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Outline of Lecture 2

• What is the most general black hole solution?

Answer using duality orbits and generating solutions.

• Surprising cancellations for non-BPS black holes: the mass
formula, the attractor behavior, and others.

• Wall crossing: the D0−D6 bound state.

• A first order phase transition relates the non-BPS branch to a
BPS branch.

• Towards a microscopic description of non-BPS black holes.

First do no harm: beyond analytical continuation.
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Reminder: The STU Model

• The STU-model : N = 2 SUGRA with prepotential
F = X1X2X3/X0. All considerations generalize to N = 4, 8
supergravity.

• There are 3 complex scalar fields: zi = X i/X0 = xi − iyi
(i = 1, 2, 3).

Interpretation: this is a consistent truncation of type IIA string
theory on T 6 = T 2 × T 2 × T 2. The scalars are complexified
volumes of the three T 2s.

• There are 8 charges: (QI, P
I) with I = 0, 1, 2, 3.

Interpretation: Electric charges are D2’s (wrapping the T 2s) and
the D0; magnetic charges are the dual D4’s and the D6.
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The Most General Black Hole

Black holes are usefully parametrized by their asymptotic behavior.

Black hole uniqueness theorems indicate that the most general black
hole depends on:

• Gravitational charges: M and J .

• Electromagnetic charges: (QI, P
I) with one value of I for each

U(1) field. Presently I = 0, 1, 2, 3.

• The asymptotic values zi∞ of the complex scalar fields . Presently
i = 1, 2, 3.
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Duality Orbits
The classical STU theory has SL(2, R)3 duality symmetry and there
is no loss in generality by constructing classical solutions only up to
continuous duality.

So: the most general solution (up to duality) has 8+6-9=5 parameters
(not counting duality invariant M,J ).

In detail: the 6 real moduli parametrize the coset [SL(2)/U(1)]3 so
we can use [SL(2)/U(1)]3 ⊂ SL(2)3 to set the asymptotic moduli
equal to some reference value, such as zi = −i, i = 1, 2, 3.

The remaining U(1)3 duality then simplifies the 8 charges to five
parameters, keeping moduli fixed.

The upshot: the canonical four charge solutions (discussed in
previous lecture) are not sufficiently general .
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Entropy of Extremal Black Holes
The black hole entropy is independent of scalars and invariant under
the full SL(2, R)3 duality group. So it must be a function of the
unique quartic invariant

J4 = Q0P
1P 2P 3 − P 0Q1Q2Q3 −

1

4
(QIP

I)2 +
∑
i<j

P iQiP
jQj .

Note J4 > 0 for BPS black holes and J4 < 0 for non-BPS black holes.

The entropy fixed by the simplest four parameters solutions must then
be general

S =
π

G4

√
|J4 + J2| .

BPS and non-BPS differ just by the sign of J4 + J2 so the entropy of
the two branches is related by analytical continuation.

Analytical continuation is special to the entropy and is due to
near horizon enhancement of symmetries.
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Non-BPS Generating Solutions

We need five parameters for the most general solution, up to duality.
They need not all be charges.

An instructive duality frame: four charges: D0−D4−D4−D4;
and one modulus: a ”diagonal” B-field, zi = B − i with the same B
for i = 1, 2, 3.

Another instructive duality frame: two charges: D0−D6; and three
moduli : independent B-fields on the three T 2’s, zi = Bi − i for
i = 1, 2, 3.

Explicit solutions can be written down. We will just discuss the
physics, in the case of no rotation.
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Non-BPS Mass

The D0−D4−D4−D4 solution gives the black hole mass

2GNMNon-BPS =
1

2

(
|Q0| +

3∑
i=1

P i (1 + B2)

)
.

There are no cross-terms depending on several charges: the mass is
a marginal sum of constituent masses.

The black hole with D0−D4−D4−D4 charge is interpreted as a
bound state of those four kinds of constituents, with no binding
energy .
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BPS Mass

For comparison, consider a BPS black hole with
D0−D4−D4−D4 charge, in the presence of a diagonal
background B-field.

