
2188-7

School and Workshop on D-brane Instantons, Wall Crossing and 
Microstate Counting 

Jose Francisco MORALES-MORERA

15 - 21 November 2010

II Universita' di Roma 'Tor Vergata'  
Dipartimento di Fisica  

Via della Ricerca Scientifica, 00133 
ROMA

 
 

Lectures on D-instanton counting

 



Introduction to D-brane instantons

Contents

1 Motivations 3

2 Outline 4

3 Open strings 4

3.1 String action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Equations of motion and boundary conditions . . . . . . . . . . . . 5

3.3 Mode expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Twisted open strings . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Braneworlds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 D-brane instantons 11

4.1 Gauge Instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 ADHM construction . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Classical instanton actions . . . . . . . . . . . . . . . . . . . . . . . 14

5 D(-1)/D3 system 15

5.1 N = 4 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 N = 2 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.3 N = 1 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



6 Instanton partition function 19

6.1 Localization formula . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2 The BRST charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.3 Equivariant deformations . . . . . . . . . . . . . . . . . . . . . . . . 23

6.4 The integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.5 The integral: An Alternative derivation . . . . . . . . . . . . . . . . 26

6.6 k = 1, 2 explicit computations . . . . . . . . . . . . . . . . . . . . . 28

6.6.1 N = 2 SYM with gauge group SU(2) . . . . . . . . . . . . 28

6.6.2 N = 2∗ SYM with gauge group SU(N) . . . . . . . . . . . 30

6.7 N = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.8 Black hole counting . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7 Saddle point analysis 33

8 N = 1 Superpotentials 35

8.1 SQCD with Nf = N − 1 flavors . . . . . . . . . . . . . . . . . . . . 35

8.2 Exotic prepotentials . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A Gamma matrices 37

2



1 Motivations

• Gauge Theories: Correlator are computed by path integrals dominated by

the minima of the classical action and quantum fluctuations around them.

Fluctuations around the trivial vacuum, i.e. where all fields are set to zero,

give rise to loop corrections suppressed in powers of the gauge coupling. In-

stantons are non trivial solutions of the classical action and lead to expo-

nentially suppressed corrections to the correlators. These corrections are im-

portant in theories like QCD where the gauge coupling get strong at low

energies. Understanding of the instanton dynamics is then crucial in address-

ing the study of phenomena in the strong coupling regime like confinement or

chiral symmetry breaking, etc.

• D-brane instantons: In string theory the situation is even more dramatic.

The gauge coupling is given by the vev of a field and therefore weak coupling

expansions are rather unnatural. Moreover, the discovery of strong weak

dualities has revealed an impressive web of connections between the various

string theories, gauge theories and gravity making clear that a better control

of the non-perturbative dynamics is needed in order to address questions like,

what is the string vacua ?, moduli stabilization, etc. In addition the structure

of non-perturbative objects in string theory is very rich, and include beside

the known gauge instanton effects a new class of instantons , named ”stringy”

or ”exotic”, of great phenomenological interest.

• Applications of the instanton calculus:

I) String Phenomenology: Instantons generate interesting couplings like Ma-

jorana mass terms for neutrinos, Yukawa couplings, etc at scale not linked to

the gauge theory scale (Hierarchy).

II) Moduli stabilization: Instanton generated superpotentials ca be used to

stabilized Kahler moduli

III) Black hole physics: Black holes in d=4 can be built out of D4-D2-D0

systems wrapping divisors of a CY. The instanton partition function provides

then a microscopic description of the corresponding black hole entropy

IV) AGT conjecture: Instanton partition functions for N=2 SCFT’s can be

related to the conformal blocks of 2D integrable systems

V) Topological string theories: Certain topological string amplitudes can be
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extracted from the Instanton partition functions in presence of non-trivial

gravitational backgrounds.

We will focus on N = 2, 4 set ups.

2 Outline

• Open strings: D-branes, Brane intersections and quivers, N = 1, 2, 4 gauge

theories.

hep-th/0007170 Johnson, hep-th/0512067 Bertolini, Billo, Lerda, Morales,

Russo

• D-brane instantons: Instantons in gauge theories, ADHM construction,

gauge and exotic instantons, D(-1)D3 systems

Dorey, Hollowood, Khoze, Mattis hep-th/0206063.

• Multi-instanton calculus: Localization, Instanton moduli space symme-

tries, Instanton partition function.

hep-th/0206161 Nekrasov, hep-th/0211108 Bruzzo, Fucito, Morales, Tanzini.

• Explicit computations: The N = 2 prepotential. Black hole counting,

Saddle point analysis.

hep-th/0208176 Flume, Poghossian. hep-th/0610154 Fucito, Morales, Poghos-

sian. hep-th/0306238 Nekrasov, Okounkov

3 Open strings

3.1 String action

In the conformal gauge the open string action can be written as

S =
1

2πα′

∫
d2σ

[
2 ∂+X

M ∂−XM + i ψM
+ ∂− ψ+M + i ψM

− ∂− ψ−M
]

(3.1)

with σ ∈ [0, π], τ ∈ [−∞,∞], spacetime Lorentz indices raised and lowered with

ηMN = (−++++..) and lightcone variables defined by

σ± = τ ± σ ∂± = 1
2
(∂τ ± ∂σ) η+− = η−+ = −2 (3.2)
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The action should be supplemented by the Super Virasoro constraints

T++ = ∂+X
M∂+XM + i

2
ψM
+ ∂+ψ+M = 0

T−− = ∂−XM∂−XM + i
2
ψM
− ∂−ψ−M = 0

G+ = ψM
+ ∂+XM = 0

G− = ψM
− ∂−XM = 0 (3.3)

3.2 Equations of motion and boundary conditions

The equations of motion following from (3.1) are

∂−∂+XM = 0 ⇒ XM = qM + 1
2

[
XM

+ (σ+) +XM
− (σ−)

]
∂+ψ

M
− = 0 ⇒ ψM

+ = ψM
+ (σ+)

∂−ψM
+ = 0 ⇒ ψM

− = ψM
− (σ−) (3.4)

Cancelation of the boundary terms requires:

δXM∂σXM

∣∣σ=π

σ=0
= 0

(δψM
+ ψ+M − δψM

− ψ−M)
∣∣σ=π

σ=0
= 0 (3.5)

There are two possible boundary conditions: Neumann (N) ∂σX|σ=0,π = 0 or Dirich-

let (D) X|σ=0,π = cost for the boson fields and (ψ+ ± ψ−)|0,π = 0 for the fermion

fields. We can write then as

∂−X(0, τ) = η0 ∂+X(0, τ) ∂−X(π, τ) = ηπ ∂+X(π, τ)

ψμ
−(0, τ) = η0 ψ

μ
+(0, τ) ψμ

−(π, τ) = ηπ ε ψ
μ
+(π, τ)

with

η0,π =

{
+1 Neuman

−1 Dirichlet
ε =

{
+1 Ramond(R)

−1 Neveu Schwarz(NS)
(3.6)

A way to solve the boundary conditions is to think of XL,R and ψ± as fields on the

whole complex plane satisfying:

X−(σ, τ) = η0X+(σ, τ) X+(σ + 2π, τ) = η−1π η0X+(σ, τ)

ψ−(σ, τ) = η0 ψ+(σ, τ) ψ+(σ + 2π, τ) = εη−1π η0 ψ+(σ, τ) (3.7)

D-branes: Open strings can be thought as ending on (p+1)-dimensional hypersur-

faces along which the open string end is taken with Neumann boundary conditions.
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More precisely we take Neumann boundary conditions for the components Xμ with

μ = 0, ..p and Dirichlet boundary conditions for X i with i = p + 1, ..9. In general

an open string ends on two different Dp-branes with positions X i|σ=0,π.

In general for boundaries ending on a brane at the angles πθ0,π one finds

η0,π = e2πiθ0,π (3.8)

3.3 Mode expansions

The

XM
+ (σ, τ) =

√
2α′ (σ + τ)αM

0 + i
√
2α′
∑
n �=0

αM
n

n
e−ni(σ+τ)

ψM
+ (σ, τ) =

√
α′
∑

r∈Z−a0
ψM
r e−ir(σ+τ) (3.9)

with a = 0 and a0 =
1
2
in the Ramond and Neveu-Schwarz sectors respectively and

αM
0 =

√
2α′ pM+ (3.10)

Quantization conditions:

[ẊM(σ, τ), XN(σ′, τ)] = −2iα′ ηMN δ(σ − σ′)

{ψM
α (σ, τ), ψN

β (σ′, τ)} = 2πα′ ηMN δαβ δ(σ − σ′) (3.11)

They imply the following commutation relations (p = 1
2
p+

1
2
p−)

[αM
m , α

N
n ] = mηMN δm+n,0 [qM , pN ] = iηMN

{ψM
r , ψ

N
s } = ηMN δr+s,0 (3.12)

Virasoro generators:

T (z) = −1
2
(∂XM∂XM + ∂ψMψM)

G(z) = −1
2
ψM∂XM (3.13)

In terms of the string modes

Ln − c
24
δn,0 =

1

2α′

∮
dz

2πi
z−n+1 T (z)

= 1
2

∑
m∈Z

αM
n−m αmM + 1

2

∑
r∈Z−a

(r − 1
2
n) bMn−r brM

Gr =
1

2α′

∮
dz

2πi
z−n+

1
2 G(z)

=
∑
m∈Z

bMr−m αmM (3.14)
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with

L0 − c
24

= 1
2

∑
m∈Z

αM
−m αmM + 1

2

∑
r∈Z−a0

r bM−r brM

= α′p2 +
∞∑

m=1

: αi
−m α

i
m : +

∞∑
r=1−a0

: r bi−r b
i
M : +D−2

2

[ ∞∑
m=1

m−
∞∑

m=1

(m− a0)

]
= α′p2 +N + D−2

2
[ζ(−1, 1)− ζ(−1, 1− a0)] = α′p2 + (N − a) (3.15)

with D = 10, a = a0 = 0 for the Ramond and a = a0 = 1
2
for the Neveu-Schwarz.

