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Introduction to D-brane instantons
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1 Motivations

e Gauge Theories: Correlator are computed by path integrals dominated by
the minima of the classical action and quantum fluctuations around them.
Fluctuations around the trivial vacuum, i.e. where all fields are set to zero,
give rise to loop corrections suppressed in powers of the gauge coupling. In-
stantons are non trivial solutions of the classical action and lead to expo-
nentially suppressed corrections to the correlators. These corrections are im-
portant in theories like QCD where the gauge coupling get strong at low
energies. Understanding of the instanton dynamics is then crucial in address-
ing the study of phenomena in the strong coupling regime like confinement or

chiral symmetry breaking, etc.

e D-brane instantons: In string theory the situation is even more dramatic.
The gauge coupling is given by the vev of a field and therefore weak coupling
expansions are rather unnatural. Moreover, the discovery of strong weak
dualities has revealed an impressive web of connections between the various
string theories, gauge theories and gravity making clear that a better control
of the non-perturbative dynamics is needed in order to address questions like,
what is the string vacua ?, moduli stabilization, etc. In addition the structure
of non-perturbative objects in string theory is very rich, and include beside
the known gauge instanton effects a new class of instantons , named ”stringy”

or "exotic”, of great phenomenological interest.

e Applications of the instanton calculus:
I) String Phenomenology: Instantons generate interesting couplings like Ma-
jorana mass terms for neutrinos, Yukawa couplings, etc at scale not linked to
the gauge theory scale (Hierarchy).
IT) Moduli stabilization: Instanton generated superpotentials ca be used to
stabilized Kahler moduli
IIT) Black hole physics: Black holes in d=4 can be built out of D4-D2-D0
systems wrapping divisors of a CY. The instanton partition function provides
then a microscopic description of the corresponding black hole entropy
IV) AGT conjecture: Instanton partition functions for N=2 SCFT’s can be
related to the conformal blocks of 2D integrable systems

V) Topological string theories: Certain topological string amplitudes can be



extracted from the Instanton partition functions in presence of non-trivial

gravitational backgrounds.

We will focus on N = 2,4 set ups.

2 QOutline
e Open strings: D-branes, Brane intersections and quivers, N' = 1, 2,4 gauge
theories.
hep-th/0007170 Johnson, hep-th/0512067 Bertolini, Billo, Lerda, Morales,
Russo

e D-brane instantons: Instantons in gauge theories, ADHM construction,
gauge and exotic instantons, D(-1)D3 systems
Dorey, Hollowood, Khoze, Mattis hep-th/0206063.

e Multi-instanton calculus: Localization, Instanton moduli space symme-
tries, Instanton partition function.
hep-th/0206161 Nekrasov, hep-th/0211108 Bruzzo, Fucito, Morales, Tanzini.

e Explicit computations: The N = 2 prepotential. Black hole counting,
Saddle point analysis.
hep-th /0208176 Flume, Poghossian. hep-th/0610154 Fucito, Morales, Poghos-
sian. hep-th/0306238 Nekrasov, Okounkov

3 Open strings

3.1 String action

In the conformal gauge the open string action can be written as

S = ! /d% 20, XM O_Xy + iy 0_ o +iMo_y_y]  (31)

2o

with o € [0, 7], 7 € [—00, 0|, spacetime Lorentz indices raised and lowered with
nun = (—+ + + +..) and lightcone variables defined by

cf=140 Oy = 3(0, £ 0,) nt~=nt=-2 (3.2)



The action should be supplemented by the Super Virasoro constraints

Try = 0. XM, Xy + 59V 044040 =0

T = 0_XMo_ Xy + Mo ¢y =0
G+ = l/JJrMaJ,_XM = 0
G. = M0 Xy =0 (3.3)

3.2 Equations of motion and boundary conditions

The equations of motion following from (3.1) are

0_0,. XM =0 =  XM=g"+L1[XxV(oh) + XY (07)]
O™ =0 = P =yif(oT)

DM =0 = M M) (3.4)
Cancelation of the boundary terms requires:

(O — 5¢¥¢—M)‘Zzg =0 (3.5)
There are two possible boundary conditions: Neumann (N) 9, X|,-.» = 0 or Dirich-

let (D) X|,—0x = cost for the boson fields and (¢»+ £ 1_)|o» = 0 for the fermion

fields. We can write then as
0_-X(0,7) = n0yX(0,7) 0_X(m,7) =0, 0. X (m,7)
Ph0,7) = not(0,7) W (m,T) = n. el (m,T)
with
(3.6)

_ ] +1 Neuman _J +1 Ramond(R)
o —1 Dirichlet —1 Neveu Schwarz(NS)

A way to solve the boundary conditions is to think of X r and 1 as fields on the

whole complex plane satisfying:

X*<O-77—> = 770X+(O-77—) X+<U+27T7T):77;1770X+(0-7T>
b (0,7) = mi(o,T) (o +2m,7) = en oy (o,7) (3.7)

D-branes: Open strings can be thought as ending on (p+ 1)-dimensional hypersur-

faces along which the open string end is taken with Neumann boundary conditions.
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More precisely we take Neumann boundary conditions for the components X* with
i = 0,..p and Dirichlet boundary conditions for X* with i = p + 1,..9. In general
an open string ends on two different Dp-branes with positions X*|,—g .

In general for boundaries ending on a brane at the angles 76, one finds

Mox = €27%0m (3.8)

3.3 Mode expansions

The
M
XM(o,7) = V2ad/ (o +7)ad! +iv2a Z In_=ni(o+)
n
n#0
¢f(g, 7-) = \/& Z 77Z)£4 e~ ir(o+r) (39)

reZ—ag

with a =0 and a¢ = % in the Ramond and Neveu-Schwarz sectors respectively and

adl = V2o ptt (3.10)
Quantization conditions:
(XM(o,7), XN (o', 7)] = —2id/ MV (0 — o)
{M (o, 1), wév(al, N} = 2mxa/ MV dapd(c —0') (3.11)
They imply the following commutation relations (p = 1p;3p_)
o o] =m0 (M 0] =™
Wy = ™Mo (3.12)
Virasoro generators:
T(z) = —30XM0Xy + 0™ ou)
G(z) = —pMoxXy (3.13)
In terms of the string modes
Ly — 53600 % % 2T (2)
= %Zafl{mamM—i—% Z (r — %n)bﬁ{TbrM
mez reZ—a
G, = % % 27" G(z)
= > b, (3.14)
mez



with

c 1§ M 1 E M
Lg—ﬂ = 3 a_mamM+§ Tb_rbrM

meZ reZ—ag
= a/p2—|—z a_m m—}-z bﬁ\/l—’—% Zm Z —Clo
r=1—ag m=1 m=1
= a'p +N+¥ [C(=1,1) = ¢(=1,1 —ag)] = /p* + (N —a (3.15)

with D = 10, a = ag = 0 for the Ramond and a = ag = % for the Neveu-Schwarz.
We have used the identity?

((—=1,1—ap) = (m—ag) = —3 — Sap(ap — 1) (3.16)

m=1
Acting on the superstring vacuum and equating the two sides of this equation one
finds

(Lo — 57)|0)xs = _%|O>NS = Lyp|0)ns =0
(Lo — 5)0)r = 0[0)r = Lo|O)r = 3|0)r
(3.17)

: c _ 31 1
Wlthﬂ—8><2><24—2.