The BPS mass follows from the spacetime central charge

2GNMBPS =
1

2

∣∣∣∣∣Q0 +

3∑
i=1

P i (1 + iB)2

∣∣∣∣∣ .
In the presence of a B-field, the spacetime central charge is
genuinely complex so the mass is not just the sum of constituent
masses.

In the BPS case, the B-field binds D0’s and D4’s.
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General Duality Frames

Extremal black holes with general charge vector and asymptotic
moduli can be generated from by a SL(2)3 rotation of the canonical
solution with D0−D4−D4−D4 charge and diagonal background
B-field.

The non-BPS mass formula will always take the form of four
underlying BPS constituents, marginally bound.

Example: consider a charge vector with just the charges of D0 branes
(Q0) and D6 branes (P 0).

Then the quartic invariant is negative so the black hole is necessarily
on the non-BPS branch

J4 = Q0P
1P 2P 3 − P 0Q1Q2Q3 −

1

4
(QIP

I)2 +
∑
i<j

P iQiP
jQj .
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The D0-D6 configuration has been much studied. The M-theory lift
(KK-momentum and KK-monopole) is pure gravity, so this is also a
solution in pure 5D gravity, or basic KK theory in 4D.

The non-rotating solution with canonical asymptotic moduli has an
unfamiliar mass formula (Q0 = Q, P = P 0):

MD0−D6 =
1

2G4

[
Q2/3 + P 2/3

]3/2
.

We can analyze D0−D6 by mapping it to D0−D4−D4−D4
with diagonal B-field.

To remain general (up to duality) we consider D0−D6 with all three
Bi-fields, for a total of five parameters.
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The SL(2)3 map gives gives in particular the charge vectors
(P 0;P i;Q0;Qi) of the four primitive constituents:

ΓI =
1

4

(
P 0;−P

0

Λ1
,−P

0

Λ2
,−P

0

Λ3
;Q0;

P 0

Λ2Λ3
,
P 0

Λ1Λ3
,
P 0

Λ1Λ2

)
,

ΓII =
1

4

(
P 0;−P

0

Λ1
,
P 0

Λ2
,
P 0

Λ3
;Q0;

P 0

Λ2Λ3
,− P 0

Λ1Λ3
,− P 0

Λ1Λ2

)
,

ΓIII =
1

4

(
P 0;

P 0

Λ1
,−P

0

Λ2
,
P 0

Λ3
;Q0;−

P 0

Λ2Λ3
,
P 0

Λ1Λ3
,− P 0

Λ1Λ2

)
,

ΓIV =
1

4

(
P 0;

P 0

Λ1
,
P 0

Λ2
,−P

0

Λ3
;Q0;−

P 0

Λ2Λ3
,− P 0

Λ1Λ3
,
P 0

Λ1Λ2

)
.

The SL(2)3 rotation parameters Λi are related to P 0, Q0 and the Bi:

Λ1Λ2Λ3 =
P 0

Q0
,

1

2
[Λ1(1 + B2

1)− Λ−1
1 ] =

1

2
[Λ2(1 + B2

2)− Λ−1
2 ] =

1

2
[Λ3(1 + B2

3)− Λ−1
3 ] .
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Interpretation

All four primitive constituents are D6-branes, with fluxes:

(F12, F34, F56)
I = (f1, f2, f3) ,

(F12, F34, F56)
II = (f1, −f2, −f3) ,

(F12, F34, F56)
III = (−f1, f2, −f3) ,

(F12, F34, F56)
IV = (−f1,− f2, f3) .

Fluxes are such that they induce the correct D0-charge

n0 = −n6

4

1

6(2π)3

∫
trF ∧ F ∧ F = −n6V6f1f2f3

(2π)3
,

⇒ (2πα′)3f1f2f3 = −Q0

P 0
.

Complete specification of fluxes require local stability conditions

1

2
[f−1

1 (1 +B2
1)− f1] =

1

2
[f−1

2 (1 +B2
2)− f2] =

1

2
[f−1

3 (1 +B2
3)− f3] .
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The fluxes and SL(2)3 rotation angles (and the constraints they
satisfy) are identified as

Λ−1
i = 2πα′fi .