We have used the identity1

ζ(−1, 1− a0) =
∞∑

m=1

(m− a0) = − 1
12
− 1

2
a0(a0 − 1) (3.16)

Acting on the superstring vacuum and equating the two sides of this equation one

finds

(L0 − c
24
)|0〉NS = −1

2
|0〉NS ⇒ L0|0〉NS = 0

(L0 − c
24
)|0〉R = 0|0〉R ⇒ L0|0〉R = 1

2
|0〉R

(3.17)

with c
24

= 8× 3
2
× 1

24
= 1

2
.

Physical states are defined by

Ln|Φphys〉 = L̄n|Φphys〉 = 0 n > 0

Gr|Φphys〉 = Ḡr|Φphys〉 = 0 r > 0

(L0 − c
24
)|Φphys〉 = (L̄0 − c̃

24
)|Φphys〉 = 0(

1 + (−)F
2

)
|Φphys〉 = 0 (3.18)

Physical states has to satisfied in addition the zero mode conditions in (3.18),

the mass shell and the so called level matching condition

M2 = −p2 = 1

α′
(N − a)

N =
∞∑
n=1

αi
−n αni +

∑
r=1−a

rbi−r bri (3.19)

with a = 0, 1
2
for the R,NS sectors .

1The zeta di Hurwitz is defined as ζ(s, a) =
∑∞

n=0(n+ a)−s.
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3.4 Twisted open strings

Open string connecting branes at an angle πθ satisfied twisted boundary conditions

(3.7) with

e2πi θ = η−1π η0 (3.20)

The mode expansion can be written as

X i
+(σ, τ) = i

√
2α′

∑
n∈�−θi

αM
n

n
e−in(σ+τ)

ψi
+(σ, τ) =

√
α′

∑
r∈Z−θi−a0

ψM
r e−ir(σ+τ) (3.21)

Quantization conditions:

[αM
m , α

N
n ] = mηMN δm+n,0 {ψM

r , ψ
N
s } = ηMN δr+s,0 (3.22)

Mass condition

M2 = 1
2

∑
i,m∈Z−θi

αi
−m αmi +

1
2

∑
i,r∈Z−θi−a0

r bi−r bri + h.c.

= N +N0 (3.23)

with

N =
∞∑

i,m=1−θi
: αi

−m αmi : +
∞∑

i,r=1−θi−a0
: r bi−r bri : (3.24)

N0 =
∞∑

i,m=1

(m− θi)−
∞∑

i,m=1

(m− θi − a0) =
∑
i

[ζ(−1, 1− θi)− ζ(−1, 1− a0 − θi)]

=
∑
i

[−1
2
θ(θi − 1) + 1

2
(θi + a0)(θi + a0 − 1)

]
= δa0, 12

(−1
2
+ 1

2

∑
i

θi) (3.25)

with a = a0 = 0 for the Ramond and a = a0 =
1
2
for the Neveu-Schwarz. We have

used the identity2

ζ(−1, 1− a0) =
∞∑

m=1

(m− a0) = − 1
12
− 1

2
a0(a0 − 1) (3.26)

2The zeta di Hurwitz is defined as ζ(s, a) =
∑∞

n=0(n+ a)−s.

8



3.5 Braneworlds

N = 1 gauge theories

L = tr

∫
d2θd2θ̄Φ† eV Φ + tr

(∫
d2θ
[

τ
16π

W αWα +W (Φ)
]
+ h.c.

)
(3.27)

with

V = −θσμθ̄ Aμ(x) + iθθθ̄λ̄(x) + 1
2
θθθ̄θ̄D(x)

Φ = φ(y) +
√
2θψ(y) + θθF (y)

Wα = −1
4
D̄D̄ DαV

WαWα|θ2 = −1
2
FμνF

μν + i
4
εμνσρF

μνF σρ +D2 − 2iλ̄σm∂mλ (3.28)

and

yμ = xμ − iθσμθ̄ Dα =
∂

∂θα
+ 2iσμ

αα̇θ̄
α̇ ∂

∂yμ

τ =
θ

2π
+ i

4π

g2YM

(3.29)

Gauge theories with extended supersymmetry

N = 1 : V = (Aμ, λα, λ̄α̇, D)Adj C = (φ, ψα, F )rep

N = 2 : VN=2 = (V +C)Adj H = (C+ C̄)rep

N = 4 : VN=4 = (V + 3C)Adj (3.30)

N = 4 gauge theories

U(N) N D3− branes

SO(N) N D3− branes + 1 O3− − plane

Sp(N) N D3− branes + 1 O3+ − plane (3.31)

Brane intersections

• N = 4 vector multiplet D3D3,D(-1)D(-1): θi = 0

There is a ten dimensional vector ψi
− 1

2

|0〉NS, ψ̄
i
− 1

2

|0〉NS coming from the NS

sector and a ten-dimensional massless fermion {|0〉R, ψi
0ψ

j
0|0〉R, ψi

0ψ
j
0ψ

k
0ψ

l
0|0〉R}

(16 states) from the R-sector i = 1, ..5. On-shell degrees of freedom can be

found by restricting to i = 1, ..4 leading to 8 states from the NS sector and 8

states from the R-sector.
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• N = 2 hypermultiplet, D3D7,D3D(-1): θ2 = θ3 =
1
2

There are two massless scalars: |0〉NS, ψ
1
0ψ

2
0|0〉NS coming from the NS sector

and 4 fermionic degrees of freedom ψi
0|0〉R, (ψi

0ψ
j
0ψ

k
0)|0〉R, i = 3, 4, 5, from the

R-sector. On-shell degrees of freedom can be found by restricting to i = 3, 4

leading to 2 states from the NS sector and 2 states from the R-sector.

• N = 1 chiral multiplet D6D6,ED2D6: θ1 + θ2 + θ3 = 1

There is one massless scalar |0〉NS from the NS sector and one fermion |0〉R
from the R-sector.

• Unpaired Fermions D(-1)D7: θ1 = θ2 = θ3 = θ4 =
1
2

A single complex fermion |0〉R from the R-sector.

N = 2 quiver gauge theories

We consider the D3-brane system at a �4/�2 singularity. At the singularity the

N D3-branes group into stacks of Nn fractional branes with n = 0, 1 labelling the

conjugacy classes of �2. The gauge theory U(N) decomposes as U(N0) × U(N1).

More precisely, denoting by γ
�2

the projective embedding of the orbifold group in

the Chan-Paton group and imposing γ2
�2

= 1 one can write

γ
�2

= (1
N0×N0

,−1
N1×N1

)

with N =
∑

nNn. The resulting gauge theory can be found by projecting the

N = 4 U(N) gauge theory under the �2 orbifold group action:

V → γ
�2
V γ−1

�2
ΦI → −γ

�2
ΦI γ−1

�2
(3.32)

Keeping only invariant components under (3.32) one finds the N = 1 quiver gauge

theory

V +C : N0N̄0 +N1N̄1

2C :
[
N0N̄1 +N1N̄0

]
(3.33)

with gauge group
∏

n U(Nn) andhypermultiplets in the bifundamentals.
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N = 1 quiver gauge theories

We consider the D3-brane system at a �6/�3 singularity. At the singularity the

N D3-branes group into stacks of Nn fractional branes with n = 0, 1, 2 labelling

the conjugacy classes of �3. The gauge theory U(N) decomposes as
∏2

n=0 U(Nn).

More precisely, denoting by γ
�3

the projective embedding of the orbifold group in

the Chan-Paton group and imposing γ3
�3

= 1 and γ†
�3

= γ−1
�3

one can write

γ
�3

= (1
N0×N0

, ω1
N1×N1

, ω̄1
N̄2×N2

)

with N =
∑

nNn. The resulting gauge theory can be found by projecting the

N = 4 U(N) gauge theory under the �3 orbifold group action:

V → γ
�3
V γ−1

�3
ΦI → ω γ

�3
ΦI γ−1

�3
ω = e2πi/3 (3.34)

Keeping only invariant components under (3.34) one finds the N = 1 quiver gauge

theory

V : N0N̄0 +N1N̄1 +N2N̄2

ΦI : 3× [N0N̄1 +N1N̄2 +N2N̄0

]
(3.35)

with gauge group
∏

n U(Nn) and three generations of bifundamentals.

