dimensions (lateral and vertical) are reduced by $1/\alpha$
 - Concentration densities are increased by $\boldsymbol{\alpha}$
 - Device voltages reduced by $1/\alpha$ (not in all scaling methods)
 - Typically $1/\alpha$ = 0.7 (30% reduction in the dimensions)

Technology scaling

• The <u>scaling variables</u> are:

- Substrate doping: $N_A \rightarrow N_A \times \alpha$

This is called <u>constant field</u> scaling because the electric field across the gate-oxide does not change when the technology is scaled

If the power supply voltage is maintained constant the scaling is called <u>constant voltage</u>. In this case, the electric field across the gate-oxide increases as the technology is scaled down.

Due to gate-oxide breakdown, below $0.8\mu m$ only "constant field" scaling is used.

Scaling consequences

Some consequences of 30% scaling in the constant field regime ($\alpha = 1.43$, $1/\alpha = 0.7$):

• Device/die area:

 $W \times L \rightarrow (1/\alpha)^2 = 0.49$

- In practice, microprocessor <u>die size grows</u> about 25% per technology generation! This is a result of added functionality.
- Transistor density:

(unit area) /(W \times L) $\rightarrow \alpha^2$ = 2.04

- In practice, <u>memory density</u> has been scaling as expected.

Scaling consequences

• Gate capacitance:

W × L /
$$t_{ox} \rightarrow 1/\alpha = 0.7$$

• Drain current:

$$(W/L) \times (V^2/t_{ox}) \rightarrow 1/\alpha = 0.7$$

• Gate delay:

 $(C \times V) / I \rightarrow 1/\alpha = 0.7$ Frequency $\rightarrow \alpha = 1.43$

 In practice, microprocessor frequency has doubled every technology generation (2 to 3 years)! This faster increase rate is due to super-pipelined architectures ("less gates per clock cycle")

Scaling consequences

• Power:

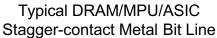
$$C \times V^2 \times f \rightarrow (1/\alpha)^2 = 0.49$$

• Power density:

$$1/t_{ox} \times V^2 \times f \rightarrow 1$$

- In practice, the power density has been increasing faster than foreseen by the simple scaling theory. This is due to the faster them foreseen increase in frequency

Interconnects scaling


- Interconnects scaling:
 - Higher densities are only possible if the interconnects also scale.
 - Reduced width \rightarrow increased resistance
 - Denser interconnects \rightarrow <u>higher capacitance</u>
 - To account for <u>increased parasitics</u> and <u>integration</u> <u>complexity</u> **more interconnection layers** are added:
 - thinner and tighter layers \rightarrow local interconnections
 - thicker and sparser layers \rightarrow global interconnections and power

Scaling table

Junction depth (X_j) $1/\alpha$ $1/\alpha$ $1/\alpha$ Substrate doping (N_A) α α Electric field across gate oxide (E)1 α Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) $1/\alpha$ $1/\alpha^2$ Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$	Constant Voltage		
Width (W) $1/\alpha$ $1/\alpha$ $1/\alpha$ Scaling VariableGate-oxide thickness (tox) $1/\alpha$ $1/\alpha$ $1/\alpha$ VariableJunction depth (Xj) $1/\alpha$ $1/\alpha$ $1/\alpha$ VariableSubstrate doping (N_A) α α α α Electric field across gate oxide (E)1 α α Depletion layer thickness $1/\alpha$ $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ DeviceGate capacitance (load) (C) $1/\alpha$ $1/\alpha$ α Drain-current (I_{dss}) $1/\alpha$ α α Gate delay $1/\alpha$ $1/\alpha^2$ α Gate delay $1/\alpha$ $1/\alpha^2$ α Current density α α^3 α DC & Dynamic power dissipation $1/\alpha^2$ α			
Gate-oxide thickness (t_{ox}) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $Variable$ Junction depth (X_j) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $Variable$ Substrate doping (N_A) α α α α Electric field across gate oxide (E)1 α α Depletion layer thickness $1/\alpha$ $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ $1/\alpha^2$ Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ $Repercuse$ Drain-current (I_{dss}) $1/\alpha$ α α Transconductance (g_m) $1/\alpha$ $1/\alpha^2$ α Gate delay $1/\alpha$ $1/\alpha^2$ α Current density α α^3 α DC & Dynamic power dissipation $1/\alpha^2$ α			
Gate-oxide thickness (t_{ox}) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ VariableJunction depth (X_j) $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ Substrate doping (N_A) α α α α α Electric field across gate oxide (E)1 α $1/\alpha$ $1/\alpha$ Depletion layer thickness $1/\alpha$ $1/\alpha$ $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ $1/\alpha^2$ DeviceGate capacitance (load) (C) $1/\alpha$ $1/\alpha$ α $1/\alpha$ Drain-current (I_{dss}) $1/\alpha$ α α α Transconductance (g_m) $1/\alpha$ $1/\alpha^2$ α Gate delay $1/\alpha$ $1/\alpha^2$ α α^3 Current density α α^3 α^3 α DC & Dynamic power dissipation $1/\alpha^2$ α α	a		
Junction depth (X_j) $1/\alpha$ $1/\alpha$ $1/\alpha$ Substrate doping (N_A) α α α Electric field across gate oxide (E)1 α Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) $1/\alpha$ $1/\alpha^2$ Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$	Variables		
Electric field across gate oxide (E)1 α Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) $1/\alpha$ α Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$			
Depletion layer thickness $1/\alpha$ $1/\alpha$ Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ DeviceGate capacitance (load) (C) $1/\alpha$ $1/\alpha$ RepercuseDrain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m) $1/\alpha$ $1/\alpha^2$ Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$ α			
Gate area (Die area) $1/\alpha^2$ $1/\alpha^2$ Device RepercuseGate capacitance (load) (C) $1/\alpha$ $1/\alpha$ RepercuseDrain-current (I_{dss}) $1/\alpha$ α $1/\alpha$ Transconductance (g_m) $1/\alpha$ α $1/\alpha^2$ Gate delay $1/\alpha$ $1/\alpha^2$ $1/\alpha^2$ Current density α α^3 CircuitDC & Dynamic power dissipation $1/\alpha^2$ α			
Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ RepercuseDrain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m)1 α Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$ α			
Gate capacitance (load) (C) $1/\alpha$ $1/\alpha$ RepercuseDrain-current (I_{dss}) $1/\alpha$ α $1/\alpha$ α Transconductance (g_m)1 α $1/\alpha^2$ α Gate delay $1/\alpha$ $1/\alpha^2$ $1/\alpha^2$ α^3 Current density α α^3 CircuitDC & Dynamic power dissipation $1/\alpha^2$ α Benercuse	Device		
Drain-current (I_{dss}) $1/\alpha$ α Transconductance (g_m)1 α Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$ α	-		
Gate delay $1/\alpha$ $1/\alpha^2$ Current density α α^3 DC & Dynamic power dissipation $1/\alpha^2$ α DC & Dynamic power dissipation $1/\alpha^2$ α			
Current density α α^3 CircuitDC & Dynamic power dissipation $1/\alpha^2$ α Repercuse			
DC & Dynamic power dissipation $1/\alpha^2$ α Circuit			
DC & Dynamic power dissipation $1/\alpha^2$ α			
Konorcijs	-		
Power density 1 α^3 (Repercusa)	sion		
Power-Delay product $1/\alpha^3$ $1/\alpha$	Ļ		
Paulo Moreira Technology scaling			