The total mass density determined from the DBI action
M

T6V6
= Tr

√
det[G + (2πα′F −B)]

=
√

(1 + (2πα′f1 −B1)2)(1 + (2πα′f2 −B2)2)(1 + (2πα′f3 −B3)2)

+
√

(1 + (2πα′f1 −B1)2)(1 + (2πα′f2 + B2)2)(1 + (2πα′f3 + B3)2)

+
√

(1 + (2πα′f1 + B1)2)(1 + (2πα′f2 −B2)2)(1 + (2πα′f3 + B3)2)

+
√

(1 + (2πα′f1 + B1)2)(1 + (2πα′f2 + B2)2)(1 + (2πα′f3 −B3)2) .

Justification: use just abelian part of DBI, for four branes that are
each BPS (albeit not mutually BPS).

The total mass depends on the B-fields both explicitly from the DBI
action and implicitly through the fi’s.
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Attractors

So far: lessons from the geometry of non-BPS solutions, specifically
the mass and entropy.

Now: consider the scalar fields in the solution.

Qualitative structure: scalar fields flow radially, towards some
attractor-value at the horizon of the black hole.

The attractor value of the scalar fields depend on the black hole
charges, but not the asymptotic value of the scalars (the moduli).

Thus the moduli decouple from the near horizon behavior.
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Example: D0−D4−D4−D4 with no B

10D geometry of the canonical solution from lecture 1:

ds2 = − 1√
H0H1H2H3

dt2 +
√
H0H1H2H3(dr

2 + r2dΩ2
2)

+

√
H0H1

H2H3
dz1dz̄1 +

√
H0H2

H3H1
dz2dz̄2 +

√
H0H3

H1H2
dz3dz̄3 .

The volume of the first T 2 near the horizon is independent of the
asymptotic volume

V1

(2πls)2
= v1

√
Q0Q1

Q2Q3
= v1

√√√√ n0√
v6

n1
√
v6

v1

n2
√
v6

v2

n3
√
v6

v3

=

√
n0n1

n2n3
.

Interpretation: attractor behavior is an equilibrium between branes
squeezing the cycles they wrap, and blowing up transverse cycles.
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Flat Directions

Consider BPS black holes in N = 2 SUGRA with vector- and
hyper-multiplets.

In this case the attractor mechanism applies to all scalars in vector
multiplets.

The attractor mechanism does not apply to scalars in hyper
multiplets. Those decouple from the flow and so keep their (arbitrary)
asymptotic value.

The hyper-multiplets parametrize flat directions of the effective
potential for scalars in the black hole background.

For non-BPS black holes there are also flat directions among the
vector-multiplets!
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Interpretation of Flat Directions
The origin of new flat directions can be understood generally from
group theory. But the clearest is to just consider the D0−D6 duality
frame.

Attractor behavior is due to branes squeezing the cycles they wrap,
expanding transverse cycles.

D6 on T 6 = T 2 × T 2 × T 2 squeeze the overall T 6, and D0 blows it
up. Both are indifferent to the volumes of each T 2 component by
themselves.

The two flat directions in the D0−D6 duality frame are the ratios of
T 2 volumes!

The two flat directions in other duality frames (like the
D0−D4−D4−D4) are generally much more complicated, but
they are determined by the duality transformation from D0−D6.
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D0−D6 Supersymmetry?
The SUSY-projections due to Dirichlet conditions on the D0 and the
D6 branes are

ε̃ = Γ1̂Γ2̂Γ3̂Γ4̂Γ5̂Γ6̂ε ,
ε̃ = ±ε .

There are no solutions because (Γ1̂Γ2̂Γ3̂Γ4̂Γ5̂Γ6̂)2 = −1.

Background B-fields rotate the D6 condition by a factor
3∏
i=1

1 + iBi

1− iBi
.

Corrollary: D0−D6 is SUSY in the presence of B-fields if∑
i<j

BiBj = 1 .
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D0−D6 Bound States

It is simple to compute the spectrum of open strings stretching
between the D0 and the D6.

The spectrum is supersymmetric if∑
i<j

BiBj = 1 .

For ∑
i<j

BiBj > 1 .

there is a tachyon in the spectrum.