4 D-brane instantons

4.1 Gauge Instantons

The YM action reads

SYM = −Im τ

8π

∫
d4xTrFμνF

μν +
Re τ

8π

∫
d4xTrFμνF̃

μν (4.1)

with

Fμν = ∂μAν − ∂νAμ + [Aμ, Aν ]

F̃μν = 1
2
εμνσρF

σρ (4.2)

and

τ =
θ

2π
+ i

4π

g2YM

(4.3)
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The equation of motion and Bianchi identity are

YM equation : DμFμν = 0

Bianchi identity : DμF̃μν = 0 (4.4)

The second equation follows from the definition of F̃μν , the first from the variation

of the YM action. Combining the two equations one finds that self or anti-self dual

connections

F = ±F̃ (4.5)

are solutions of the YM equations. A connection satisfying (4.5) is called a Yang

Mills instanton. It is important to remark that this equation has solutions only

in the Euclidean since ˜̃F = −F in the Minkowskian. Yang-Mills instantons are

classified by the topological integer

k =
1

16π2

∫
d4xTrFμνF̃

μν (4.6)

called, the instanton number. Instantons minimize the Euclidean Yang-Mills action.

To see this we start from the identity∫
d4xTr (F ± F̃ )2 ≥ 0 (4.7)

and use TrF 2 = TrF̃ 2 to write

1
2g2Y M

∫
d4xTrF 2 ≥ 1

2g2Y M

∣∣∣∣∫ d4xTrFF̃

∣∣∣∣ = 8π2|k|
g2YM

(4.8)

The YM action for anti-selfdual connections can then be written in the Euclidean

(x0 → ix4, F0i → −iF0i) as

SYM = 2πkτ (4.9)

Non-perturbative corrections

〈O〉 =
∫
DAe−S O =

∑
ckg

k
YM +

∑
dk e

− 8π2k

g2
Y M (4.10)

4.2 ADHM construction

Here we review the ADHM construction of instantons in �4.

A self-dual connectionAμ can be construct as follows. Start from a matrix Δ[(N+2k)×2k]

Δ =

(
wα̇

aαα̇ − xαα̇

)
(4.11)
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with a = amσ
m, x = xmσ

m ⊗ �[k×k]. The matrices w[N×2k], a[2k×2k] contains the

instanton moduli. The connection can be written as

Aμ = Ū∂μU (4.12)

with U[(N+2k)×N ] the normalized kernel of Δ i.e.

Δ̄U = ŪΔ = 0 Ū U = �[N×N ] (4.13)

By bars we will always mean hermitian conjugates. The connection (4.12) is self-

dual if Δ satisfy

Δ̄Δ = f−1 = f−1[k×k] ⊗ �[2×2] (4.14)

In components one finds the ADHM constraints 3

τ cβ̇α̇(w̄
α̇wβ̇ + āα̇αaαβ̇) = w̄τ cw − iη̄cmn[am, an] = 0 (4.15)

Notice that the resulting connection is invariant under U(k) rotations

am → UamU
† wα̇ → Uwα̇ (4.16)

The moduli space of instantons is then defined by the U(k) quotient of the hyper-

surface defined by (5.33) and has dimension

dim�Mk = 4k(N + 2k)− 3k2 − k2 = 4kN (4.17)

Notice that equation (4.14) implies

� = UŪ +Δ f Δ̄ (4.18)

To see that the gauge connection constructed in this way is self-dual let us compute

Fμν

Fμν = ∂μAν − ∂νAμ − [AμAν ]

= 2∂[μŪ∂ν]U − [Ū∂μU, Ū∂νU ] (4.19)

3In the mathematical literature these equations are often written as [B1, B2]+IJ = 0, [B1, B
†
1]+

[B2, B
†
2] + II† − J†J = ξ 1k×k. These equations follows from the identifications B� = 1√

2
(a2� +

ia2�−1) and w = (J I†).
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Inserting the identity (4.18) into the first term in (4.19), rewriting derivatives on

U ’s as derivatives on Δ’s and using (4.13) one finds

Fμν = 2∂[μŪΔ f Δ̄ ∂ν]U = 2Ū∂[μΔ f ∂ν]Δ̄U

= 2Ū

(
0

σ[μ ⊗ �[k×k]

)
f
(

0 σ†ν] ⊗ �[k×k]
)
U

= 4Ū

(
0 0

0 σμν ⊗ f[k×k]

)
U ∼ σμν (4.20)

There is a nice D-brane description of this system. In this formalism a U(N)

instanton with instanton number k is viewed as bound states of k D(−1) and N

D3-branes. The instanton moduli aμ, wα̇ represent the lowest modes of open strings

connecting the various branes. The ADHM constraints are identified with the F-

and D- term flat conditions in the effective 0-dimensional theory.

Explicit solutions

The simplest solution: k = 1, N = 2

Δ =

(
ρ�[2×2]
−x[2×2]

)
U =

1

(ρ2 + r2)
1
2

(
x[2×2]
ρ�[2×2]

)
Δ̄Δ = (ρ2 + r2)�[2×2] ⇒ f =

1

ρ2 + r2
r2 = xμx

μ

Fμν = 4Ū

(
0 0

0 σμν

(ρ2+r2)

)
U =

4 ρ2 σμν
(ρ2 + r2)2

(4.21)

4.3 Classical instanton actions

Let us consider a Dp-brane wrapping a (p− 3)-cycle CA and denote by τ the com-

plexified gauge coupling of the resulting four-dimensional super Yang-Mills theory.

The world-volume action of wrapped Dp-brane in Euclidean signature is4

SDp = μp Tr

[∫
R4×C

d4x e−ϕ
√

det
(
g + 2πα′F

) − i

∫
R4×C

∑
n

C2n e
2πα′F

]
,

(4.22)

4Here we assume
[
Fμν , Fσρ

]
= 0 and take F = FiT

j with Tr
(
T iT j

)
= 1

2δ
ij and i, j running in

the adjoint of the gauge.
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where μp = (2π)−p(α′)−(p+1)/2 is the Dp-brane tension, ϕ the dilaton, g the string

frame metric and C2n the R-R 2n-form potentials. Expanding (4.24) to quadratic

order in F and comparing with the standard form of the Yang-Mills action (4.1) in

Euclidean signature, we find that the complexified four-dimensional gauge coupling

is

τ = 2π(2πα′)2 μp

∫
C

[
i e−ϕ

√
det g + Cp−3

]
. (4.23)

In the background of a gauge instanton connection with instanton number k one

finds

SDp = −iN μp

∫
R4×C

Cp+1 − i k μp−4

∫
C
Cp−3 + . . . , (4.24)

This suggests that a gauge instanton can be described in terms of a bond state of

N Dp-branes and k Euclidean (p − 4)-brane wrapping the same (p − 3)-cycle C.
Indeed, the action for a Euclidean (p− 4)-brane wrapping C is given by

SE(p−4) = μp−4

[
i

∫
C
ε−ϕ

√
det g +

∫
C
Cp−3

]
= 2πτ (4.25)

matching the instanton action. On the other hand, if the instanton wraps a cycle CE
different from C, the action SE(p−4) = 2πτE, is given in terms of τE defined by (4.23)

with C → CE. These instantons induce non-perturbative interactions weighted by

e2πikτE with k being the number of instantonic branes and e2πiτE a scale not directly

link to the gauge theory scale e2πiτ .

5 D(-1)/D3 system

5.1 N = 4 case

Let us consider the bound state of k D(-1) and N D3-branes in flat space. The

dynamics of the bound state is described by a U(k)×U(N) matrix model describing

the low energy interactions of the open strings connecting the various D-branes.

In particular the dynamics of D(-1)D(-1) strings is described by the dimensional

reduction to 0 + 0 dimensions of an N = 1 U(k) gauge theory in ten dimensions.

