ICTP Latin-American Basic Course on FPGA Design for Scientific

Digital Design II (sequential elements, Mealy and Moore FSM)

BAZARGAN SABET Pirouz
LIPG, University Pierre et Matie Curie
Paris
France

Outline

】 Digital CMOS design
$\begin{array}{ll}\text {-O } & \text { Boolean algebra } \\ -\bigcirc & \text { Basic digital CMOS gates }\end{array}$
Combinational and sequential circuits
(Coding - Representation of numbers

Basic CMOS Gates

How to implement Boolean functions in CMOS technology?

Which functionalities are available

Basic CMOS Gates

(N -MOS transistor

Lip
Pirouz Bazargan Sabet
ICTP
October 2009

Basic CMOS Gates

P P-MOS transistor

Li
Pirouz Bazargan Sabet
ICTP

Basic CMOS Gates

The electrical behavior of a MOS transistor is very complex

Design of a multi-million transistor circuit?

Basic CMOS Gates

In a digital circuit a MOS transistor can be seen as a Switch

$D=S$ when $G=1$

P-MOS

$D=S$ when $G=0$

Basic CMOS Gates

When driving, a MOS transistor can be seen as a Resistor

$$
R \propto \frac{L}{W}
$$

For the same size, a P-MOS is twice more resistive than an $\mathrm{N}-\mathrm{MOS}$

Basic CMOS Gates

The N-MOS and P-MOS are not exactly symmetrical

A N-MOS is a good transmitter of 0

A P-MOS is a good transmitter of 1

Basic CMOS Gates

$$
y=\operatorname{Not} x
$$

Dual CMOS gate

Basic CMOS Gates

$$
y=\overline{x_{1} \cdot x_{2}}
$$

Pirouz Bazargan Sabet

Basic CMOS Gates

Design of a dual gate

The P-network must be the dual of the N -network

Series \longrightarrow Parallel
Parallel \longrightarrow Series
Take care of the size of transistors

Basic CMOS Gates

(To set the output to 0 a path has to be created through the N network

- A series of N -transistor must be conducting

$$
\Pi_{x_{i}=1}
$$

Only negative (inverting) functions can be created

Basic CMOS Gates

Implementing a Boolean function with a CMOS gate ?

T The function must be inverting in regard of all the variables
(3) Put the function in the form of $f=\bar{g}$
(D) Design the N-network of g

Basic CMOS Gates

Implementing a Boolean function with a CMOS gate ?
(In the expression of g each '.' are two paths in series
(In the expression of g each ' + ' are two paths in parallel

The P-network is the dual network of the N -network

Avoid putting more than 3 transistors in series

Basic CMOS Gates

Example :

$$
\begin{aligned}
& f=\bar{a}+(\bar{b} \cdot \bar{c}) \\
& f=\bar{a}+\overline{(b+c)} \\
& f=\overline{a \cdot(b+c)} \\
& g=a \cdot(b+c)
\end{aligned}
$$

Basic CMOS Gates

Some gates :

Inverter: $f=\bar{a}$
Nand: $f=\overline{a \cdot b}$
Nor: $\quad f=\overline{a+b}$
$a \rightarrow-y$
$b-y$

LiP

Basic CMOS Gates

Some gates :

Multiplexer :

$$
f=\overline{a . s+b . \bar{s}}
$$

ழ

Basic CMOS Gates

Some gates : Multiplexer :

$$
f=\overline{a \cdot s_{1} \cdot s_{2}+b \cdot s_{1} \cdot \bar{s}_{2}+c \cdot \overline{s_{1}} \cdot s_{2}+d \cdot \overline{s_{1}} \cdot \overline{s_{2}}}
$$

Basic CMOS Gates

Some gates :

Multiplexer :

$$
f=\overline{a . s+b . \bar{s}}
$$

6

Basic CMOS Gates

4

Basic CMOS Gates

If $s=1 \quad$ If $s=0$
$f=\bar{a} \quad$ is not defined

Tri-state driver

Basic CMOS Gates

Some gates: Multiplexer :

Basic CMOS Gates

Some gates : Multiplexer :

Basic CMOS Gates

Some gates :

Pass-transistor

Basic CMOS Gates

Some gates :

$$
\text { If } b=0 \quad \text { If } b=1
$$

fis not defined

If $a=1$ then $f=1$
If $\mathrm{a}=\mathrm{O}$ then $\mathrm{f}=\mathrm{O}^{+}$

Pass-transistor

Basic CMOS Gates

Some gates :

$$
\text { If } b=1 \quad \text { If } b=0
$$

$f=a \quad f$ is not defined
\longrightarrow If $a=0$ then $f=0$
\longrightarrow If $a=1$ then $f=1$
CMOS Switch

Basic CMOS Gates

Some gates :

Multiplexer :

$$
f=\overline{a . s+b . \bar{s}}
$$

Basic CMOS Gates

Some gates :
Nxor: $f=\overline{\bar{a} \cdot b+a \cdot \bar{b}}$

I need \bar{a} and \bar{b}

Basic CMOS Gates

Some gates :
Xor with Pass-transistors:
$f=\overline{\overline{\bar{a}} \cdot b+a \cdot \bar{b}}$

a	b	f
0	0	1
0	1	0
1	0	0
1	1	1^{-}

4