The tachyon may condense into a supersymmetric ground state,
interpreted as a genuine bound state of the D0−D6-system (the
Higgs-branch).
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The Multi-Center BPS solutions

There are no single center BPS black holes with D0−D6 charges
but there are BPS multicenter solutions. Some of their properties:

• The simplest multi-center configuration: two centers, one D0, the
other D6.

(Single-center non-BPS D0−D6: four 1/2-BPS constituents, all
D6’s with fluxes.)

• The charge vectors of the 1/2-BPS constituents are mutually
non-local , i.e. they have non-zero intersection number.

(The four constituents of the non-BPS black holes are mutually
local.)
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The Wall of Marginal Stability
• BPS configurations of D0−D6 branes exist only for∑

i<j

BiBj ≥ 1 .

This is a co-dimension one wall of marginal stability in moduli
space

(The non-BPS black holes exist everywhere in moduli space.)

• BPS multicenter solutions exist in the same range, with a
specified separation scale

R = |~x1 − ~x2| =
|Q0 + iP 0

∏3
i=1(1 + iBi)|∑

i<j B
iBj − 1

.

(Constituents of the non-BPS black holes can move freely in the
supergravity approximation.)

The D0−D6 constituents move apart as the wall of marginal
stability is approached; they are removed from the spectrum.
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First Order Phase Transition

• The BPS solutions cannot be continuously connected to the
non-BPS solution through the wall of marginal stability.

• There can be decay from the non-BPS branch to the BPS branch
on the part of moduli space where BPS solutions exist.

• The BPS mass is always strictly smaller than the non-BPS mass
with otherwise identical quantum numbers.

• So the transition will release energy , entropy and generally also
angular momentum.

• This indicates a first order transition between the two branches.
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Is D0−D6 Unstable?

What is the faith of D0−D6 on the part of moduli space where BPS
states cannot exist?

The non-rotating solution with canonical asymptotic moduli has mass
formula (Q0 = Q, P = P 0):

MD0−D6 =
1

2G4

[
Q2/3 + P 2/3

]3/2
.

This formula applies even when there is angular momentum, as long
as J < PQ/2 (recall S = 2π

√
−J4 − J2 on the non-BPS branch).

The energetics allows spontaneous decay into widely separated D0’s
and D6’s:

MD0−D6 >
1

2G4
[Q + P ] = MD0 + MD6 .
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But: this process is forbidden by angular momentum conservation:
widely separated D0’s and D6’s have J ≥ PQ/2!

Candidate final states consistent with conservation laws must have at
least three bodies.

The decay we know is important for the system is the marginal one:
spontaneous separation into four constituents. No energy is released
in this process.

It is not known what the dominant decay mode of D0−D6 is.
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Non-BPS Microscopics

• Classically, the entropy of BPS and non-BPS black holes are
related by analytical continuation: SBPS = 2π

√
|J4|.

• This suggests that their microscopic origins are virtually identical,
i.e related by analytical continuation.

• The problem: there are significant differences between the
two branches.

• For example, the classical moduli spaces are completely
different : they have different dimension.

• Also, the mass formulae on the two branches are not related by
analytical continuation.
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• These distinctions are relevant: precise counting of BPS states
involves choosing a favorable point in moduli space.

• Specifically, one may want to turn on a small B-field to avoid
bound states at threshold. This is not possible for the non-BPS
states.

• Conclusion: the corresponding microstates are not be related
by analytical continuation.

Presumably there is a simple understanding of extremal non-BPS
entropy anyway. But the significant differences between the two
branches must be addressed by a more detailed understanding of the
microscopics.

Indeed, these differences may give guidance towards a microscopic
description.
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Summary

The non-BPS extremal black holes exhibit some surprising properties:

• The most general black hole solutions in D = 4 can be generated
from a seed solution with 5 parameters.

• The mass formula of the black hole suggests an interpretation as
a marginal bound state of four primitive constituents.

• Flat Directions: some of the scalars in the theory experience a
flat potential when all forces are taken into account.

• Phase Transition: the non-BPS mass is strictly greater than the
BPS bound, even in regions of moduli space where BPS
multi-center solutions exist. The branches are related by a first
order phase transition.
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