This results into

SD(−1)D(−1) = tr
(−1

2
FMNF

MN + iΨΓMDMΨ
)

(5.26)
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Moduli U(k)× U(N) SU(2)2α,α̇ × SO(6)A Δ

χa kk̄ (1,1,6) −1
am kk̄ (2,2,1) −1
Dc kk̄ (1,3,1) −2
MαA kk̄ (2,1,4) 1

2

λα̇A kk̄ (1,2, 4̄) −3
2

wα̇ kN (1,2,1) 1

w̄α̇ k̄N (1,2,1) 1

μA k N̄ (1,1,4) 1
2

μ̄A k̄N (1,1,4) 1
2

Table 1: D(–1)/D3 instanton moduli for N = 4 theory. The second column lists

the representations under the brane symmetry group, Third column displays the

representations under the Lorentz symmetry group and fourth column the length

dimension of the various fields.

with

FMN = [Am, AN ] AM = (aμ, χa)

DMΨ = [AM ,Ψ] Ψ =

(
1

0

)
⊗
(
1

0

)
MA

β +

(
0

1

)
⊗
(
0

1

)
λβ̇A

Γμ = �8×8 ⊗ γμ Γa =

(
0 ΣaAB

Σ̄a
AB 0

)
⊗ γ5 (5.27)

In presence of D3-branes, the matrix model can be found by dimensional reduction

of N = 1 SYM in D = 6 with gauge group U(k) an adjoint hypermultipet and N

fundamental hypermultiplets. The field content is then

V = {χa, λα̇A, Dc}ij i = 1, ...k a = 1, ..6 c = 1, ..3

Hadj = {am,MA
α}ij m = 1, ..4 α, α̇ = 1, 2 A = 1, ..4

Hfund = {wα̇, μ
A}iu u = 1, ..N (5.28)

The action can be written as

Sk = Sgauge + Sadj + Sfund (5.29)
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with

Sgauge =
1

g20
tr
(−1

2
F 2
ab − i

2
ΣAB

a λα̇ADaλα̇B − 1
2
D2

c

)
(5.30)

Sadj = tr
(
−(Daan)

2 − i
2
Σ̄a

ABMαADaMB
α + iλα̇A[MαA, aαα̇]− iDcτ cβ̇α̇ā

α̇αaαβ̇

)
Sfund = tr

(
−Daw̄α̇Dawα̇ + iμ̄AΣ̄a

ABDaμ
B + i(μ̄Awα̇ + w̄α̇μ

A)λα̇A − iDcτ
cβ̇
α̇ w̄

α̇wβ̇

)
and DaΦ = [χa,Φ] or DaΦ = χaΦ for U(k) adjoint or fundamental fields Φ. The

Lorentz symmetry group is SO(4)×SO(6) and the domain of the various indices are:

α, α̇ = 1, 2 (Left an Right moving spinors), a = 1, ..6 (vector of SO(6)), upper/lower

A = 1, ..4, (Left/Right spinor of SO(6)), c = 1, 2.3 (Self-dual two-form of SO(4)).

After reducing to 0+0 dimensions the action can be written as

Sk,N =
1

g20
SG + SK + SD (5.31)

with

SG = trk
(− 1

2
[χa, χb]

2 − iλα̇A[χ
†
AB, λ

α̇
B]− 1

2
D2

c

)
(5.32)

SK = trk
(− [χa, an]

2 + χaw̄
α̇wα̇χa − iMαA[χABMB

α ] + iχABμ̄
AμB

)
SD = trk

(
i
(
[MαA, aαα̇] + μ̄Awα̇ + w̄α̇μ

A
)
λα̇A − iDcτ

cβ̇
α̇(w̄

α̇wβ̇ + āα̇αaαβ̇)
)

Given the classical group isomorphism SO(6)R ∼= SU(4)R, SO(6)R vectors can also

be written as χAB ≡ 1
2
Σ̄a

ABχa with the Σ̄a
AB = (ηcAB, iη̄

c
AB) given in terms of the

t’Hooft symbols. In the limit g0 = 4π(4π2α′)−2gs →∞, gravity decouples from the

gauge theory and the contributions coming from SG are suppressed; then the fields

λAα̇ , Dc become lagrangian multipliers implementing the ADHM constraints (5.33)

in the form

μ̄Awα̇ + w̄α̇μ
A − [aαα̇,M′αA] = 0

τ cβ̇α̇(w̄
α̇wβ̇ + āα̇αaαβ̇) = 0 (5.33)

In presence of a vev for the D3D3 fields 〈Φ〉 = diag(a1, ...aN) the D3D(-1) action is

modified by replacing

χ→ χ+ q〈Φ〉 (5.34)

with q = 1 when acting on wα̇, μ
A charged fields and q = 0 otherwise.

17



Moduli U(k)× U(N) SU(2)3α,α̇,ȧ ×U(1) Δ

χ kk̄ (1,1,1)+ −1
χ̄ kk̄ (1,1,1)− −1
am kk̄ (2,2,1)0 −1
Dc kk̄ (1,3,1)0 −2
Mαȧ kk̄ (2,1,2) 1

2

1
2

λα̇ȧ kk̄ (1,2,2)− 1
2

−3
2

wα̇ kN (1,2,1)0 1

w̄α̇ k̄N (1,2,1)0 1

μȧ k N̄ (1,1,2) 1
2

1
2

μ̄ȧ k̄N (1,1,2) 1
2

1
2

μ′ kNf (1,1,1)− 1
2

1
2

Table 2: D(–1)/D3/D7 instanton moduli for N = 2 theory. The second column lists

the representations under the brane symmetry group, Third column displays the

representations under the Lorentz symmetry group and fourth column the length

dimension of the various fields.

5.2 N = 2 case

Pure N = 2 SYM theory is realized by placing N fractional D3-branes at a �4/�2

singularity with �2 a discrete subgroup of a SU(2) ∈ SO(6). The D(-1)/D3 instan-

ton moduli can be derived starting from those in flat spacetime after projecting out

the non-invariant components under �2. This can be achieved by restricting SO(6)

vector indices to a = 1, 2, and SO(6) spinor indices to A = ȧ = 1, 2. More precisely

we keep only the components χa = (χ, χ̄) and (Mȧ
α, λα̇ȧ, μ

ȧ). The field content is

summarized in table 5.25. The D(-1)/D3 action is given again by (5.32) with SO(6)

indices now running over a = 1, 2 and A = ȧ = 1, 2.

In addition fundamental matter can be realized by the introduction of Nf D7-

5The index α, α̇ runs over the weights of the spinor left and right moving spinor of the SO(4)

Lorentz group acting on the ND plane, ȧ, the spinor left weights of the SO(4) acting on the DD

four plane perpendicular to the χ-plane. Undotted index α stands for the weights 1
2 (+−), 12 (−+),

dotted indices α̇, ȧ denote the weights 1
2 (++), 12 (−−), and ± 1

2 the weights along the χ-plane.

Finally 1
2 (−−−−−) denotes the lowest spin weight of the Ramond D(-1)D(-1) open string.
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branes. The D(-1)D7 interaction is described by the action

Sfund = μ̄′χμ′ (5.35)

5.3 N = 1 case

Pure N = 2 SYM theory is realized by placing N fractional D3-branes at a �6/�3

singularity with �3 a discrete subgroup of a SU(3) ∈ SO(6). The D(-1)/D3 in-

stanton moduli can be derived starting from those in flat spacetime after projecting

out the non-invariant components under �3. This can be achieved by projecting

out the χa fields and restricting SO(6) spinor indices A to A = 1 (i.e. omitting

the index A. The field content is summarized in table 6.2. The D(-1)/D3 action is

given again by (5.32) with χa = 0 and A = 1.

In addition fundamental matter can be realized by the introduction of Nf D7-

branes.

6 Instanton partition function

In this section we will compute the instanton corrections to the prepotential of

N = 2 theories. The instanton corrections to the prepotential are given by the

moduli space integral

Seff =

∫
d4xd4θFnon−pert(Φ) =

∑
qk
∫
dMke

Smod(Φ)

=
∑

qk
∫
d4xd4θ dM̂ke

Smod(Φ) (6.36)

i.e.

Fnon−pert(au) =
∑

qk
∫
dM̂ke

Smod(au) (6.37)

Here we denote by q = μβe2πiτ , with μβ compensating for the length dimension of

instanton moduli space measure. We will regularize the volume factor by introduc-

ing some ε1,2-deformations of the four-dimensional geometry and recover the flat

space result from the limit ε1,2 → 0. More precisely we will find

Fnon−pert(au, q) = − lim
ε�→0

ε1ε2 lnZ(ε�, au, q) (6.38)

with

Z(ε�, au, q) =
∑

qk
∫
dMke

Smod(au,ε�) (6.39)

The factor ε1ε2 in (6.38) takes care of the volume factor
∫
d4xd4θ ∼ 1

ε1ε2
.

19



6.1 Localization formula

Here we specify to g = U(1)r group action on a manifold M of complex dimension

� specified by the vector field

ξ = ξi(x)
∂

∂xi
δξx

i = ξi(x)

We introduce the equivariant derivative

Qξ ≡ d+ iξ Q2
ξ = diξ + iξd = δξ

with d the exterior derivative, iξdx
i ≡ δξx

i the contraction with ξ and δξ the Lie

derivative along ξ.

Let Ω(M) the spaces of forms in M . A form α(ξ) : g→ Ω(M) satisfying

Qξ α = 0 (6.40)

is said to be equivariantly closed.

If critical points xs0’s of the group action ξ, i.e. points where ξi(xs0) = 0 ∀i,
are isolated the integral of an equivariantly closed form is given by the localization

formula: ∫
M

α = (−2π)�
∑
s

α0(x
s
0)

det
1
2Q2

ξ(x
s
0)

(6.41)

with Q2 j
i = ∂iξ

j : Tx0M → Tx0M the tangent space map induced by the vector

field ξ.

Example: Gaussian integral via U(1) localization on �2.