Physical states are defined by

Ln|(I>phyS> = En|€[)phys) =0 n>0
GT|<I>phyS> = GT‘(I)phys> =0 r>0
(LO - i)|¢phyS> - (I/O - %)|q)phy5> =0

(25 ) ) =0 (3.13)

Physical states has to satisfied in addition the zero mode conditions in (3.18),

the mass shell and the so called level matching condition

1
M = —pQZJ(N—a)
N = Za Qi+ Y T, by (3.19)
r=1l—a

with a =0, % for the R,NS sectors .

!The zeta di Hurwitz is defined as ((s,a) = > oo (n +a)*.
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3.4 Twisted open strings

Open string connecting branes at an angle 76 satisfied twisted boundary conditions

(3.7) with
271'19 — 7771- o

The mode expansion can be written as

Xi(or) = Vi Y i

nez—0;
wi(0-7 7—) — 4 /CY/ Z wi\/l efir(a'+7')
reZ—0;—agp
Quantization conditions:
M N MN M N MN
[am ) O‘n} = mn 5m+n,0 {¢7« 7¢s } =n 57~+570

Mass condition

M = 1 Y al et s Y rbLbithe

i,mEeL—0; 1,r€ZL—0;—ag
= N+ N
with
o oo
N = 5 tal,, Qo+ g crb, by
i,m=1-—0; i,r=1—0;—agp
o o0

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

No = Y (m=0)= Y (m—0—a) =Y [C(—-1,1—6;) — {(—1,1—ao — 6;)]

,m=1 i,m=1 7

= 3 [3006: = 1) + 36+ a0) (B + ag = 1)] = G, 1 (=3 + 5 6)

)

(3.25)

with a = a¢g = 0 for the Ramond and a = ay = % for the Neveu-Schwarz. We have

used the identity?

C( 11—&0 :Z —(lo 1—2—%&0(&0—1)

m=1

?The zeta di Hurwitz is defined as ((s,a) = > o~ ,(n +a)~*.

(3.26)



3.5 Braneworlds

N =1 gauge theories

L =tr /d26d29 PleV & + tr (/ d*0 [15= W W, + W(®)] + h.c.)

with
V = —00"0A,(z)+i000X(z) + 10000 D(x)
® = (y)+ V200(y) + 00F(y)
W, = —1DDD.V
WaWa’W = _%FHVF/W + i‘fuuapF'uVFUp + D* — Qij\amam)\
and
Yy = ' —ifo"l D, = % + 2iat 6% (9%/“
= L
T T o ey
Gauge theories with extended supersymmetry
N=1: V= (Am)\om;\daD>Adj C= <¢7wa7F)rep
N =2: Vs = (V + C)agj H=(C+ C)rep

N =4: Vs = (V+3C)Adj
N = 4 gauge theories

U(N) N D3 — branes
SO(N) N D3 —branes + 1 O3~ — plane
Sp(N) N D3 — branes + 1 O3% — plane

Brane intersections

e N = 4 vector multiplet D3D3,D(-1)D(-1): 6; =0

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

There is a ten dimensional vector 1’ ,|0)ys, %" 1]0)ys coming from the NS
2 2

sector and a ten-dimensional massless fermion {|0) g, Yi?|0) g, Wikl [0V R}

(16 states) from the R-sector ¢ = 1,..5. On-shell degrees of freedom can be

found by restricting to ¢ = 1, ..4 leading to 8 states from the NS sector and 8

states from the R-sector.



e N =2 hypermultiplet, D3D7,D3D(-1): 6, = 63 = 3

There are two massless scalars: |0)xg, ¥i12|0)ys coming from the NS sector
and 4 fermionic degrees of freedom ¥}|0) z, (ViiE)|0) g, i = 3,4, 5, from the
R-sector. On-shell degrees of freedom can be found by restricting to ¢ = 3,4

leading to 2 states from the NS sector and 2 states from the R-sector.

e N =1 chiral multiplet D6D6,ED2DG6: 61 + 05 + 05 = 1

There is one massless scalar |0)yg from the NS sector and one fermion |0)g

from the R-sector.

e Unpaired Fermions D(-1)D7: 6 =6, =03 =6, = 3

A single complex fermion |0) g from the R-sector.

N = 2 quiver gauge theories

We consider the D3-brane system at a R*/Z, singularity. At the singularity the
N D3-branes group into stacks of N,, fractional branes with n = 0,1 labelling the
conjugacy classes of Zy. The gauge theory U(NN) decomposes as U(Ny) x U(Ny).
More precisely, denoting by v, the projective embedding of the orbifold group in

the Chan-Paton group and imposing 722 = 1 one can write

722 = (]‘N0><N07 _1N1><N1>

with N = > N,. The resulting gauge theory can be found by projecting the
N =4 U(N) gauge theory under the Zs orbifold group action:

V= 7y, Vy;; o — ~Vz, oyt (3.32)

%2

Keeping only invariant components under (3.32) one finds the N' = 1 quiver gauge

theory

A% + C: N()NO + NlNl
2C:  [NoNy+ N;Ng] (3.33)

with gauge group [[, U(N,) andhypermultiplets in the bifundamentals.
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N =1 quiver gauge theories

We consider the D3-brane system at a R®/Z3 singularity. At the singularity the
N D3-branes group into stacks of N,, fractional branes with n = 0, 1,2 labelling
the conjugacy classes of Z3. The gauge theory U(N) decomposes as Hi:o U(N,).
More precisely, denoting by v, the projective embedding of the orbifold group in

the Chan-Paton group and imposing 723 =1 and 7713 = 7;31 one can write

Vzy = (]‘NOXNO ) W1N1 XN W11\’r2xN2)

with N = > N,. The resulting gauge theory can be found by projecting the
N =4 U(N) gauge theory under the Z3z orbifold group action:

V=7, V’yz_sl ol — WYz, ! ’yz_l w = e*™/3 (3.34)

3

Keeping only invariant components under (3.34) one finds the N' = 1 quiver gauge

theory

V. NoNo + NlNl + N2N2
®': 3% [NoNi+ N;N; + N3Ny (3.35)

with gauge group [[,, U(NN,) and three generations of bifundamentals.

4 D-brane instantons

4.1 Gauge Instantons

The YM action reads

Im 7 v Ret [y
Sy = _8_7T/ d'zTr F,, F* +8_7T/ d'zTr F,, F* (4.1)
with
B = A, = 0,4, + [Aw A
sz = %eWUpFUp (4.2)
and 0 4
2T Gym

11



The equation of motion and Bianchi identity are

YM equation : D'F,, =0
Bianchi identity : ~ D"F,, =0 (4.4)

The second equation follows from the definition of FW, the first from the variation
of the YM action. Combining the two equations one finds that self or anti-self dual

connections
F=4F (4.5)

are solutions of the YM equations. A connection satisfying (4.5) is called a Yang
Mills instanton. It is important to remark that this equation has solutions only
in the Euclidean since F = —F in the Minkowskian. Yang-Mills instantons are

classified by the topological integer

k

= / d*xTr F,, F"™ (4.6)

called, the instanton number. Instantons minimize the Euclidean Yang-Mills action.

