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Theme

Overall theme of school: precision microstate counting for black
holes.

Focus on D-brane instantons and wall crossing.

My perspective on the subject: I see hints about the structure of
non-BPS string theory in these developments.

My goal for these lectures: a pedagogical review of some ingredients
to this story, from several complementary points of view.

Disclaimer: Kerr is one example that we can learn from, but it is not
the main focus of the lectures.
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Outline of Lecture Series.
• Phenomenology of Black Hole Entropy

An arena for analysis of general non-extreme solutions.

Some special limits: BPS, the non-BPS branch, extremal Kerr,
and their interrelation.

• Non-BPS Extremal Black Holes
Much similarity to BPS black holes but some significant
differences: flat directions, wall crossing, and more.

This presents obstacles to precision counting.

• Hidden Conformal Symmetry
A probe perspective on the geometry⇒ scales and symmetries
for a CFT description of general black holes.

• Precision Counting for General Black Holes
A synthesis: the big picture, as I see it. (Still very much in
progress).
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No References

I will not be giving systematic references.

Thanks to my recent collaborators:

A. Castro, M. Cvetic, J. Davis, E. Gimon, K.Hanaki, C. Keeler, P.
Kraus, J. Simon.
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Outline of Lecture 1

• The Standard Setting for D = 4 String Theory Black Holes

3M5.

• Phenomenology of Black Hole Entropy

An arena for analysis of general non-extreme solutions.

• The non-BPS Branch (=almost BPS)

Black holes with many properties in common with BPS, but also
significant differences.

• A perspective on Kerr/CFT

The relation to the BPS sector and (not!) to the non-BPS branch.
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Setting for D = 4 Discussion

• Type IIA string theory on T 6 = T 2 × T 2 × T 2, truncated so the
three T 2’s do not mix.

• Alternative view point (the STU-model): N = 2 SUGRA in D = 4
with prepotential:

F =
X1X2X3

X0
.

• The theory has an obvious embedding in N = 4 or N = 8
SUGRA so description literally valid there. Other N = 2 theories
have many similar features.

• There are truncations to Maxwell-gravity theory, and to pure
gravity. Those applications are of great interest.
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The Configuration Space

There are three complex scalars in the theory: these are the
volumes (and B-fields) on the three compact T 2’s.

There are four gauge fields in the theory (the 4th is the graviphoton),
so black holes generally have 4 electric and 4 magnetic charges.

Interpretation of electric charges: D0, and D2’s wrapping each T 2.

Interpretation of magnetic charges: D6, and D4’s wrapping any two
of the T 2’s.
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The Canonical Black Hole
0 1 2 3 4 5 6 7 8 9

D4 x x x x x
D4 x x x x x
D4 x x x x x
D0 x

The coordinates 7, 8, 9 are three non-compact spatial directions, with
radial coordinate r.

Each constituent brane enters the solution through a harmonic
function, HI = 1 + QI

r with I = 0, 1, 2, 3.

The full solution is constructed by superimposing the harmonic
functions for the four constituents.
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The brane configuration for the canonical black hole gives the 10D
solution:

ds2 = − 1√
H0H1H2H3

dt2 +
√
H0H1H2H3(dr2 + r2dΩ2

2)

+

√
H0H1

H2H3
dz1dz̄1 +

√
H0H2

H3H1
dz2dz̄2 +

√
H0H3

H1H2
dz3dz̄3 ,

e−2Φ =

√
H1H2H3

H3
0

.
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The Solution in 4D

The 4D dilaton is simply

e−2Φ4 = e−2ΦVol6 = 1 ,

so the 4D metric in Einstein frame can be read off immediately

ds2
4 = − 1√

H0H1H2H3

dt2 +
√
H0H1H2H3(dr2 + r2dΩ2

2) .

The black hole horizon is at r = 0 where HI ∼ QI/r. The entropy
computed from the area is

S =
A

4G4
=

π

G4

√
Q0Q1Q2Q3 .

10



Quantized Charges
The Qi are “physical” charges that depend on moduli. The quantized
charges are related by conversion factors

C0 =

√
2G4

v6
,

C i =
√

2G4v6 ·
1

vi
,

where vi are volumes of T 2 measured in string units vi = Vi/(2πls)
2

and the overall volume is v6 = v1v2v3.