ξ = � (x
∂

∂y
− y

∂

∂x
)

α = e−a(x
2+y2) dxdy − �

2a
e−a(x

2+y2)∫
�2

e−a(x
2+y2) dxdy =

∫
�2

α = 2π
� e−a(x

2
0+y20)

2a�
=
π

a
(6.42)

with x0 = y0 = 0 the critical point. Notice that the right hand side does not depend

on �.

6.2 The BRST charge

The localization procedure is based on the cohomological structure of the instanton

moduli action which is exact with respect to a suitable BRST charge Q0:

Smod = Q0Ξ . (6.43)
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Q0 can be obtained by choosing any component of the supersymmetry charges

QαA, Q
A
α̇ preserved on the brane system. Supersymmetry charges are invariant

under U(k) × U(Nc) × U(Nf ) but transform as a spinor of SO(4)2, so that the

choice of Q0 breaks this symmetry to the SU(2)3 subgroup which preserves this

spinor. In our case we take

SU(2)1 × SU(2)2 × SU(2)3 = SU(2)+ ×
[
SU(2)− × ŜU(2)−

]
diag

× ŜU(2)+ . (6.44)

This reduction is achieved by identifying the spinor indices “α̇” and “ȧ” of the Left

moving SU(2)’s in the two four-dimensional planes. More precisely, we decompose

SO(6) spinor indices as A = (a, ȧ) with a, ȧ = 1, 2 and identify

Q0 =
1
2
εα̇ȧQα̇ȧ (6.45)

After this identification is made, the fermionic moduli Mαȧ and λα̇a can be re-

named as M�=αα̇ and M�̇=ȧa, � = 1, 2, �̇ = 3, 4 and paired with a� and B�̇ into

BRST multiplets. Similarly, the singlet component η ≡ 1
2
λα̇ȧε

α̇ȧ and the (−1)/3
fermionic moduli μα̇=ȧ have the right transformation properties to qualify for the

BRST partners of χ̄ and wα̇ respectively.

The remaining fieldsNc ≡ 1
2
σα̇ȧ
c λα̇ȧ, Nαa =Mαa and μa are unpaired, and should

be supplemented with auxiliary fields having identical transformation properties.

We denote such fields as Dc, dαa and ha respectively. The seven auxiliary moduli

Dc, dαa, of dimension L2, linearize the quartic interactions among the scalars B� and

B�̇. In particular, the triplet Dc disentangles the quartic interactions of a� and B�̇

among themselves, while the quartet dαa decouples the quartic interactions between

a� and B�̇. Likewise, the dimensionless auxiliary (−1)/3 moduli ha disentangle

the quartic interactions between B�̇ and wα̇. In the end, χ remains unpaired and

therefore Q0χ = 0.

The BRST transformations read

Q0
�Φ = Ψ Q�Ψ = χ · �Φ

Q0
�N = �D Q�D = χ · �N (6.46)

with

�Φ = (a�, B�̇, wα̇, χ̄) �N = (Nc, Nαa, μa)

�Ψ = (M�,M�̇, μα̇, η) �D = (Dc, dαa, ha) (6.47)
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(φ, ψ) (−)Fφ RG SU(2)3α,α̇,a ΩG ΩSU(2)3

(a�,M�) + kk̄ (2,2,1) χi − χj ε1, ε2

(Nc, Dc) − kk̄ (1,3,1) χi − χj 0�, ε1 + ε2

(χ̄, η) + kk̄ (1,1,1) χi − χj 0�

(wα̇, μα̇) + kNc (1,2,1) χi − au
1
2
(ε1 + ε2)

(w̄α̇, μ̄α̇) + k̄Nc (1,2,1) au − χi
1
2
(ε1 + ε2)

(B�̇,M�̇) + kk̄ (1,2,2) χi − χj ε3, ε4

(Nαa, dαa) − kk̄ (2,1,2) χi − χj ε2 + ε3, ε1 + ε3

(μa, ha) − k N̄c (1,1,2) χi − au
1
2
(ε3 − ε4)

(μ̄a, h̄a) − k̄Nc (1,1,2) au − χi
1
2
(ε3 − ε4)

(μ′, h′) − kNf (1,1,1) χi −mf 0

Table 3: D(–1)/D3/D7 instanton moduli. The first and second columns dispaly the

Q-multiplets and the spin statistics of their lowest component. The third and fourth

columns report the transformation properties under the symmetry groups G =

U(k)×U(Nc)×U(Nf) and SU(2)
3 respectively and the fifth and sixth columns the

corresponding eigenvalues. The table is divided into three blocks corresponding to

the contributions of the gauge, adjoint matter and fundamental matter respectively.

Notice that the lowest component of the multiplet is a boson if the multiplet is built

out of physical moduli, and is a fermion if instead the multiplet contains auxiliary

fields. Indeed, the auxiliary fields, being related to D- and F-terms, can only appear

as highest components in the BRST multiplets while the physical bosonic moduli

enter as the lowest components of the pair. These statistical properties and trans-

formation properties are listed in the second column of Tab. 5. It is also important

to remark that Q2
0 = 0 up to a U(k) rotation.

With all these ingredients at hand one can write the D(-1)D3 action in the form

S = Q0 trk

(
�E �N + �Φ · χ̄�Ψ

)
, (6.48)
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with

�E = (Ec, Eαa, Ea) (6.49)

some bosonic bilinears realizing the generalized ADHM constraints. In particular

for N = 2, omitting states with a, �̇ indices one finds

�E = {Ec} = {τ cβ̇α̇(w̄α̇wβ̇ + āα̇αaαβ̇)} (6.50)

6.3 Equivariant deformations

To localize the integral over moduli space, it is necesssary to make the charge Q

equivariant with respect to all symmetries, which in our case are the gauge sym-

metry U(k)×U(Nc)×U(Nf ), and the residual Lorentz symmetry SU(2)3. For our

purposes it is enough to consider the Cartan directions of the various groups. We

label the Cartan components of U(k) by �χ, those of U(Nc) by �a and those of U(Nf )

by �m. From the string perspective �χ, �a and �m parametrize, respectively, the posi-

tions of the D(–1), D3 and D7-branes along the overall transverse two-dimensional

plane, and their appearance in the moduli action can be deduced from disk am-

plitudes with (part of) their boundary on the D-instantons and with insertion of

(–1)/(–1), 3/3 or 7/7 fields. Thus, �a can be interpreted as the vacuum expectation

value of the chiral superfield Φ of gauge theory on the D3-branes, and �m as the

analogue for the gauge theory on the D7-branes. Finally, the Cartan directions of

the residual Lorentz group SU(2)3 are parametrized by εI (I = 1, . . . , 4) subject to

the constraint

ε1 + ε2 + ε3 + ε4 = 0 . (6.51)

Although only three out of the four ε’s are independent variables, it is convenient

during the computation to keep all of them as independent variables and impose

the relation (6.51) only at the very end.

After the equivariant deformation, the charge Q becomes nilpotent up to an

element of the symmetry group. It is convenient to use the basis provided by the

weights of this group, and thus we denote by φq and ψq the components of φ and ψ

along a weight

�q ≡ (�qU(k), �qU(N), �qU(m), �qSU(2)3
) ∈ W(φ) , (6.52)

where W(φ) is the set of weights of the representation under which φ transforms,

which can be read from the third and fourth columns of Tab. 5. Then, in this basis
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the charge Q acts diagonally as follows

Qφq = ψq , Qψq = Ωqφq , (6.53)

where Ωq parametrizes the equivariant deformation, i.e. the eigenvalues of Q2. From

the brane perspective, Ωq specifies the distance in the overall two-dimensional trans-

verse plane between the branes at the two endpoints of the open string. Explicitly,

we have

Ωq = �χ · �qU(k) + �a · �qU(Nc) + �m · �qU(Nf ) + �ε · �qSU(2)3 . (6.54)

with

�ε · �qSU(2)3 = q1(ε1 − ε2) + q2(ε1 + ε2) + q3(ε3 − ε4) (6.55)

and qi = 0 for states in the 1, qi = ±1
2
for states in the 2 and so on6. All

this is summarized in the last column of Tab. 5, where we have displayed the

positive eigenvalues of �ε · �qSU(2)3 (assuming ε1 > ε2 > ε3 > ε4) corresponding to the

holomorphic components of the various fields.

With all these ingredients at hand, one can show that the moduli action Smod

can be written in the form (6.43). The details of the fermion Ξ are irrelevant to the

computation, since integrals are insensitive to Q-exact terms.