2008 and beyond ...

- International Technology Roadmap For Semiconductors (ITRS 2007)
- Forecast from the semiconductor industry with a 15 year perspective:
 - Near-term: 2007 2015
 - Long-term: 2016 2022.
- The forecast is done in terms of 1st year of production: ٠
 - Product shipment first exceeds 10K units/month (using production tooling)
- A near-term scaling ratio of @ 0.7 is assumed ٠
- These scaling trends will allow the electronics market ٠ to growth at 15% / year @ 0.7 2 years 🔻 250 nm ⇒ 180 nm ⇒ 130 nm ⇒ 90 nm ⇒ 65 nm ⇒ 45 nm ⇒ 32 nm ⇒ 28 nm ⇒ 25 nm @ 0.5 $\frac{1}{2}$ Pitch = Metal pitch/2 4 years Metal $\frac{1}{2}$ Pitch = Poly pitch/2 pitch Poly pitch Х Х Х 6-16 Lines Typical DRAM/MPU/ASIC Typical flash un-contacted poly

Technology scaling

2008 and beyond ...

ITRS Road Map, 2007 edition:	2008	2010	2012	2022 (year of first production
DRAM $\frac{1}{2}$ pitch (nm)	57	45	36	11
$\mu P M1 \frac{1}{2}$ pitch (nm)	59	45	36	11
Flash Poly ½ pitch (nm)	45	36	28	9 IEEE Spectrum, July 1999
Gate length, printed (nm)	38	30	24	7.5 Special report: "The 100-
Gate length, physical (nm)	23	18	14	4.5 million transistor IC "
DRAM:				
Bits/chip (Gbits)	2.15	4.2	4.29	68.72
Chip size (mm ²)	74	93	59	93
Gbits/cm ²	2.9	4.62	7.33	73.85
Flash:				
Bits/chip (Gbits) SLC	8.59	17.18	17.18	274.88
Chip size (mm ²)	101.80	128.26	128.26	128.26
Gbits/cm ²	8.44	13.40	21.30	214.0
Bits/chip (Gbits) MLC [2 bits/cell]	17.18	34.36	34.36	549.76
Chip size (mm²)	101.80	128.26	80.80	128.26
Gbits/cm ²	16.90	26.80	42.50	429.0
Bits/chip (Gbits) MLC [4 bits/cell]	34.36	68.72	68.72	1099.51
Chip size (mm²)	101.80	128.26	80.80	128.26
Gbits/cm ²	33.8	53.6	85.1	857.0
μP (high performance):				
Transistors/chip (Millions)	1106	2212	2212	35391
Chip size (mm²)	246	310	195	310
Transistors/cm ² (M/cm ²)	449	714	1133	11416
Total pads	3072	3072	3072	3072 (66.7% allocated for power
				and ground)

2008 and beyond ...

ITRS Road Map, 2007 edition:	2008	2010	2012	2022 (year of first production)
Performance:				
On-Chip clock (GHz) Chip-to-board (GHz)	5.0	5.9	6.8	14
Wiring levels (maximum) Wiring levels (minimum)	12	12	12	15
Power supply:				
Vdd (V):	1.0	1.0	0.9	0.65
Maximum allowable power (W)	198	198	198	198 (With heat sink)
Lithography:				
Field size - area (mm²)	858	858	858	858
Wafer diameter (mm)	300	300	300/450	450