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Outline of Lecture 3

• A benchmark for black hole microstates: AdS/CFT
correspondence: near horizon AdS3 guarantees agreement for
the entropy.

• Goal: acquire similar understanding for more general black holes.

• A hint: the massless scalar wave equation for a general
background.

• Possible interpretation: hidden conformal symmetry , a proposal
for the structure of microstates for general black holes.
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The BTZ Black Hole

Many black holes that permit detailed microstate counting have a
near horizon AdS3.

The black holes in AdS3 are the BTZ black holes with metric

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dT 2+

`2r2dr2

(r2 − r2
+)(r2 − r2

−)
+r2

(
dφ +

r+r−
r2

dT
)2

,

where ` is the AdS3 radius and r± are the outer and inner horizon
coordinates (convention r+ > r−).

Important result: the BTZ black hole entropy

S =
A3

4G3
=

2πr+

4G3
,

can be given a microscopic interpretation without any detailed
assumptions.
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The AdS/CFT Correspondance

The BTZ black hole in standard (asymptotically AdS3)
Fefferman-Graham form is:

ds2 = `2dη2 +

(
`2e2η +

1

16`2
(r2

+ − r2
−)2e−2η

)
dw+dw−

+
1

4
(r+ − r−)2(dw−)2 +

1

4
(r+ + r−)2(dw+)2 ,

where the coordinates

r2 = r2
+ cosh2(η − η0)− r2

− sinh2(η − η0) ,
w± = φ± T ,

with parameter

e2η0 =
r2

+ − r2
−

4`2
.
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Global AdS3

For comparison, global AdS3 is

ds2
3 = `2

[
dη
′2 + sinh2 η′dφ

′2 − cosh2 η′dT
′2
]
.

The global AdS3 geometry is characterized by the fact that for small
η′ (at fixed T ′) the geometry is just R2 in polar coordinates.

In other words: the φ-circle is contractible.

In the black hole geometry it is the (Euclidian) time that is
contractible, while the angular coordinate remains finite at the origin
(the length of the corresponding circle gives the entropy).
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Modular Parameters

Thermodynamic potentials (in 3D the chemical potential µ is the
angular velocity of the horizon Ω):

β = π`

(
1

r+ + r−
+

1

r+ − r−

)
,

µ = π`

(
1

r+ + r−
− 1

r+ − r−

)
.

Periodicity of Euclidean time and azimuthal angle determines a
boundary torus with modular parameters (for µ imaginary):

τ = iβ−µ2π = i` 1
r+−r− ,

τ = −iβ+µ
2π = −i` 1

r++r−
.
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BTZ from Global AdS3

The BTZ black hole in terms of modular parameters

ds2 = `2dη2 + `2

(
e2η +

1

(4ττ )2
e−2η

)
dw+dw−

− `2

4τ 2
(dw−)2 − `2

4τ 2(dw+)2

= `2
[
dη
′2 + sinh2 η′dφ

′2 − cosh2 η′dT
′2
]
.

We took w
′− = −w−/τ , w

′+ = −w+/τ̄ , e2η = e2η′/(4τ τ̄ ).

The original coordinate were BTZ, while the primed coordinate are
global AdS3.

So BTZ is related to global AdS3 by a coordinate transformation.
(Both are locally AdS3).
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Reiteration: BTZ from Global AdS3

The BTZ boundary conditions:

w− ≡ w− + 2π ≡ w− + 2πτ ,
w+ ≡ w+ + 2π ≡ w+ + 2πτ̄ .

The global AdS3 boundary coordinates:

w
′− ≡ w

′− + 2π ≡ w
′− − 2π

τ
,

w
′+ ≡ w

′+ + 2π ≡ w
′+ − 2π

τ
.

The lesson: the BTZ black hole is related to global AdS3 by a global
coordinate transformation (a modular transformation in the boundary
theory).
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Brown-Henneaux Central Charge

According to AdS/CFT correspondance, asymptotically AdS3

spacetime

ds2 = dη2 + γabdy
adyb , γab = e2η/`γab(0) + γ

(2)
ab + . . .

is assigned a boundary energy momentum tensor

Tab = − 1

8πG3

(
Kab −Kγab +

1

`
γab

)
,

where Kab is the extrinsic curvature of the boundary.

Fixing conformal frame to w± and performing an infinitesimal local
diffeomorphism w± → w± + ξ±, the boundary energy momentum
tensor transforms as

T±± → T±± +
`

8G3
∂3
±ξ .
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This means the boundary theory furnishes an affine representation of
the conformal algebra, with central charge determined by the
Brown-Henneaux formula

c =
3`

2G3
.

The value of the central charge is computed by c-extremization
(analogous to entropy extremization), or by anomalies.

Remark: the “automatic agreement” means the value is not needed .