Since the length dimension of the BRST charge is L−1/2, the length dimensions

of the components (φ, ψ) of Q-multiplet are
(
Δ,Δ − 1

2

)
. Thus, recalling that a

fermionic variable and its differential have opposite dimensions, we find that the

measure on the instanton moduli space

dMk ≡ dχ
∏
(φ,ψ)

dφ dψ (6.56)

has the following scaling dimensions

L−k
2+ 1

2
(n+−n−) (6.57)

Here, the first term in the exponent accounts for the unpaires k2 bosonic moduli χ,

of dimension L−1, and n± denotes the number of Q-multiplets where the statistics

6To see this, associate to each modulus the SU(2)4 charges q±, q̂± and the eigenvalue 	ε·	qSU(2)4 =

ε1(q++ q−)+ ε2(q+− q−)+ ε3(q̂++ q̂−)+ ε4(q̂+− q̂−). Then, (6.55) follows after the identification
q1 = q−, q3 = q̂−, q2 = q+ − q̂+ and the use of (6.51). For example, B1,2 ∈ (2,1,2) have SU(2)3

weights (± 1
2 , 0,± 1

2 ) that once plugged into (6.55) lead to ±ε1 and ±ε2.
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of the lowest component is (−)Fφ = ±. One finds that the measure is dimensionless

in the case of N = 2 plus adjoint matter and

dMk ∼ Lβ k β = 2Nc −Nf (6.58)

for N = 2 plus Nf fundamentals.

6.4 The integral

The k-instanton partition function Zk is given by the moduli space integral

Zk =

∫
dMk e

−Smod =

∫
dχ

volU(k)

∏
(φ,ψ)

dφ dψ e−QΞ(φ,ψ,χ)

=

∫
dχ

volU(k)
e−QΞ(φ,dφ,χ) =

∫ k∏
i=1

dχi

2πi

k∏
i<j

(χi − χj)
2 Sdet−

1
2 (Q2)

=

∫ k∏
i=1

dχi

2πi

k∏
i<j

(χi − χj)
2
∏
φ

∏
q∈W+(φ)

Ω(−)Fφ+1

q . (6.59)

The factor
∏

i<j(χi − χj)
2, known as Vandermonde determinant, comes from the

Jacobian resulting from bringing χ into the diagonal form χ = diag(χ1, χ2, ...χk).

In the second line we perform the Grassmanian integrations resulting into the re-

placements of ψ by dφ or follows from The second line follows from the localization

formula around the fixed point φ = 0 where Q2φ = Ωφφ = 0. In this identification

fermions play the role of the differentials ψ = dφ.

The integral over χi in the second line above has to be thought of as a multiple

contour integral with the pole prescription

Im ε1 >> Im ε2 >> Im ε3 >> Im ε4 > 0 (6.60)

Writing

Zk =

∫
1

k!

k∏
i=1

dχi

2πi
zgaugek zmatter

k (6.61)

and using the eigenvalues in Tab. 6.2, one finds

zgaugek =
∏
i,j

′ χij(χij + ε1 + ε2)

(χij + ε1)(χij + ε2)

∏
i,u

1

(χi − au +
ε1+ε2

2
)(−χi + au +

ε1+ε2
2

)

zfundk =
∏
i,f

(χi −mf ) (6.62)

zadjk =
∏
i,j

′ (χij + ε1 + ε3)(χij + ε2 + ε3)

(χij + ε3)(χij + ε4)

∏
i,u

(χi − au +
ε3−ε4

2
)(−χi + au +

ε3−ε4
2

)
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Poles are specified by a N-set of two-dimensional Young Tableaux with k boxes with

χi = χ�Y ,i = χ�Y ,u,Iu,Ju
= au + (Iu − 1

2
)ε1 + (Ju − 1

2
)ε2 (6.63)

with Iu, Ju running over the rows and columns of the tableaux. The partition

function can then be written as

Zk =
∑
�Y

Resχ�Y ,i
zgaugek zmatter

k (6.64)

The relation
∑4

I=1 εI = 0 should be imposed only after the integral is performed.

The mass of the adjoint matter is parametrized by ε3,4 according to ε3 = madj,

ε4 = −madj − ε1 − ε2.

6.5 The integral: An Alternative derivation

Here we rederive the instanton partition function using localization in the ADHM

moduli space. For simplicity we restrict ourselves to the N = 2 case. The ADHM

manifold in this case is given by a U(k) quotient of the hypersurface defined by the

ADHM constraints

D� = [B1, B2] + IJ = 0

D� = [B1, B
†
1] + [B2, B

†
2] + II† − JJ† = ξ �k×k (6.65)

on �4k2+4kN parametrized by B1,2, I, J . This manifold admits a G = U(k)×U(N)×
SO(4) action. Parametrizing by χi, au, ε1,2 the U(1)k+N+2 Cartan subgroup of G,

the infinitesimal variations δξ = Q2 of the ADHM coordinates read

Q2I = (χi − au +
ε
2
)Iiu = 0

Q2J = (au − χi +
ε
2
)Jui = 0

Q2B� = (χi − χj + ε�)B�,ij = 0

Q2N� = (χi − χj + ε)N�,ij = 0

Q2N� = (χi − χj)N�,ij = 0 i �= j (6.66)

with ε = ε1 + ε2. Here we introduce the fermionic auxiliary variables N�,� (the

superpartners of D�,�) to account for the subtraction of the degrees of freedom

corresponding to the ADHM constraints.
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The solutions of (6.66) can be put in one to one correspondence with a set of n

Young tableaux (Y1, . . . Yn) with k =
∑

u ku boxes distributed between the Yu’s. The

boxes in a Yu diagram are labelled either by the instanton index Iu = 1, . . . , ku or

by a pair of integers Iu, Ju denoting the vertical and horizontal position respectively

in the Young diagram. The explicit solutions to (6.66) can then be written as

χi = χ�Y ,i = χ�Y ,u,Iu,Ju
= au + (Iu − 1

2
)ε1 + (Ju − 1

2
)ε2 (6.67)

and all components of I, J, B� vanishing except for those with zero Q2-eigenvalues,

i.e.

B1;I,J ;I+1,J ;B2;I,J ;I,J+1; Iu,I=J=1 (6.68)

These moduli are fixed by solving the ADHM constraint. To compute the SdetQ2,

it is convenient to first compute its trace

T = trM eiQ
2

(6.69)

Introducing

V =
∑
i

eiχ
�Y
i =

∑
(Iu,Ju)∈Yu

Tau T
−Ju+1
1 T−Iu+1

2

W =
n∑

u=1

Tau (6.70)

with T1,2 = eiε1,2 and Tau = eiau one can write

T = V ∗ × V × [T1 + T2 − T1T2 − 1] +W ∗ × V + V ∗ ×W × T1T2

=
n∑
u,v

∑
s∈Yj

(
TauvT

−hv(s)
1 T

vv(s)+1
2 + TavuT

hv(s)+1
1 T

−vu(s)
2

)
(6.71)

with auv = au − av. hu(s) (vu(s)) is the horizontal(vertical) distance from s till

the right (top) end of the u(v) diagram, i.e. the number of black (white) circles in

Fig.1.

The exponents in (6.71) are the eigenvalues of the operator Q2 which enters in

the localization formula. Using these eigenvalues, the partition function of N = 2

SYM for winding number k is

Zk =
∑
�Y

1

SdetQ2
=

∑
�Y

n∏
u,v=1

∏
s∈Yu

1

Euv(s)(ε− Euv(s))
(6.72)
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◦
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◦
s • •

Figure 1: Two generic Young diagrams denoted by the indices λ, λ̃ in the main text.

and

Euv(s) = auv − ε1hv(s) + ε2(vu(s) + 1) (6.73)

In presence of matter we write

Zk =
∑
�Y

z
�Y
gaugez

�Y
matter (6.74)

with

z
�Y
gauge =

n∏
u,v=1

∏
s∈Yu

1

Euv(s)(ε− Euv(s))

z
�Y
adj =

n∏
u,v=1

∏
s∈Yu

(Euv(s)−m)(Euv(s)− ε+m)

z
�Y
fund =

n∏
u=1

∏
s∈Yu

(χ(s) +m) (6.75)

6.6 k = 1, 2 explicit computations

6.6.1 N = 2 SYM with gauge group SU(2)

Here we present some explicit computations using the residue formulas (7.100,6.62)

k=1

The partition function read

Z1 =
ε

ε1ε2

∑
�Y

Res�Y

∏
u

1

(χ1 − au +
ε1+ε2

2
)(−χ1 + au +

ε1+ε2
2

)
(6.76)
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There are two poles in the upper half plane :

I) Y1 = , Y2 = •: χ1 = a1 +
1
2
ε

Z1,I = − 1

ε1ε2a12(a12 + ε)
(6.77)

II) Y1 = •, Y2 = : χ1 = a2 +
1
2
ε

Z1,II = − 1

ε1ε2a12(a12 − ε)
(6.78)

Altogether one finds

Z1 = − 2

ε1ε2(a212 − ε2)
(6.79)

k=2

The partition function read

Zk =

(
ε

ε1ε2

)2∑
�Y

Res�Y
χ2
12(χ

2
12 − ε2)

(χ2
12 − ε21)(χ

2
12 − ε22)

∏
i,u

1

(χ
�Y
i − au +

ε1+ε2
2

)(−χ�Y
i + au +

ε1+ε2
2

)

There are five poles in the upper half plane :

I) Y1 = , Y2 = •: χ1 = a1 +
1
2
ε, χ2 = a1 +

1
2
ε+ ε1

Z2,I = − 1

2ε21ε2(ε1 − ε2)a12(a12 + ε1)(a12 + ε1 + ε2)(a12 + 2ε1 + ε2)
(6.80)

