
A brief introduction to GRID COMPUTING Stefano Cozzini

Democrito and SISSA/eLAB - Trieste

New challenges in Science

- Going further in scientific knowledge
 - New high sensitivity sensors and instruments
 - Globally distributed collaborations
- Delocalized knowledge
 - Scientific and technical knowledge is "distributed"
 - Laboratories are distributed
 - Scientific data are distributed

e-science

And In and A NAME AND ADDRESS OF A make on Advancement Perry And NAME OF THE OWNER & ADDRESS OF TAXABLE And annual star for anyot set with spell-bind-or papel/bin/der). s. a parate or thing that daw, non-internet a prospected special Property Pro-We find on the late out with colors made maspell-bound spellhound?, odd bound by or so if by a of date. In cash date (1991.01) stand sharing to sharing to a fact of saving watthe same of some of spins they compations on the same tag and the same starting the compations of the second of th status, prostokal w. 4 another uniform a speak who trevels at apor frage (spel/doug/), n. a spelling competition igh seat (10.4.2) must 4 -press _ group that, a persist of a read where holders police. the later which an available their first quest of storactions and somethy for and to had to see agreed, hidder traffic engras, why. a new property spatters a 1 as investor of good, 2. or most house it the role of prediction of a sense women a consequently increase in the cake of Station of the per plant a secol a plane tool op ! an 22 Annal and Annal and the state of some party and ball station were est, one issue to image and in the water of our first time to place proper + water speaking particular & stand or course for strate interval, it doe into of our which more than a strategies whereas a strategies of a strategiest of a strategiest of the Sunday of Concession, Name 100 or managements made and long. (1988) 40, Atlant. Ma Beating correct a place in manual **Real** and and includes A STREET NAME OF STREET, STREET, ST. 3 mar w

Spand

spathbind ispel?bind?, n.t., dowerd, dataform to have ar band by up as at if by a spath orackant entrance, taken mate. [1800-03 orac." + more, the and data form mark more) - spath?bind?ing-ty, of:

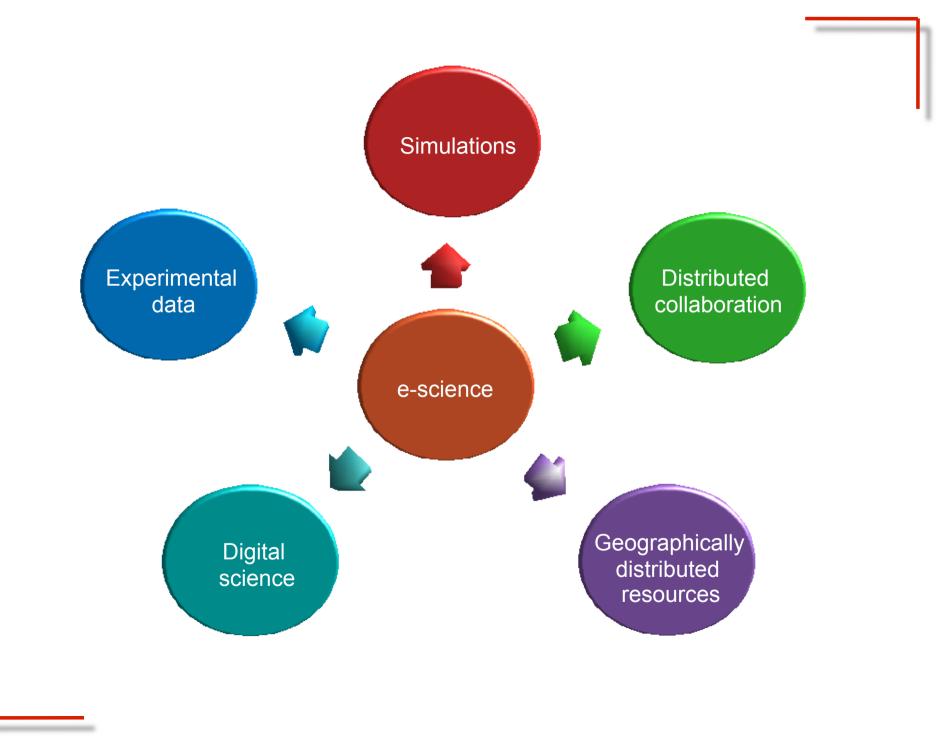
aparticipation and a powerful spectrar who can experiment that a participation of 1855-180, Amar., averaging + -apart

spall entranted entranced, or facthated is priles

spall' check'er, a computer program for checking the spalling of words is an electronic document Abar spalling check'er. [1580.85]

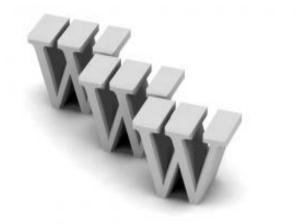
as one, the symmet, have been required to from phrase spill drive to outwall sty-

in 1. a person who spells words 2. selling: [1400.40; late Mill new arman


tapel'or di vi/dari, n. a reference it is alphabetical order to show mail-

the 1. the manner is wheth words the act of a spalar, 1000-30 late

spelling competition wost by the in-


"eScience is about global collaboration in key areas of science and the next generation of infrastructure that will enable it."