To see this we start from the identity

/ d*zTr (F£F)?2 >0 (4.7)
and use TrF? = TrEF? to write
~ 82|k
— / d*zTr F? > 55— /d%«TrFF‘ == i (4.8)
9y m 9y m 9y ur

The YM action for anti-selfdual connections can then be written in the Euclidean
(.TO — 124, Fy; — _ZFOZ) as
SYM = 2rkT (49)

Non-perturbative corrections

82k

)= [ DA 0 =S aughoy + Y de (4.10)

4.2 ADHM construction

Here we review the ADHM construction of instantons in R*.

A self-dual connection A, can be construct as follows. Start from a matrix Ay ox)x2x]

A= ( e ) (4.11)
Qo — Tad

12



with a = a,,0™, T = 2,,0™ @ lgxg). The matrices winxar), Gprxox contains the

instanton moduli. The connection can be written as
A, =U00,U (4.12)

with Ujnvyor)xn] the normalized kernel of A i.e.

AU=UA=0 UU=Lxn (4.13)

By bars we will always mean hermitian conjugates. The connection (4.12) is self-
dual if A satisfy
AA= I~ ! kak] ® L2x2 (4.14)

In components one finds the ADHM constraints
Cﬂ(w wg + a*“a op) = WTW — iy [, an] = 0 (4.15)
Notice that the resulting connection is invariant under U (k) rotations

am — Uay,UT wg — Uwg (4.16)

The moduli space of instantons is then defined by the U(k) quotient of the hyper-
surface defined by (5.33) and has dimension

dimpMy, = 4k(N + 2k) — 3k* — k* = 4kN (4.17)
Notice that equation (4.14) implies
1=UU+AfA (4.18)

To see that the gauge connection constructed in this way is self-dual let us compute
E,
F., = 0,A,—-0A,—[A,A)]
= 20,U00,U —[U8,U,Ud,U] (4.19)

3In the mathematical literature these equations are often written as [By, Bo]+1.J = 0, [By, B]]+
[Ba, Bg] + 1T — JtJ = €14,45. These equations follows from the identifications B, = %(azg +
iage—1) and w = (J IT).

13



Inserting the identity (4.18) into the first term in (4.19), rewriting derivatives on

U’s as derivatives on A’s and using (4.13) one finds

F, = 23[MUAfA8,,]U=QUa[MAfaV]AU
_ 0
= 2U fl(0 o @lpunw | U
( Ol @ Lgxn > ( V] o >

- (0 0
T U~ 0 (4.20)
0 Ouv ® f[kxk}

There is a nice D-brane description of this system. In this formalism a U(N)
instanton with instanton number k is viewed as bound states of & D(—1) and N
D3-branes. The instanton moduli a,,, w4 represent the lowest modes of open strings
connecting the various branes. The ADHM constraints are identified with the F-

and D- term flat conditions in the effective 0-dimensional theory.

Explicit solutions

The simplest solution: k=1, N =2

A = p Liaxa) U 1 : T[2x2)
— T[22 (P2 +712)2 \ plpxy

_ 1
AA = <p2—|—7"2)]]_[2><2] ﬁf:m TQZZL’MZL’M
(0 o0 120,
F,, = 40 U= e (4.21)
) (p* +1?)

4.3 Classical instanton actions

Let us consider a Dp-brane wrapping a (p — 3)-cycle C4 and denote by 7 the com-
plexified gauge coupling of the resulting four-dimensional super Yang-Mills theory.

The world-volume action of wrapped Dp-brane in Euclidean signature is*

d'ze ¥/ det (g+2ra'F —'/ Con €™ F |
/R4><C xe \/e(g 7TOz) 1 de ]

RixC
(4.22)

SPP = i, Tr

4Here we assume [F s

the adjoint of the gauge.

F,,] =0 and take F = F;T7 with Tr(T"77) = 36" and 4, j running in

14



where 1, = (2m)7P(a/)~P*+D/2 is the Dp-brane tension, ¢ the dilaton, g the string
frame metric and Cy, the R-R 2n-form potentials. Expanding (4.24) to quadratic
order in F' and comparing with the standard form of the Yang-Mills action (4.1) in
Euclidean signature, we find that the complexified four-dimensional gauge coupling
is

T =21(27a’)? p, / [ie‘“" \/ det g + Cp_3i| . (4.23)
c

In the background of a gauge instanton connection with instanton number k£ one
finds

SPP = —i N p, / Cpi1 — 1k pip—s /Cp_3+... , (4.24)
R4xC C

This suggests that a gauge instanton can be described in terms of a bond state of
N Dp-branes and k Euclidean (p — 4)-brane wrapping the same (p — 3)-cycle C.
Indeed, the action for a Euclidean (p — 4)-brane wrapping C is given by

SE(p—4) = 4 |:i/€—<ﬂ det g + / Cp_g} = 27T (425)
C C

matching the instanton action. On the other hand, if the instanton wraps a cycle Cg
different from C, the action S®P~% = 277y, is given in terms of 75 defined by (4.23)
with C — Cg. These instantons induce non-perturbative interactions weighted by
e?™*7e with k being the number of instantonic branes and e*™™# a scale not directly

2miT

link to the gauge theory scale e

5 D(-1)/D3 system

51 N =4 case

Let us consider the bound state of k D(-1) and N D3-branes in flat space. The
dynamics of the bound state is described by a U (k) x U(N) matrix model describing
the low energy interactions of the open strings connecting the various D-branes.
In particular the dynamics of D(-1)D(-1) strings is described by the dimensional
reduction to 0 + 0 dimensions of an N' =1 U(k) gauge theory in ten dimensions.

This results into

Spyp(-1) = tr (=2 Epn FMN + i U Dy, 1) (5.26)

15



Moduli | U(k) x U(N) | SU(2)%,xSO(6)4 | A
Ya kk (1,1,6) —-1
Um kk (2,2,1) —1
D¢ kk (1,3,1) —2

Mo kk (2,1,4) .
A kk (1,2,4) —3
We kN (1,2,1) 1
We kN (1,2,1) 1
p kN (1,1,4) 3
A kN (1,1,4) :

Table 1: D(-1)/D3 instanton moduli for N' = 4 theory. The second column lists
the representations under the brane symmetry group, Third column displays the
representations under the Lorentz symmetry group and fourth column the length

dimension of the various fields.

with
Fuy = [An, An] Ax = (G Xa)
o S -0
Iy, = Lsws®y" Tp= (i;B EaOAB> ®7° (5.27)

In presence of D3-branes, the matrix model can be found by dimensional reduction
of V=1 SYM in D = 6 with gauge group U(k) an adjoint hypermultipet and N
fundamental hypermultiplets. The field content is then

V = {Xedaa,De}ij  i=1,..k a=1,.6 c¢c=1,.3
Hyy = {am,M2}; m=1,.4 aa=1,2 A=1,.4
Hpwna = {wa, 1™} w=1,.N (5.28)

The action can be written as

Sk = Sgauge + Sadj + Sfund (529)

16



with

1 . .
Sgauge = ] tr (—5Fu — %ZaABAiDa)\dB — 1D?) (5.30)
0

Sagj = tr (—(Daan)2 — %7QABMQADQMS + iIXE M aga] — iDCTcgédaaa6>
Stund = tr (—D“wdDawd + g8 p Dot + i ws + wap®)NE — iDr wdw5>

and D,® = [x4, ®] or D, ® = x,P for U(k) adjoint or fundamental fields . The
Lorentz symmetry group is SO(4) x SO(6) and the domain of the various indices are:
a,& = 1,2 (Left an Right moving spinors), a = 1, ..6 (vector of SO(6)), upper/lower
A =1,..4, (Left/Right spinor of SO(6)), ¢ = 1,2.3 (Self-dual two-form of SO(4)).