II) Y1 = , Y2 = •: χ1 = a1 +
1
2
ε, χ2 = a1 +

1
2
ε+ ε2

Z2,II =
1

2ε22ε1(ε1 − ε2)a12(a12 + ε2)(a12 + ε1 + ε2)(a12 + ε1 + 2ε2)
(6.81)

III) Y1 = •, Y2 = : χ1 = a2 +
1
2
ε, χ2 = a2 +

1
2
ε+ ε1

Z2,III = − 1

2ε21ε2(ε1 − ε2)a12(a12 − ε1)(a12 − ε1 − ε2)(a12 − 2ε1 − ε2)
(6.82)

IV) Y1 = •, Y2 = : χ1 = a2 +
1
2
ε, χ2 = a2 +

1
2
ε+ ε2

Z2,V =
1

2ε22ε1(ε1 − ε2)a12(a12 − ε2)(a12 − ε1 − ε2)(a12 − ε1 − 2ε2)
(6.83)

V) Y1 = , Y2 = : χ1 = a1 +
1
2
ε, χ2 = a2 +

1
2
ε

Z2,V =
1

ε21ε
2
2(a

2
12 − ε21)(a

2
12 − ε22)

(6.84)
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Altogether one finds

Z2 =
2a212 − 8ε21 − 8ε22 − 17ε1ε2

ε21ε
2
2(a

2
12 − (ε1 + ε2)2)(a212 − (ε1 + 2ε2)2)(a212 − (2ε1 + ε2)2)

(6.85)

The prepotential

For the prepotential one finds

F = −ε1ε2 lnZ(q) = −ε1ε2Z1q +−ε1ε2(Z2 − 1
2
Z2

1)q + . . . (6.86)

=
2q

a212 − ε2
+

q2(5a212 + 7ε21 + 7ε22 + 16ε1ε2)

(a212 − (ε1 + ε2)2)(a212 − (ε1 + 2ε2)2)(a212 − (2ε1 + ε2)2)
+ . . .

=
2q

a212
+

5q2

a412
+O(ε2, q3) (6.87)

6.6.2 N = 2∗ SYM with gauge group SU(N)

Here we present some explicit calculations using the localization formulas (6.72,6.75).

It is useful to introduce the following definitions:

f(x) =
(x−m)(x+m− ε)

x(x− ε)
Tu(x) =

∏
v �=u

f(auv + x) (6.88)

In terms of these definitions we can rewrite:

Zk =
∑
�Y

N∏
w,w′=1

∏
s∈Yw

f(Eww′(s)) (6.89)

k=1

Yu = , Yv �=u = •. From the above definitions we have v(s) = h(s) = 0 for

w = w′ = u while v(s) = −1, h(s) = 0 for w′ �= w = u. Summing up over diagrams

of this kind one finds

Z1 =
∑
u

f(ε2)Tu(0) (6.90)

k=2

We have three diagrams:

I) Yu = , Yv = , Yw �=u,v = •:

ZI
2 =

1

2

∑
u�=v

f(ε2)
2f(auv + ε2)f(avu + ε2)

Tu(0)Tv(0)

f(auv)f(avu)
(6.91)
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The contribution Tu(0)
f(auv)

comes from the product in (6.89) with w,w′ �= u, v for which

h(s) = 0, v(s) = −1. The term w,w′ = u, v, i.e. h(s) = v(s) = 0 gives f(ε2) or

f(aαβ + ε2) in the case of w = w′ = u and w = u, w′ = v respectively. Similar

contributions come from terms with u↔ v exchanged.

II) Yu = , Yv �=u = •:

ZII =
∑
u

f(ε2)f(ε2 − ε1)Tu(0)Tu(−ε1) (6.92)

Now f(ε2)f(ε2 − ε1) comes from the terms in (6.89) with w = w′ = u i.e. v(s) =

0, h(s) = 0, 1, while the product over w′ �= w = u, v(s) = −1, h(s) = 0, 1 brings the

Tu contributions.

Finally the third diagram is the transposition of the one above and its contri-

bution can be read from (6.92) by exchanging ε1 ↔ ε2.

The prepotential

Setting ε1 = −ε2 = � one finds:

F1 = − lim
�→0

�
2Z1 = m2

∑
u

Tu

F2 = − lim
�→0

�
2

(
Z2 − 1

2
Z2

1

)
=
∑
u

(
1

4
m4TuT

′′
u −

3

2
m2T 2

u

)
+m4

∑
u �=v

TuTv

(
1

a2uv
− 1

2(auv −m)2
− 1

2(auv +m)2

)
(6.93)

with Tu = Tu(0). The pure N = 2 analog of formulae (6.90,6.92) can be simply

obtained by omitting m-dependent factors.

6.7 N = 4

The N = 4 case follows from N = 2 plus an adjoint matter sending the mass of

the adjoint to zero. This corresponds to take ε3 = 0, ε4 = −ε. Plugging into the

instanton partition function one finds that zgaugek cancels against zadj and one finds

Z(q) =
∑
�Y

q|
�Y | =

1∏∞
n=1(1− qn)N

(6.94)

In particular there are no correction to the prepotential as expected.
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6.8 Black hole counting

In this section we derive a microscopic formula for the partition function of a black

hole made out of D4-D2-D0 bound states wrapping a four cycle inside a CY. We will

restrict ourselves to the case where both the cycle and the CY are compact. The

lift of this brane system to M-theory is well known and a microscopic derivation

of the corresponding black hole entropy based on a two-dimensional (4, 0) SCFT

has been derived by Maldacena-Strominger-Witten. The aim of this section is to

test our instanton partition function formula against supergravity. We consider a

single D4-brane wrapping a very ample divisor P inside a CY. The conjugacy class

[P ] ∈ H2(CY,�) can be expanded as [P ] = pAαA with αA a basis in H2(CY,�).

According to [?] the black hole partition function is defined as

ZBH =
∑

Q0,QA

Ω(Q0, QA, p
A) e−Q0ϕ0−QAϕA

(6.95)

with Ω(Q0, QA, p
A) the multiplicity of a bound state of Q0 D0-branes, QA D2-branes

and a D4 brane wrapping P = pAΣA. ϕ0, ϕ
A are the D0,D2 chemical potentials.

D0,D2 branes can be thought of as instantons and fluxes respectively in the world-

volume theory of the D4-brane

Q0 = k =
1

8π2

∫
M

trF ∧ F QA =
1

2π

∫
trF ∧ αA (6.96)

Self-duality implies that QA>b+2
= 0.

The black hole partition function can be then read from the instanton partition

function formula

Z =
1

η̂(e−ϕ0)χ(P )

∑
QA∈�b+2 (P )

e−
1
12

DAB QA QB ϕ0−ϕA QA

=
∑

Q0,QA

Ω(Q0, QA, p
A) qQ0 e−ϕ

AQA (6.97)

with

χ(P ) =

∫
P

c2(P ) = 6DABCp
ApBpC + c2Ap

A

b+2 (P ) = 2DABCp
ApBpC + 1

6
c2Ap

A

DABC ≡ 1
6

∫
CY

αA ∧ αB ∧ αC c2A ≡
∫
CY

αA ∧ c2(CY )

CAB = −
∫
P

αA ∧ αB = −6DAB DAB ≡ DABC p
C

q = e−ϕ0 e−zA = e−CABϕB

(6.98)
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and CAB, DAB the inverse of CAB, DAB respectively.

Notice that (6.97) is the partition function of χ(P ) free bosons (b+2 of them living

in the lattice H2(P,�)) in two-dimensions. The black hole entropy follows from the

Cardy formula

SBH ≈ ln Ω(Q0, QA, p
A) ≈ 2π

√
1
6
χ(P )Q0,reg

= 2π
√
(DABCpApBpC + 1

6
c2ApA)(Q0 +

1
12
DABQAQB) (6.99)

with Q0,reg = Q0 +
1
12
DABQAQB the number of regular instantons coming from

the expansion of η̂−χ in (6.97). (6.99) agrees with the micro/macroscopic M5-

brane/supergravity results.

7 Saddle point analysis

For simplicity we take pure N = 2 SYM with gauge group SU(N) and τ = iτ2. We

write

Z(q) =
∑
k

qkZk =
∑
k

qk

k!