The dependence of charges on moduli is such that entropy in fact
depends on the quantized charges alone:

S = 2π
√
n0n1n2n3 .

This is one aspect of the attractor mechanism.
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BPS and Non-BPS

The solution discussed above makes sense only when
Q0, Q1, Q2, Q3 > 0, or else the metric is singular when the harmonic
functions vanish.

But: the field strengths appear only quadratically in the action so
there are also solutions with Qi → −Qi in the field strengths, but
Qi → Qi in the harmonic functions. Alternatively: take Qi’s of any
sign, but insert |Qi| in the harmonic functions.

Convention: take Q1, Q2, Q3 > 0, and consider Q0 of either sign.

The sign is extremely important : Q0 > 0 is the BPS solution, and
Q0 < 0 is the non-BPS solution.

The two branches have many qualitative differences.
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Supersymmetry

Type IIA SUSY has two supersymmetry generators, related by the
Dirichlet boundary conditions on the D-branes. The resulting relations
between the super-translations become

ε̃ = Γ3̂4̂5̂6̂ε ,

ε̃ = Γ1̂2̂5̂6̂ε ,

ε̃ = Γ1̂2̂3̂4̂ε ,
ε̃ = ∓ε ,

where the choices in the last relation refers to the sign of Q0.
Consistency of the first three relations give

ε̃ = −ε ,
so that only Q0 > 0 is consistent with supersymmetry, as claimed.
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M-theory Interpretation

We can lift the D4−D4−D4−D0 configuration to M -theory with
the result:

0 1 2 3 4 5 6 7 8 9 10
M5 x x x x x x
M5 x x x x x x
M5 x x x x x x
KK x x

In this duality frame there are three M5-branes that intersect over a
line, denoted x10. The fourth charge is momentum along that line.

The change from BPS to non-BPS is just the sign of the momentum
along x10.

However, M5-branes are chiral so such a change is not a symmetry.
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Aside: MSW Configuration

A more general construction: consider M-theory on X × S1 where X
is a CY 3-fold.

Consider an M5-brane on some divisor P ∈ X . (The divisor is
roughly a 4D submanifold.)

We can construct 4D black holes with the magnetic P I , identified with
the M5 projected on to basis four-cycles; and the electric charge Q0

identified with the KK-momentum along S1.

The entropy of such black holes is S = 2π
√
Q0P 3 where the triple

intersection number of the divisor, P 3 = 1
6CIJKP

IP JPK .
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Some Non-Extremal Solutions
Ultimately we would like to understand the entropy of black holes
arbitrarily far from extremality, including Scwarzchild black holes.

The natural generalization of the extremal four charge solutions are

ds2
4 =

−1√
H0H1H2H3

(1− 2µ

r
)dt2 +

√
H0H1H2H3(

1

1− 2µ
r

dr2 + r2dΩ2
2)

Hi = 1 +
2µ sinh2 δi

r
.

The gauge fields are essentially the inverse harmonic functions, but
there is an overall numerical factor such that the physics charge

2Qi = µ sinh 2δi , i = 0, 1, 2, 3 .

Note: the entire solution is in parametric form: it is written in terms of
δi, µ, which encode the four charges and the total mass.
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Physical Parameters

We can extract the physical mass from the solution

2G4M =
1

2
µ

3∑
i=0

cosh 2δi ,

and also find the thermodynamic entropy in parametric variables

S =
4πµ2

G4

3∏
i=0

cosh δi .

The general black hole entropy is a complicated function of the four
charges and the mass.

The BPS limit: δi →∞ for i = 0, 1, 2, 3.

The non-BPS extremal limit is δi →∞, i = 1, 2, 3, δ0 → −∞.
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Angular Momentum

The generalization of solutions to include angular momentum is much
more complicated.