After reducing to 040 dimensions the action can be written as

1
Sk,N = ?Sg—l-SK—FSD (531)
0
with

Sa = trr( = 30xar Xol” = Xaalxhip, AB) — $D7) (5.32)
Sk =t (= [Xas an)? + Xa@ WaXa — IM A xapME] + ixapn?)
Sp = try (2 ([/\/laA, oa] + i wg + wd;f‘) G — iDcTcg(wdwﬁ- + adaaaﬁ-))

Given the classical group isomorphism SO(6)r = SU(4)r, SO(6)r vectors can also
be written as xap = $5%pXa with the %5 = (755, i755) given in terms of the
t'Hooft symbols. In the limit gy = 47 (47%a’)"2g, — oo, gravity decouples from the
gauge theory and the contributions coming from Sg are suppressed; then the fields
M4, D, become lagrangian multipliers implementing the ADHM constraints (5.33)

in the form
/]Awd + ?DQ/AA - [aad, M’aA] =0
T (W wy + @*%a,5) = 0 (5.33)

In presence of a vev for the D3D3 fields (®) = diag(ay, ...ay) the D3D(-1) action is
modified by replacing
X = x+q(P) (5.34)

with ¢ = 1 when acting on wg, u” charged fields and ¢ = 0 otherwise.
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Moduli | U(k) x U(N) | SU(2)2,,xU@1) | A
% kk (1,1,1), -1
X kk (1,1,1)_ —1
A kk (2,2,1) —1
D¢ kk (1,3,1), -2

Med kk (2,1,2), 1
Naa kk (1,2,2) 1 —3
Wy kN (1,2,1), 1
We kN (1,2,1)g 1
pé kN (1.1,2); 2
4 kN (1,1,2), :
% k N (1,1,1)_, 3

Table 2: D(~1)/D3/D7 instanton moduli for N' = 2 theory. The second column lists
the representations under the brane symmetry group, Third column displays the
representations under the Lorentz symmetry group and fourth column the length

dimension of the various fields.

52 N =2 case

Pure N' = 2 SYM theory is realized by placing N fractional D3-branes at a R?*/Z,
singularity with Z, a discrete subgroup of a SU(2) € SO(6). The D(-1)/D3 instan-
ton moduli can be derived starting from those in flat spacetime after projecting out
the non-invariant components under Z,. This can be achieved by restricting SO(6)
vector indices to a = 1,2, and SO(6) spinor indices to A = @ = 1,2. More precisely
we keep only the components x, = (), X) and (M%, A\se, 1%). The field content is
summarized in table 5.2°. The D(-1)/D3 action is given again by (5.32) with SO(6)
indices now running over a = 1,2 and A =a =1, 2.

In addition fundamental matter can be realized by the introduction of N; D7-

®The index «, ¢ runs over the weights of the spinor left and right moving spinor of the SO(4)
Lorentz group acting on the ND plane, a, the spinor left weights of the SO(4) acting on the DD
four plane perpendicular to the x-plane. Undotted index « stands for the weights %(—i——),%(——i—)7
dotted indices &, a denote the weights %(++),%(77), and :l:% the weights along the y-plane.

Finally (- — — — — ) denotes the lowest spin weight of the Ramond D(-1)D(-1) open string.
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branes. The D(-1)D7 interaction is described by the action

Stund = ﬂ/XN/ (5'35)

53 N =1 case

Pure N' = 2 SYM theory is realized by placing N fractional D3-branes at a R®/Z3
singularity with Zs a discrete subgroup of a SU(3) € SO(6). The D(-1)/D3 in-
stanton moduli can be derived starting from those in flat spacetime after projecting
out the non-invariant components under Zs. This can be achieved by projecting
out the x, fields and restricting SO(6) spinor indices A to A = 1 (i.e. omitting
the index A. The field content is summarized in table 6.2. The D(-1)/D3 action is
given again by (5.32) with y, =0 and A = 1.

In addition fundamental matter can be realized by the introduction of N; D7-

branes.

6 Instanton partition function

In this section we will compute the instanton corrections to the prepotential of
N = 2 theories. The instanton corrections to the prepotential are given by the

moduli space integral

Serr = / d'3d"0 Foon—pere(®) = ) _q" / dMye e ™)

= > ¢ / d*zd*0 dOeSmoa(®) (6.36)
i.e.
Fron—pert (Qu) = qu/dﬁkesmod(““) (6.37)

2miT

Here we denote by ¢ = p#e?™", with 1® compensating for the length dimension of

instanton moduli space measure. We will regularize the volume factor by introduc-
ing some €; o-deformations of the four-dimensional geometry and recover the flat

space result from the limit €; , — 0. More precisely we will find
Fnonfpert<aua Q) - - hHlo €1€2 In Z<€€a Qo q) (638>
€p—>
with
Z(EZ’ au’ q) — Z qk / dmkesmod(auvei) (639)

The factor €, in (6.38) takes care of the volume factor [ d*zd*0 ~ .
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6.1 Localization formula

Here we specify to g = U(1)" group action on a manifold M of complex dimension
¢ specified by the vector field
. 0 . .
=€) G =£)

We introduce the equivariant derivative

QgEd‘i‘i& QZZdig‘i‘Z’gd:(&

with d the exterior derivative, i¢dz’ = d¢z* the contraction with & and d; the Lie
derivative along .
Let (M) the spaces of forms in M. A form «(§) : g — Q(M) satisfying

Qea=0 (6.40)

is said to be equivariantly closed.
If critical points z§’s of the group action ¢, i.e. points where £ (z§) = 0 Vi,

are isolated the integral of an equivariantly closed form is given by the localization

/M —or)! Z I (6.41)

det2Q€ (xf)
with Q*7 = 9,67 : Ty,yM — T,,M the tangent space map induced by the vector
field €.

Example: Gaussian integral via U(1) localization on R2.

formula:

0 0
— h . .
§=n(z 95 Y %)
o = e~ U@ +y?) dxdy — e~ a(@+y?)
B e~z +ud)
/ e~z +y?) drdy = / o =21 ne v T (6.42)
R2 R2 2ah a

with x¢ = yo = 0 the critical point. Notice that the right hand side does not depend

on h.