Strategy: the conformal algebra determines the ground state energy
of AdS3, and then modular transformation will determine the BTZ
entropy.
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Conformal Weights
Physical parameters of the BTZ black hole:

M =
r2

+ + r2
−

8G3`2
, J =

r+r−
4G3`

.

Conformal weights:

L0 −
c

24
=
M`− J

2
=

1

16G3`
(r+ − r−)2 ,

L0 −
c

24
=
M` + J

2
=

1

16G3`
(r+ + r−)2 .

Global AdS3 is SL(2, R) invariant so L0 = 0, L0 = 0:

MAdS = − 1
8G3

,
JAdS = 0 .

Remark: global AdS=negative BH mass = NS ground state.
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BTZ Entropy from Cardy Formula
Global AdS3 has on-shell action:

Ithermal = βH + µJ =
iπ

12
(cτ − cτ ) .

The Cardy formula in CFT: relate high T behavior to ground state by
a modular transformation.

The bulk version: the BTZ black hole entropy is related to the Casimir
energy of global AdS3 by a modular transformation:

IBTZ = βH + µJ − S = −iπ
12

(
c

τ
− c

τ
) ,

⇒ SBTZ = 2π

(√
c

6
hL +

√
c

6
hR

)
=

2πr+

4G3
.

So: the black hole entropy of BTZ is accounted for automatically
in a theory that implements diffeomorphism invariance, including
global diffeomorphism invariance.
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Hidden Conformal Symmetry

So far: considered black holes in AdS3.

Corollary: extremal and near extremal black holes in D = 4, 5 have
near horizon AdS3 geometry so this discussion applies.

A goal (not yet realized): a similar line of reasoning for general black
holes, with no SUSY at all.

The working assumption: such black holes are excitations of
superconformal symmetry as well, it is just that the state breaks the
symmetry.
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Nonextremal Charged Kerr in D = 5

The geometry:

ds2
5 = (H1H2H3)1/3(x + y)[−Φ(dt +A)2 + ds2

4] ,

ds2
4 =

(
dx2

4X
+
dy2

4Y

)
+
U

G
(dχ− Z

U
dσ)2 +

XY

U
dσ2 ,

where x, y are radial/polar coordinates, χ, σ are angular coordinates
and

X = (x + a2)(x + b2)− µx ,
Y = −(a2 − y)(b2 − y) ,
G = (x + y)(x + y − µ) ,
U = yX − xY ,
Z = ab(X + Y ) ,

Φ =
G

(x + y)3H1H2H3
,
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Hi = 1 +
µ sinh2 δi
x + y

,

A =
µ
∏

i cosh δi
x + y − µ

[(a2 + b2 − y)dσ − abdχ]−
∏

i sinh δi
x + y

(abdσ − ydχ) ,

This is just the geometry, there is also matter: gauge fields and scalar
fields.

This full geometry has surprising simplifying features that have not
yet been fully understood.

For example, the full wave equation is separable: angular and radial
equations are independent.

This structure is surprising since angular momentum breaks spherical
symmetry.
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A Probe Scalar Field

Consider a massless scalar field Φ propagating in the background of
the general black hole.

The radial part of the wave function satisfies

∂

∂x
(x2−1

4
)
∂

∂x
Φ+

[
1

x− 1
2

ω2

4κ2
+

− 1

x + 1
2

ω2

4κ2
−

+ V (x)− l(l + 1)

]
Φ = 0 ,

where a linearly redefined coordinate locates the horizons at x = ±1
2:

x =
r − 1

2(r+ + r−)

r+ − r−
.

and the potential V (x) is a quadratic function in x (in particular the
equation is smooth at the horizons).

16



The Near Horizon Wave Function

The radial wave equation with V (x) = 0 has regular poles at the
inner and outer horizons, and at infinity: it is the hypergeometric
equation.

The S-wave (l = 0) radial wave function (with outgoing boundary
conditions at the horizon):

Φ =

(
x− 1

2

x + 1
2

)iβHω/4π

· F (1 + i
βRω

4π
, 1 + i

βLω

4π
+ 1 + i

βHω

2π
,
x− 1

2

x + 1
2

) .

The corresponding Hawking emission spectrum suggests collisions
between Right- and Left-moving excitations:

Γem(ω)
d3k

(2π)3
= A

1

βHω

βLω/2

(eβLω/2 − 1)

βRω/2

(eβRω/2 − 1)

d3k

(2π)3
.

This picture can be pursued to a quantitative agreement.
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Symmetries with V (x) = 0

Ultimate goal: understand these features from a detailed microscopic
model and/or general symmetries (we are not there yet!).

A clue: all solutions of the hypergeometric equation are characters of
SL(2, R).

A spacetime interpretation: the geometry with potential neglected
effectively reduce to AdS3.