∫ k∏
i=1

dχi

2πi
eln zgaugek ≈

∑
k

∫ k∏
i=1

dχi

2πi
e

1
ε1ε2

Hk(χi) (7.100)

In the limit ε� → 0 one finds

Hk(χi) = ε1ε2

[∑
ij

ln

(
χij(χij + ε)

(χij + ε1)(χij + ε2)

)
−
∑
i

lnP (χi +
ε
2
)P (χi − ε

2
) + k ln q

]

≈
[
−ε21ε22

∑
ij

1

χ2
ij

− 2ε1ε2
∑
i

lnP (χi) + kε1ε2 ln q

]
(7.101)

Introducing the density function

ρ(x) = ε1ε2
∑
i

δ(x− χi) (7.102)

one can rewrite (7.101) as

Hk(ρ) = −
∫
dxdy

ρ(x)ρ(y)

(x− y)2
− 2

∫
dyρ(y) lnP (y) + ln q

∫
dyρ(y) (7.103)

The Saddle point equation becomes

dHk(ρ)

dρ(x)
= −2

∫
�

dy
ρ(y)

(x− y)2
− 2 lnP (x) + ln q = 0 (7.104)
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It is convenient to rewrite this equation as

dHk(ρ)

dρ(x)
= 2

∫
�

dyρ′′(y) ln |x− y| − 2 lnP (x) + ln q

= −
∫
�

dyf ′′(y) ln |x− y|+ ln q = 0 (7.105)

with

f ′′(x) = −2ρ′′(x) + 2
N∑

u=1

δ(x− au) (7.106)

i.e. 7

f(x) = −2ρ(x) +
N∑

u=1

|x− au| (7.107)

the profile function. Summarizing the leading profile function can be found by

solving the integral equation∫
�
dyf ′′(y) ln(x− y) = ln q with au = 1

2

∫
Σu
xf ′′(x) (7.108)

and Σu = [α−u , α
+
u ] an interval around x = au.

To find a solution of the saddle point equation is convenient to introduce the

holomorphic function (defined in the upper half plane)

y(z) = e
1
2

∫
�
dyf ′′(y) ln(z−y) (7.109)

that encodes all momenta of the profile function. More precisely, expanding around

z ≈ ∞ one can write

Φ′(z) = ∂z ln y(z) =
1
2

∞∑
J=0

1

zJ+1

∫
�

dy yJ f ′′(y) (7.110)

The saddle point equation can be written in terms of the y-function as

|y(z)|2 = q z ∈ [α−u , α
+
u ] (7.111)

This can be solved by taking

y(z) = y−(z) =
P

2
−
√
P 2

4
− q P 2 − 4q =

N∏
u=1

(z − α−u )(z − α+
u ) (7.112)

7Here we use d2|x|
dx2 = 2δ(x).
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with y±(z) the two roots of the equation

y(z)2 − P (z)y(z) + q = 0 (7.113)

Indeed for z ∈ [α−u , α
+
u ] the argument of the square root is negative and therefore

|y|2 = y+y− = q.

The prepotential:

q∂qF = −ε1ε2q∂q lnZ = −q∂qHk(f) = −q∂qf H′k(f) +
∫
�

f(y)dy

=

∫
�

f(y)dy = 1
2

∫
�

y2f ′′(y)dy =
N∑

u=1

e2u (7.114)

The right hand expression follows by plugging (7.112) into (7.110) and noticing that

q start to contribute to Φ′(z) at order z−2N−1. This implies in particular that

Φ′(z) =
2N∑
J=0

1

zJ+1

N∑
u=1

eJu +O(z−2N−1) (7.115)

i.e.

1
2

∫
�

yJf ′′(y)dy =
N∑

u=1

eJu J ≤ 2N (7.116)

for

P (z) =
∏
u=1

N(z − eu) (7.117)

8 N = 1 Superpotentials

8.1 SQCD with Nf = N − 1 flavors

In this section we consider a N = 1 U(N) gauge theory with Nf = N − 1 quark-

antiquark pairs of chiral fileds in the fundamental and antifundamental representa-

tions respectively. In the background of the instanton the effective action is given

by the moduli space integral

Seff =
∑
k

qkΛk(3N−Nf )

∫
dM e−Smod (8.118)

where the factor Λ2N+1 compensates for the dimension of the instanton moduli

space

M = {aμ, wuiα̇, Dc,Mα, λα̇, μui, μ
′
if} (8.119)
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with length dimension

[M] = 4k2 + 4kN − 6k2 − k2 + 3k2 − kN − kNf = k(3N −Nf ) (8.120)

We denote by Quf , Q̃
uf , u = 1, ...N , f = 1, ...Nf , the quark-antiquark superfields.

The classical moduli space of the gauge theory is defined by the D-flatness conditions

QufQ̃
†vf − Q̃†ufQ̃

vf = 0 (8.121)

For simplicity we take the quark-antiquark superfields in the almost diagonal form

Quf = Quδuf Q̃vf = Q̃vδvf QN = Q̃N = 0 (8.122)

Now let us consider the k = 1 instanton action in the quark-antiquark background

given by (8.122). The action in the instanton moduli space can be written as

Smod = w̄α̇uwβv

[
(QufQ

†fv + Q̃†ufQ̃
fv + iε)δβ̇α̇ +Dc (τ c)β̇α̇ δ

v
u

]
+λα̇(μ̄uwα̇u + w̄u

α̇μu)− i

2
μ̄u φ̃†uf μ

′
f −

i

2
μ̄′f φ

uf† μu

= w̄α̇uwβu

[
(2QuQ

u† + iε)δβ̇α̇ +Dc (τ c)β̇α̇

]
+λα̇(μ̄uwα̇u + w̄u

α̇μu)− i

2
μ̄f Q̃†f μ

′
f −

i

2
μ̄′f Q

f† μf (8.123)

The iε term is introduced for regularizing the Gaussian integral. The third line made

use of the D-flatness conditions and of (8.122). We notice that μf , μ̄f moduli are

soaked by the last two terms while λ-depend terms accounts for μN , μ̄N components.

After the Grassmanian integrals one finds∫
d2λ d2Nμ d2Nfμ′ e−Smod = detM † (w̄α̇

NwNα̇) e
−w̄α̇uwβ̇u

[
(2QuQu†+iε)δβ̇α̇+Dc (τc)β̇α̇

]

(8.124)

with M f ′
f = Quf , Q̃

uf ′
the Meson field. The w-integrals leads to∫

d4wN (w̄α̇
NwNα̇) e

−w̄α̇0wβ̇0(iεδ
β̇
α̇+Dc (τc)β̇α̇) =

2iε

( �D2 + ε2)2
(8.125)∫

d4Nfwfe
−w̄α̇fwβ̇f

[
(2QfQ

f†+iε)δβ̇α̇+Dc (τc)β̇α̇

]
=

1∏
f (
�D2 − (2QfQf† + iε)2)

Finally the D-integral leads at leading order in ε to∫
dD

iεD2

(D2 + ε2)2
∏

f (D
2 − 4(QfQf†)2)

= − 1

4
∏

f (QfQf†)2
= − 1

4detMM †(8.126)

36



Collecting all pieces one finds

Seff = Λ2N+1

∫
dM e−Smod = c

∫
d4xd2θ

Λ2N+1

detM(x, θ)
(8.127)

with c a constant.

8.2 Exotic prepotentials

Now we consider the effect of exotic instantons. Let us consider again the case

of N = 1 SQCD with gauge group Sp(N) and Nf quark-antiquark fundamentals.

This can be realized on D3-branes at a �2×�2 orientifold singularity with N0 = N ,

N1 = Nf , N2 = N3 = 0. Now let us consider the effect of a k = 1 instanton at the

node 1 of the quiver. Such an instanton carry a gauge group O(1) and therefore. no

λ-moduli survives the orientifold projection. The only moduli are then (aμ,Mα)i1j1

and μ′u0i1
. For k = 1 the action in the moduli space is simply

Smod = μ̄i1u0Qu0v0μ
v0i1 + μ̄i1u0Q̃

u0v0μv0i1 (8.128)

We notice that the integral over μ’s is different from zero only for a square matrix

μ, i.e. Nf = Nc. In this case, identifying as before (aμ,Mα)i1j1 with the spacetime

coordinates (xμ, θα) and integrating over μ’s one finds

Seff = Λ3−2N
∫
dM1 e

−Smod = cΛ3−2N
∫
d4xd2θ detM(x, θ) (8.129)

with

M1 = {aμ, Dc,Mα, μu0) [M] = 4− 6− 1 + 2N = 2N − 3 (8.130)

A Gamma matrices

In four dimensional Euclidean space we take

γn =

(
0 −iσn
iσ̄n 0

)
(A.131)

with

σm = (i�τ , 1) σ̄m = (−i�τ , 1) (A.132)
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In terms of these matrices one can write self and antiself-dual tensors

σmn = 1
4
(σmσ̄n − σnσ̄m) σ̄mn = 1

4
(σ̄mσn − σ̄nσm) (A.133)

satisfying

σmn = 1
2
εmnpqσpq σ̄mn = −1

2
εmnpqσ̄pq (A.134)

The self and antiself-dual tensors can be expressed in terms of the t’Hooft symbols

as

σmn = i
2
ηcmnτ

c σ̄mn = i
2
η̄cmnτ

c (A.135)

with

ηcAB = −ηcBA η̄cAB = −η̄cBA

ηcab = η̄cab = εcab ηcm4 = −η̄cm4 = δmc (A.136)

In six-dimensional Euclidean space we take

Γa =

(
0 Σa

Σ̄a 0

)
(A.137)

with

Σ̄a
AB = (ηcAB, iη̄

c
AB) Σ̄a

AB = (−ηcAB, iη̄
c
AB) c = 1, 2, 3 a = 1, ..6 (A.138)
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