6.2 The BRST charge

The localization procedure is based on the cohomological structure of the instanton

moduli action which is exact with respect to a suitable BRST charge Qq:
Smod = QOE . (643)
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Qo can be obtained by choosing any component of the supersymmetry charges
Qun, Q4 preserved on the brane system. Supersymmetry charges are invariant
under U(k) x U(N.) x U(Ny) but transform as a spinor of SO(4)?, so that the
choice of Qg breaks this symmetry to the SU(2)? subgroup which preserves this
spinor. In our case we take

SU(2), x SU(2)s x SU(2); = SU(2); x [SU(Z)_ X sAU(2>_]d % SU2), . (6.44)

iag

This reduction is achieved by identifying the spinor indices “a” and “a” of the Left
moving SU(2)’s in the two four-dimensional planes. More precisely, we decompose

SO(6) spinor indices as A = (a, a) with a,a = 1,2 and identify
Qo = 5" Qaa (6.45)

After this identification is made, the fermionic moduli M,; and A4, can be re-
¢ =1,2, { = 3,4 and paired with a, and B; into
BRST multiplets. Similarly, the singlet component 7 = 14 and the (—1)/3

named as My_ns and M;_, .
fermionic moduli p4—; have the right transformation properties to qualify for the
BRST partners of ¥ and w, respectively.

The remaining fields N, = 109*\s4, Nag = Mo, and p, are unpaired, and should
be supplemented with auxiliary fields having identical transformation properties.
We denote such fields as D., d,, and h, respectively. The seven auxiliary moduli
D., d,q, of dimension L?, linearize the quartic interactions among the scalars B, and
B;. In particular, the triplet D, disentangles the quartic interactions of a, and B,
among themselves, while the quartet d,, decouples the quartic interactions between
ay and B;. Likewise, the dimensionless auxiliary (—1)/3 moduli h, disentangle
the quartic interactions between B; and ws. In the end, x remains unpaired and
therefore Qox = 0.

The BRST transformations read

QP=0 QU=x-0
QN=D QD=x-N (6.46)
with
5 (a57Béawd7)_() ]\7 = (NcaNaaa,U/a)
\I_} = (Méa Ménuémn) [j = (Dcadaaa ha) (647)
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(¢,7) (=) | Re | SU2) 4.4 Qc Qs (2)3
(ag, My) + kk (2,2,1) Xi = Xj €1, €2
(Nw-DC) - kl—< (17371> Xi _X] O]R,ael +€2

(XJ]) + kl_( (17171) Xi _Xj OIR
(wo'm ,uo’z) + ch ) & 1) Xi — Qy %(61 + 62)
(W, fia) + kN, ,2,1) Ay — Xi (1 + )
(BZaMZ) + kl—( ) 72) Xi — Xj €3, €4

(Naaadaa) - kl—< ) 72) Xi — Xj €2 +€37€1 +63
(,U/w ha) - ch ) 72> Xi = Qu, %(63 - 64)
(ﬂaa ha) - ch ) 72) Ay — Xi %(63 - 64)
(i, 1) — kNe [ (1,1,1) | xi —my 0

Table 3: D(-1)/D3/D7 instanton moduli. The first and second columns dispaly the
Q-multiplets and the spin statistics of their lowest component. The third and fourth
columns report the transformation properties under the symmetry groups G =
U(k) x U(N,) x U(Nt) and SU(2)? respectively and the fifth and sixth columns the
corresponding eigenvalues. The table is divided into three blocks corresponding to

the contributions of the gauge, adjoint matter and fundamental matter respectively.

Notice that the lowest component of the multiplet is a boson if the multiplet is built
out of physical moduli, and is a fermion if instead the multiplet contains auxiliary
fields. Indeed, the auxiliary fields, being related to D- and F-terms, can only appear
as highest components in the BRST multiplets while the physical bosonic moduli
enter as the lowest components of the pair. These statistical properties and trans-
formation properties are listed in the second column of Tab. 5. It is also important
to remark that Q2 = 0 up to a U(k) rotation.

With all these ingredients at hand one can write the D(-1)D3 action in the form

S = Qo try (5]\7‘ +&- X\ff) , (6.48)
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with

E=(&, 8 &) (6.49)

some bosonic bilinears realizing the generalized ADHM constraints. In particular

for N = 2, omitting states with a, ¢ indices one finds

£ = (£} = (L (@ wy + a*a,;)) (6.50)

6.3 Equivariant deformations

To localize the integral over moduli space, it is necesssary to make the charge @)
equivariant with respect to all symmetries, which in our case are the gauge sym-
metry U(k) x U(N,) x U(N;), and the residual Lorentz symmetry SU(2)3. For our
purposes it is enough to consider the Cartan directions of the various groups. We
label the Cartan components of U(k) by i, those of U(N,) by @ and those of U(Ny)
by m. From the string perspective Y, @ and m parametrize, respectively, the posi-
tions of the D(~1), D3 and D7-branes along the overall transverse two-dimensional
plane, and their appearance in the moduli action can be deduced from disk am-
plitudes with (part of) their boundary on the D-instantons and with insertion of
(-1)/(-1), 3/3 or 7/7 fields. Thus, @ can be interpreted as the vacuum expectation
value of the chiral superfield ® of gauge theory on the D3-branes, and m as the
analogue for the gauge theory on the D7-branes. Finally, the Cartan directions of
the residual Lorentz group SU(2)3 are parametrized by ¢; (I = 1,...,4) subject to
the constraint

€1 +e+est+es=0. (6.51)

Although only three out of the four €’s are independent variables, it is convenient
during the computation to keep all of them as independent variables and impose
the relation (6.51) only at the very end.

After the equivariant deformation, the charge ) becomes nilpotent up to an
element of the symmetry group. It is convenient to use the basis provided by the
weights of this group, and thus we denote by ¢, and 1, the components of ¢ and ¢

along a weight
7= (quw), Quvy: Quem), Tsuye) € W(9) , (6.52)

where W(¢) is the set of weights of the representation under which ¢ transforms,

which can be read from the third and fourth columns of Tab. 5. Then, in this basis
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the charge ) acts diagonally as follows

Qbg =vg, Qg = Qg , (6-53>

where (), parametrizes the equivariant deformation, i.e. the eigenvalues of Q2. From
the brane perspective, €}, specifies the distance in the overall two-dimensional trans-
verse plane between the branes at the two endpoints of the open string. Explicitly,
we have
Q=X quw +a-qua.,) + M- Gung) + € Gsu? - (6.54)
with
€ Gsus = qi(e1 — €2) + q2(e1 + €2) + q3(€3 — €4) (6.55)

and ¢; = 0 for states in the 1, ¢; = i% for states in the 2 and so on®. All
this is summarized in the last column of Tab. 5, where we have displayed the
positive eigenvalues of € Ggy(2)s (assuming €; > €, > €3 > €4) corresponding to the
holomorphic components of the various fields.

With all these ingredients at hand, one can show that the moduli action Sy,q
can be written in the form (6.43). The details of the fermion = are irrelevant to the
computation, since integrals are insensitive to (J-exact terms.