This motivates the hope that there is a Virasoro algebra, and an
underlying CFT, also for general black holes.
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The SL(2, R)R × SL(2, R)L Symmetry
The wave equation in SL(2, R)R × SL(2, R)L invariant form

~R2Φ = ~L2Φ = l(l + 1)Φ ,

where (one choice of) the SL(2, R)R generators are

R1 = i∂+ ,

R0 = i(w+∂+ +
1

2
y∂y) ,

R−1 = i(w+2∂+ + w+y∂y)− y2∂− ,

where

w+ =

√
r − r+

r − r−
e2πT̃Rφ , w− =

√
r − r+

r − r−
e2πT̃Lφ−2π(T̃L+T̃R)Ω ,

y =

√
r+ − r−
r − r−

eπ(T̃L+T̃R)(φ−Ωt) .

The SL(2, R)L commutes with SL(2, R)R. It has generators ~L
obtained by w+ ↔ w−.
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Symmetry Breaking

The general geometry does not have a genuine
SL(2, R)R × SL(2, R)L symmetry. There are two aspects to this:

• The embedding into the ambient spacetime is encoded in the
potential V (x) that breaks the symmetry explicitly .

• The boundary conditions φ ≡ φ + 2π act as a quotient on the
conformal coordinates (w±, y):

w− ≡ w−e−4π2T̃L , w+ ≡ w+e4π2T̃R .

This breaks the symmetry spontaneously as
SL(2, R)R × SL(2, R)L → U(1)R × U(1)L.
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The manifest U(1)R × U(1)L symmetries are those generated by the
Killing vectorsR1 = i∂t+ and L1 = i∂t− where

t− = 2πT̃RΩt− 2πT̃L(φ− Ωt) ,
t+ = 2πT̃Rφ .

The conformal coordinates w± and the CFT coordinates t± are
related as

w± = e±t
±
,

which is the same as the relation between Minkowski and Rindler
space.

We can thus characterize the symmetry breaking state: the CFT is
thermal state CFT temperatures T̃R and T̃L.
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Length Scale
An important point: since SL(2) is non-abelian, the construction
determines the normalization ofR1 = i∂t+ and L1 = i∂t−.

These operators are identified with L0, L0 in the Virasoro algebra, so
this normalizes the conformal weights in the conjectured dual CFT.

Concretely, the dimensionless CFT temperatures T̃R and T̃L are
related to the dimensionful spacetime temperatures TR, TL by the
length scale

L =
µ2

l

(
3∏
i=0

cosh δi +

3∏
i=0

sinh δi

)
.

Remark: any CFT description of black holes must specify a length
scale for the physical theory, in this concrete manner.

Warning: other approaches give different values so the scale has not
been settled yet. Establishing this effective scale is essential .
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Black Hole Entropy

There is not yet a persuasive derivation of black hole entropy from
hidden conformal symmetry.

We proceed by assuming

• The dimensionless CFT temperatures have been correctly
determined.

• The general black hole entropy is accounted for by the weakly
coupled gas expression

S =
π2

3
c(T̃L + T̃R) .

Comparison gives the central charge c = 12J .
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The value c = 12J was previously determined in Kerr/CFT using
different methods.

In the hidden conformal symmetry approach, a theory with this
central charge is proposed as the master theory for all black holes.
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Explicit Breaking: the Potential V (x)

The full wave equation has a nontrivial angular equation (with
eigenvalues l deformed from their habitual integral values in rotating
backgrounds).

More importantly (in the present discussion) is the potential in the
radial equation:

V (x) = x2ω2(r+ − r−)2 +
1

2
xMω2(r+ − r−) .

Some circumstances when the potential be neglected are:

• Near extremality (large charges and/or nearly Kerr): r+ ∼ r− .

• Low energy: ω(r+ − r−)� 1 .
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In general it is simply incorrect to neglect the potential!

Interpretation:

• We need to to decouple the black hole states from the “far away”
states.

• In the cases with an AdS3 near horizon symmetry, the energy
scales guarantee such a decoupling.

• In other near extreme cases, like near extreme Kerr, the energy
scales similarly guarantee decoupling.

• But in general, they do not.
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A Universal Box of AdS-Type

The scalar wave equation is essentially the inverse metric.

Procedure: throw away the potential term in the wave equation, then
invert back to an effective geometry.

The resulting geometry has large metric factors far from the black
hole, effectively producing a box.

In fact, the geometry is precisely (a projection of) AdS3 with S2 fiber!

A feature: the size of the AdS3 constructed in this way is ambiguous,
corresponding to a box of flexible size.

Accordingly, the central charge of the CFT in which the general black
holes are excitations, does not have a definite central charge.
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Summary

This lecture reviewed:

• The BTZ entropy from symmetries of AdS3.

• The global diffeomorphism (modular transformation) is a central
aspect.

• This approach is solid, well-established, and it generalizes to
precision counting.

• A recent attempt to find a CFT description of general black holes:
hidden conformal symmetry.

• My judgement: spontaneously broken conformal symmetry is a
promising idea, but details are incomplete and/or suspicious.
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