The parametric representation of physical variables with rotation

2G4M =
1

2
µ

3∑
i=0

cosh 2δi ,

2G4Qi =
1

2
µ sinh 2δi ,

2G4J =
1

2
µl

(
3∏
i=0

cosh δi −
3∏
i=0

sinh δi

)
.
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The entropy from the area of these black holes

S = 2π
(√

NR +
√
NL

)
.

with

NL =
µ4

G2
4

(
3∏
i=0

cosh δi +

3∏
i=0

sinh δi

)2

,

NR =
µ4

G2
4

(
3∏
i=0

cosh δi −
3∏
i=0

sinh δi

)2

− J2 .

The general entropy is a very complicated function of the physical
mass, charges, and angular momentum.
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There is one notable simplification:

NL −NR =
4µ4

G2
4

3∏
i=0

cosh δi sinh δi + J2

=
1

4G2
4

3∏
i=0

Qi + J2

=

3∏
i=0

ni + J2 .

The final line is the rewriting known from the black hole entropy.

The upshot: the difference NL −NR is independent of moduli , and
it is an integer . These facts hold for the entire class of black holes
considered here.
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Extremal Limits

The extremal limit T → 0 corresponds to either NR → 0 or NL → 0:

NL → 0 : NR = |n0|
3∏
i=1

ni − J2 (Non− BPS branch),

NR → 0 : NL =

3∏
i=0

ni + J2 (BPS branch) .

Reminder: the quantization condition

NL −NR =

3∏
i=0

ni + J2 .

Remark: either case corresponds to AdS2 near horizon geometry
(×S2 for J = 0, but generally some fiber).
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The Extremal Kerr Limit

The ”BPS branch” is only supersymmetric when J = 0.

Angular momentum breaks supersymmetry, but the solution is
continuously related to the supersymmetric branch.

Extremal Kerr: BPS branch with no charges and so

S = 2π
√
NL = 2π|J | .

This case has been much studied recently.

It is useful to see it as an excited state of the BPS branch.

A later lecture: propose precision counting for extremal Kerr.
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Significance of the Inner Horizon
The division of the entropy in to two contributions is essential. There
is a geometric interpretation in terms of the areas of the outer and
inner horizons

SR = 2π
√
NR =

1

2

(
A+

4G4
− A−

4G4

)
,

SL = 2π
√
NL =

1

2

(
A+

4G4
+
A−
4G4

)
.

The universal quantization rule is

NR −NL =
A+A−

(8πGN)2
= integer .

This semi-classical quantization rule applies (it seems) to all
asymptotically flat black holes and black rings in D = 4, 5.

A generalization applies for gauged SUGRA and in higher
dimensions.
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Black Hole Thermodynamics

The Hawking temperature the general black holes is quite
complicated. It is useful to write is as

βH =
1

2
(βR + βL) ,

where

βR =
2πµ2√
µ2 − l2

(∏
i

cosh δi +
∏
i

sinh δi

)
,

βL = 2πµ

(∏
i

cosh δi −
∏
i

sinh δi

)
.

The corresponding rotational velocity is

βHΩ =
2πl√
µ2 − l2

.
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Generalized Thermodynamics

There is also a geometrical interpretation of the partial temperatures
βR, βL in terms of two surface accelerations of the outer and inner
horizons

βR = 2π

(
1

κ+
+

1

κ−

)
,

βL = 2π

(
1

κ+
− 1

κ−

)
.

There is a generalized first law

dM − ΩdJ = TRdSR + TLdSL .

We will interpret the two temperatures as independent temperatures
of Right and Left moving excitations in a dual CFT description of the
black holes.
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Summary
• Introduced the canonical D4-D4-D4-D0 brane configurations.

Emphasis: the sign of Q0 determines whether the configuration is
BPS or non-BPS.

• Introduced a much more general family of four-charge solutions
that includes Schwarzchild, Kerr, and Reissner-Nordström black
holes as special cases.

• A generalized quantization condition that holds for the most
general black holes.

• One application of the generalized quantization condition: study
extremal limits. The BPS and non-BPS branches are qualitatively
different, with extremal Kerr part of the BPS branch.

• The inner horizon is responsible for the chiral (left-right) split. In
particular, the product of inner and outer area is independent of
moduli, and integer quantized.
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Outline of Remaining Lectures

• More on the non-BPS Branch.

• Hidden Conformal Symmetry

More on the Phenomenology of general black holes, with an
AdS/CFT perspective.

• Precision Counting for General Black Holes
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