Since the length dimension of the BRST charge is L~'/2, the length dimensions
of the components (¢, 1) of @-multiplet are (A,A — %) Thus, recalling that a
fermionic variable and its differential have opposite dimensions, we find that the

measure on the instanton moduli space

oy = dy [] do di (6.56)
(#,)

has the following scaling dimensions
L+ s —no) (6.57)

Here, the first term in the exponent accounts for the unpaires k2 bosonic moduli ¥,

of dimension L~!, and ny denotes the number of Q-multiplets where the statistics

6To see this, associate to each modulus the SU(2)* charges ¢+, ¢+ and the eigenvalue €qsu(z)r =
€1(q+ +q-)+ea(qr —q-) +e3(G+ +G-) +ea(g+ —G—). Then, (6.55) follows after the identification
@1 =4q-,q3 =G4, g2 = q4+ — G+ and the use of (6.51). For example, B 2 € (2,1,2) have SU(2)3
weights (j:%, 0, :l:%) that once plugged into (6.55) lead to € and +es.
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Fy —

of the lowest component is (—) +. One finds that the measure is dimensionless

in the case of N’ = 2 plus adjoint matter and
My, ~ LP* B =2N.— N; (6.58)

for NV = 2 plus Ny fundamentals.

6.4 The integral

The k-instanton partition function Zk is given by the moduli space integral

_ ~Smod _ —QE($4,%)
Z / Ay, e / ol H dody e

k
_ AX__ —Qz(6dox) _ / dXZ 2 Qdet—5 (02
_ / SO Hzm [I )% Sdet ™ (Q?)
dXz i F¢+1
= Hzm H H (6.59)
l<j ¢ geEWT (o

The factor [];_;(xi — xj)?, known as Vandermonde determinant, comes from the
Jacobian resulting from bringing x into the diagonal form y = diag(x1, x2, ---Xx)-
In the second line we perform the Grassmanian integrations resulting into the re-
placements of ¢ by d¢ or follows from The second line follows from the localization
formula around the fixed point ¢ = 0 where Q%@ = Q¢ = 0. In this identification
fermions play the role of the differentials 1) = d¢.

The integral over y; in the second line above has to be thought of as a multiple

contour integral with the pole prescription
Ime; >>Imey >> Imeg >> Imey >0 (6.60)

Writing

H dx;
Z — 1 gauge matter 6 . 6 1
g / k! 2mi ( )

and using the eigenvalues in Tab. 6.2, one finds

auge Xi'(Xi'+€1+€2) 1
Lgauge 1 _Xig\Xij
’ l;[ (xij + €1)(xij + €2) g (Xi — @+ 952)(=xi + ay + 952)
a2 = [ —my) (6.62)
if

adj /(Xij + €+ 63)(Xij + €+ €3> 63 €4 €3—€q
z = Xz_au+ Xz+au+_
* 11 (xij + €3)(xij + €4) L1 = )

i,J 7,
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Poles are specified by a N-set of two-dimensional Young Tableaux with k boxes with

Xi = X7 = X¥rge = ot (Lu = )€1 + (Ju = 3)e (6.63)

with I,,J, running over the rows and columns of the tableaux. The partition

function can then be written as

Zp = Z Res,, 2™z (6.64)

The relation Z}lzl er = 0 should be imposed only after the integral is performed.
The mass of the adjoint matter is parametrized by €34 according to €3 = Maqj,

€4 = —Myq; — €1 — €2.

6.5 The integral: An Alternative derivation

Here we rederive the instanton partition function using localization in the ADHM
moduli space. For simplicity we restrict ourselves to the N/ = 2 case. The ADHM
manifold in this case is given by a U(k) quotient of the hypersurface defined by the
ADHM constraints

DC — [Bl,BQ]“‘Ij:O
Dy = [By, Bl + By, B+ 11" = JJ = €15 (6.65)

on R¥*+4N parametrized by By o, I, J. This manifold admits a G = U (k) x U(N) x

k+N+2

SO(4) action. Parametrizing by x;, ay, €12 the U(1) Cartan subgroup of G,

the infinitesimal variations d; = Q* of the ADHM coordinates read

QI = (Xi—au+5)u=0
Q*J = (au—Xi+5)Jui=0
Q°Br = (Xi — Xj +€)Bei; =0
Q’Ne = (i —xj +€)Ney =0
Q*Nr = (xi — X;j)Nr,ij =0 i F (6.66)

with € = €; + €5. Here we introduce the fermionic auxiliary variables N¢ g (the
superpartners of D¢ ) to account for the subtraction of the degrees of freedom

corresponding to the ADHM constraints.
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The solutions of (6.66) can be put in one to one correspondence with a set of n
Young tableaux (Y1,...Y,) with k = >k, boxes distributed between the Y,’s. The
boxes in a Y, diagram are labelled either by the instanton index I, = 1,...,k, or
by a pair of integers I,,, J,, denoting the vertical and horizontal position respectively

in the Young diagram. The explicit solutions to (6.66) can then be written as

Xi = X¢5 = X¢uts.gy = O+ (L — Der+ (Ju — e (6.67)

and all components of I, J, B, vanishing except for those with zero Q*-eigenvalues,
ie.

Bi.1,gi41,05 Bor,gin g1 Lui=y=1 (6.68)
These moduli are fixed by solving the ADHM constraint. To compute the SdetQ?,

it is convenient to first compute its trace
T = trogg ¥’ (6.69)

Introducing

vV = Zeixf: Z TauTl_Ju+1T2_I“+1

(Tu,Ju) €Y

W= YT, (6.70)

with Ty = €2 and T, = €' one can write
T = V'xVx [T1+T2—T1T2—1]+W* XV+V* XWXT1T2

_ ZZ(TT ho@ue+L Th”(S)HT_”“(S)) (6.71)

up sEY; "
with ay, = ay — ay. hy(s) (vu(s)) is the horizontal(vertical) distance from s till
the right (top) end of the u(v) diagram, i.e. the number of black (white) circles in
Fig.1.
The exponents in (6.71) are the eigenvalues of the operator Q% which enters in
the localization formula. Using these eigenvalues, the partition function of N' = 2

SYM for winding number £ is

1
ERP IS I eoemm O

u,v=1s€Yy, u
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Figure 1: Two generic Young diagrams denoted by the indices A, A in the main text.

and
Euw(s) = au — €1hy(s) + €a(vy(s) + 1) (6.73)
In presence of matter we write

2y = Z Z;ugezzatter (6.74)

with

gauge

Y
Rfund

H (6.75)

6.6 k=12 explicit computations

6.6.1 N =2 SYM with gauge group SU(2)

Here we present some explicit computations using the residue formulas (7.100,6.62)
k=1

The partition function read

1
= — Resy || 6.76
€169 Z Y 51+52)( X1 + y + 61'562) ( )

Xl_au
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There are two poles in the upper half plane :
)Y, =0, Yo =e: x; =ay + 3¢

1
Zi = — (6.77)

€1€2a12(a12 + €)

)Y =Y, =0 X1:a2+%€

1
Ziyg = — (6.78)

6162(112((112 - 6)

Altogether one finds
= ———F—— (6.79)

k=2

The partition function read

2
X X —€ 1
A <€162) E ResY 123212 ) 5 || =

—e)(xi2 — €3) i

There are five poles in the upper half plane :
DYi=00,Y,=e x1 =01 +5 le X2 = a1+ 3 let e

1
T — — 6.80
2 2e3ex(€1 — €2)ara(arz + €1)(a12 + €1 + €2)(a12 + 261 + €2) ( )
II) }/1:57}/2:.: X1:CL1—|—%€, X2:&1+%€+€2
Dot = ! (6.81)
2 2e3€1 (€1 — €)aia(aln + €2) (a1 + €1 + €2)(ar2 + €1 + 2¢2) '
III) Yy =e, Yy =11 X1:CI,2+%€, X2:a2+%e+el
o1 = ! (6.82)
B 26%62(61 - 62)012(a12 - 61)(612 — € — 62)(Cl12 — 26 — 62) '
IV) Yy =, Yy =[] x1 = a2+ 56, xa = az + 3¢ + €
Doy = ! (6.83)
2V 26361(61 - 62)012(a12 - 62)(012 — € — 62)(a12 — € — 262) '
V)Yi=0,Ys =00 x1 = a1 + 56, Xa = a + 3¢
1
Zay = = (6.84)

5%(@2 - 5%)(“%2 - E%)
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Altogether one finds

2a2, — 8¢ — 8e2 — 17
Zy = 55— a122 261 €3 261622 ! (6.85)
6152(a12 - (51 + 62) )(a’12 - (51 + 252) )(a12 — (261 + €2) )

The prepotential

For the prepotential one finds

F = —€1€2 In Z(q> = —616221q + —6162(22 — %le)q —+ ... (686)
B 2q N ?(5a2y + 7€t + T2 + 16¢162)
afy — € (afy — (1 + €2)?)(afy — (&1 + 262)?)(afy — (261 + €2)?)
2q | 5¢°
= + e + O(, ¢°) (6.87)
12 12

6.6.2 N =2* SYM with gauge group SU(N)

Here we present some explicit calculations using the localization formulas (6.72,6.75).

It is useful to introduce the following definitions:

flz) = Tu(@) = [ [ f(tw +2) (6.88)
v#U

(x —m)(z+m—e¢)

x(z —€)
In terms of these definitions we can rewrite:

2y, = Z H H f(Eww’(s)) (6'89)

Y waw'=1s€Yy
k=1

Y, = 0, Yz, = e. From the above definitions we have v(s) = h(s) = 0 for
w =w' = u while v(s) = —1,h(s) = 0 for w’ # w = u. Summing up over diagrams
of this kind one finds

Zy =Y fe2)Tu(0) (6.90)

k=2

We have three diagrams:

I) Y, = P Y, = U, Yw;éu,v = e
T.,(0)T,,(0)

Tl () (6.9

ZQI - % Z f(€2)2f(auv + EQ)f(avu + 62)
UFAV
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The contribution ;EI;(:?) comes from the product in (6.89) with w, w’ # u, v for which

h(s) = 0,v(s) = —1. The term w,w’ = u,v, i.e. h(s) = v(s) = 0 gives f(e2) or

f(aap + €) in the case of w = w' = w and w = w,w’ = v respectively. Similar

contributions come from terms with u <+ v exchanged.
)Y, =01, Yoz, = o

Z Flea) flez — e)Tu(0)Tu(—e1) (6.92)

Now f(e2)f(ea — €1) comes from the terms in (6.89) with w = v’ = u ie. v(s) =
0,h(s) = 0,1, while the product over w’" # w = u, v(s) = —1, h(s) = 0, 1 brings the
T,, contributions.

Finally the third diagram is the transposition of the one above and its contri-

bution can be read from (6.92) by exchanging €; < €.

The prepotential

Setting €; = —ey = h one finds:

_ : 2 . 2
Fi = —}115%71 Zi=m ZTu
F = —limh%(Z Ry :Z Lo 3 m2T?
2 10 297t 4 tuwtu g
1 1 1
T,T, — — 6.93
ot ; (a2 2(a —m)?  2(ay, + )) (6.93)

with T,, = T,,(0). The pure N' = 2 analog of formulae (6.90,6.92) can be simply

obtained by omitting m-dependent factors.

6.7 N =4

The N = 4 case follows from N = 2 plus an adjoint matter sending the mass of

the adjoint to zero. This corresponds to take €3 = 0, ¢4 = —e. Plugging into the

aUE¢ cancels against 2*Y and one finds

0= ¢ == ! (6.94)

[l (= gm)¥

instanton partition function one finds that z;

In particular there are no correction to the prepotential as expected.
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6.8 Black hole counting

In this section we derive a microscopic formula for the partition function of a black
hole made out of D4-D2-D0 bound states wrapping a four cycle inside a CY. We will
restrict ourselves to the case where both the cycle and the CY are compact. The
lift of this brane system to M-theory is well known and a microscopic derivation
of the corresponding black hole entropy based on a two-dimensional (4,0) SCFT
has been derived by Maldacena-Strominger-Witten. The aim of this section is to
test our instanton partition function formula against supergravity. We consider a
single D4-brane wrapping a very ample divisor P inside a CY. The conjugacy class
[P] € H*(CY,7) can be expanded as [P] = pAa4 with ay a basis in H?(CY, 7).
According to [?] the black hole partition function is defined as
Zpr =Y QQo,Qa,p")e ro-Qas’ (6.95)
Q0,Qa
with Q(Qo, Q 4, p™) the multiplicity of a bound state of Qy DO-branes, Q 4 D2-branes
and a D4 brane wrapping P = p?¥4. o, ¢4 are the D0,D2 chemical potentials.
D0,D2 branes can be thought of as instantons and fluxes respectively in the world-
volume theory of the D4-brane
Qo—k—871T2 MtrF/\F QA:%/U"F/\&A (6.96)
Self-duality implies that () Asb = 0.
The black hole partition function can be then read from the instanton partition

function formula

1

7T e D e iea@naneios
(&
n Quentd®
= D QQo,Qa,p") g% e (6.97)
Qo,Qa

with
W(P) = / 6(P) = 6D acp p"p° + conp”
P

by (P) = 2Dapcp™p®p” + e gAD"

Dipe = %/ as N ag A ac CQAE/ as N e (CY)
cy cy
Cup = —/OZA/\OZB:—6DAB DABEDABCPC
P
q = e ¢ = ¢~ Can¢” (6.98)
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and C4B, DAB the inverse of Cup, Dp respectively.
Notice that (6.97) is the partition function of x(P) free bosons (b3 of them living
in the lattice H*(P,Z)) in two-dimensions. The black hole entropy follows from the

Cardy formula

Spa =~ IHQ(Q(),QAap )~ 2m ( )QOreg

= QW\/(DABcpAPBPC + £ c24p*)(Qo + D4 Q4Q5) (6.99)

with Qoreg = Qo + 1—12DAB Q4Qp the number of regular instantons coming from
the expansion of 77X in (6.97). (6.99) agrees with the micro/macroscopic Mb5-

brane/supergravity results.

7 Saddle point analysis

For simplicity we take pure N' = 2 SYM with gauge group SU(N) and 7 = it,. We

write

d i Lgauge b d PR )
quz’“ Zkl/H 2:1 - z;/Hl 2::1 eaa " (7.100)

In the limit €, — 0 one finds

/Hk;(X,) = €169 [Zln( Xz] ij +€ ) ZlnP Xi + ( %) —l—k‘lnq

Xz] + 61 ij + 62

Q

1
[—e%eg Z — — 2616 Z In P(x;) + kereaIn q] (7.101)

¥ ij

Introducing the density function
T) = €169 Z 3z — Xxi) (7.102)
one can rewrite (7.101) as

Hi(p) = — / dwdy% —2 / dyp(y) In P(y) +1Ing / dyp(y) (7.103)

The Saddle point equation becomes

dHi(p) PW) o Pl + e —
dp(z) z[Rdy<x_y)2 2In P(z) +1Ing =0 (7.104)
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It is convenient to rewrite this equation as

dHi(p)
dp(x)

= 2/ dyp"(y)In|x —y| —2In P(z) + Ingq
R

— [ duf" )l — gl + g =0
R

with N
f(x) = —=2p"(x) + 2 Z d(x — ay)
u=1

i.e.

f(z) = —2p(x +Z|x—au|

(7.105)

(7.106)

(7.107)

the profile function. Summarizing the leading profile function can be found by

solving the integral equation

Jedyf'(y)In(z —y) =Ing  with  a, =3 [, zf"(x)

and ¥, = [ay,, ;] an interval around = = a,.

(7.108)

To find a solution of the saddle point equation is convenient to introduce the

holomorphic function (defined in the upper half plane)

y(z) = ez Jrduf" (y) In(z—y)

(7.109)

that encodes all momenta of the profile function. More precisely, expanding around

Z & 00 one can write

P (z) = 0, Iny(z _%sz/ vy’ f"(y)
J=0

The saddle point equation can be written in terms of the y-function as
)P =q  z€lag,a]]

This can be solved by taking

v = =2 Ty P s =TI ad)
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with y+(2) the two roots of the equation
y(2)? — P(2)y(z) +¢=0 (7.113)

Indeed for z € [, o;f] the argument of the square root is negative and therefore

yl* =yiy- = q.
The prepotential:

@0, F = —e162q0,InZ = —q0,H.(f) = —q0,f Hi(f) +/R fy)dy

- /R fly)dy =1 /R PPy =3 e (7.114)

The right hand expression follows by plugging (7.112) into (7.110) and noticing that

q start to contribute to ®'(z2) at order z=2¥=!. This implies in particular that

2N N
1
V()= e D er+0(zN (7.115)
J=0 u=1
ie.
N
%/ v )y =) el J<2N (7.116)
R u=1
for

P(z) =] N(z—eu) (7.117)

8 N =1 Superpotentials

8.1 SQCD with Ny = N —1 flavors

In this section we consider a N' =1 U(N) gauge theory with Ny = N — 1 quark-
antiquark pairs of chiral fileds in the fundamental and antifundamental representa-
tions respectively. In the background of the instanton the effective action is given

by the moduli space integral

Ser = »_ qFAFENND / A9 ¢ Smod (8.118)
k

where the factor A?2Y*! compensates for the dimension of the instanton moduli
space
M= {au7wuid7DcaMom)\dy,uuhﬂi;f} (8119)
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with length dimension
[M] = 4k* + 4kN — 6k* — k* + 3k* — kN — kN = k(3N — Ny) (8.120)

We denote by Q.f, QY u=1,.N, f=1, ...N¢, the quark-antiquark superfields.
The classical moduli space of the gauge theory is defined by the D-flatness conditions

QusQ™ - Ql,Q"T =0 (8.121)

For simplicity we take the quark-antiquark superfields in the almost diagonal form

Quf = Qubuy Q7 =Q"y Qn=QY=0 (8.122)

Now let us consider the £ = 1 instanton action in the quark-antiquark background

given by (8.122). The action in the instanton moduli space can be written as
Smod = @ wg, [(QquTf” +Q1Q" +i€e)sE + DF ()5 6
A (" W + W p) — %u Oyl — %ﬁ’f &1 o
= g, [(zQuQ"T +ie)dl + D° (r°)]
PN+ 08m) — S @y~ L QM (8129

The ze term is introduced for regularizing the Gaussian integral. The third line made
use of the D-flatness conditions and of (8.122). We notice that sy, iy moduli are
soaked by the last two terms while A-depend terms accounts for uy, iy components.

After the Grassmanian integrals one finds

. _wécu,w, ut ie ,3 c TC’(?
/d2A dzN,u d2Nf/,L/ e*Sde — detMT (w%wNOJ e Bu [(QQuQ + )5Q+D ( )Q]

(8.124)
with M JJ: = Qur, Q“f " the Meson field. The w-integrals leads to
4 Ca N —@Owy (el yDe (re)f)y _ 21€
/d wy (Wiywyg) e 8 = Griop (8.125)
/d4waf€_wdfwa [(2QfoT+ie)5§+Dc (TC)Q] _ 1
[1;(D* = (2Q;Q/T + i€)?)

Finally the D-integral leads at leading order in € to
/dD ie D* B 1 B (
(D2 + )2 [[;(D? — 4(QrQ71)2)  4TI,(QsQ7)?  ddetMM!
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Collecting all pieces one finds
2N+1

et M (2.0) (8.127)

Sog = AN / AN e Fmed = ¢ / d*zd?6

with ¢ a constant.

8.2 Exotic prepotentials

Now we consider the effect of exotic instantons. Let us consider again the case
of N'=1 SQCD with gauge group Sp(N) and N; quark-antiquark fundamentals.
This can be realized on D3-branes at a Zs X Zs orientifold singularity with Ng = N,
Ny = Ny, Ny = N3 = 0. Now let us consider the effect of a & = 1 instanton at the
node 1 of the quiver. Such an instanton carry a gauge group O(1) and therefore. no
A-moduli survives the orientifold projection. The only moduli are then (a,, M), j,

and p, ;. For k =1 the action in the moduli space is simply

Smod - ﬂilquuo’U(),UJUOil + ﬁiluoéuovoﬂvoil (8128)

We notice that the integral over u’s is different from zero only for a square matrix
i, i.e. Ny = N.. In this case, identifying as before (a,, M,);,;, with the spacetime

coordinates (z,,0,) and integrating over p’s one finds
Seft = A3_2N/d9ﬁ1 e Smod — ¢ A3T2N /d4xd2¢9 detM(z,0) (8.129)
with

My = {a,, Do, My, 1) [M] =4—6—142N =2N —3 (8.130)

A Gamma matrices

In four dimensional Euclidean space we take
0 —io,
Yy = ( R ) (A.131)
10, 0

om = (i, 1) Gy = (=i, 1) (A.132)

with
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In terms of these matrices one can write self and antiself-dual tensors

(OmGn — 0n0m)  Gmn = 5(OmOn — Gu0m) (A.133)

Umn

PN

satisfying

—1

_ 1 _
Omn = 5€mnpqTpq Tmn = —5C€mnpgOpq (A.134)

The self and antiself-dual tensors can be expressed in terms of the t’Hooft symbols

as
Omn = 205mT" T = 21507 (A.135)
with
Nap = —Mpa Map = —Npa
Moy = Tap = €cab Nyoa = —Npa = Ome (A.136)

In six-dimensional Euclidean space we take

r,= ( 0 = ) (A.137)

with

EZB = (77164B7 ZﬁfAB) i:?LXB = (_77164B7 Zﬁi\B) ¢ = 17 27 3 a= 17 .6 (A138)
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