Dr.John Taylor, Director General of the Research Councils 1998-2003

Using internet to make science

- On-line publication paper/pre-prints (eg. babbage.sissa.it)
- CPU cycle scavenging (eg. <u>Seti@home</u>, Condor)
- Sloan Digital Sky Survey: online database of astronomical data http://www.sdss.org/

A new paradigm

<u>www</u>

share documents in transparent way Accessible through browser Share resources in transparent way Accessible through "middleware"

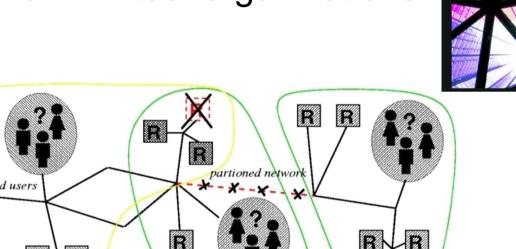
What is your paradigm?

Parallel Computing single systems with many processors working on same problem **Distributed Computing** many systems loosely coupled by a scheduler to work on related problems

Grid Computing

many systems tightly coupled by software, perhaps geographically distributed, to work together on single problems or on related problems

What is Grid Computing?


11

The Grid

"Resource sharing & coordinated problem solving in dynamic ... virtual organizations"

- R R B partioned network dispersed users RN R R R R 8 VO-B VO-A
- Enable integration of distributed service & resources 1.
- Using general-purpose protocols & infrastructure 2.
- To achieve useful qualities of service

"The Anatomy of the Grid", Foster, Kesselman, Tuecke, 2001

lan Foster and Carl K

The Grid Problem

- Flexible, secure, coordinated sharing of computation among dynamic collections of individuals, institutions, and resources
- Enable communities ("virtual organizations") to share geographically distributed resources as they pursue common goals -- assuming the absence of...
 - central location
 - central control
 - omniscience
 - existing trust relationships

The Anatomy of the Grid: Enabling Scalable Virtual Organizations. I. Foster, C. Kesselman, S. Tuecke. *International J. Supercomputer Applications*, 15(3), 2001.

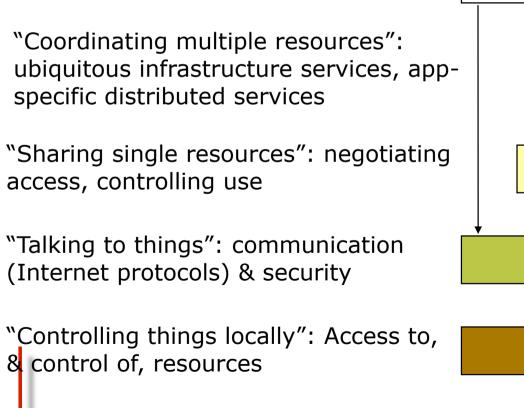
The Programming Problem

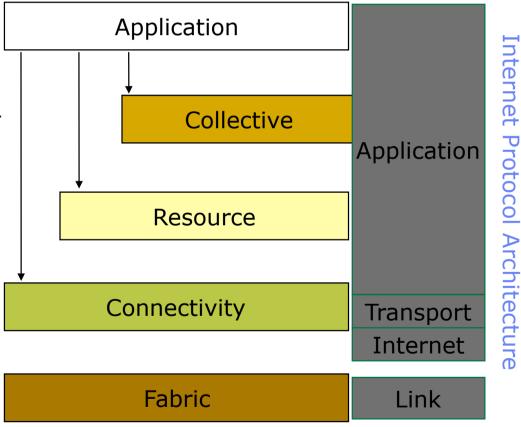
- Applications require resources (compute power, storage, data, instruments, displays) at many sites for many users.
- Some requirements:
 - Abstractions and models to increase speed/robustness/ etc. of development
 - Tools to ease application development and diagnose common problems, ease deployment
 - Code/tool sharing to allow reuse of code components developed by others

Grid must support computational workflows

- Locate "suitable" computers
- Authenticate with appropriate sites
- Allocate resources on those computers
- Initiate computation on those computers
- Configure those computations
- Select "appropriate" communication methods
- Compute with "suitable" algorithms
- Access data files, return output
- Respond "appropriately" to resource changes

Grid Requirements


- identity & authentication
- authorization & policy
- resource/service discovery
- resource allocation
- (co-)reservation, workflow
- remote data access


- rapid data transfer
- monitoring
- intrusion detection
- resource management
- accounting
- fault management
- system evolution
- and more...

Grid Computing - Functions

- Grid computing must provide typically these basic functions (Foster/Kesselman)
 - resource discovery and information collection & publishing
 - data management on and between resources
 - process management on and between resources
 - common security mechanism underlying the above
- In addition, it should include:
 - process and session recording/accounting

Layered Grid Architecture (By Analogy to Internet Architecture)

Slide courtesy of C. Kessleman Cal(IT)2 Presentation

Layered Grid Architecture

- Fabric Layer provides the local services of a resource:
 - computational, storage, network
- Connective Layer core communication and authentication protocols
 - Enables exchange of data between fabric layer resources
 - Security and authentication important here

Layered Grid Architecture (cont.)

- Resource Layer enables resource sharing
 - Builds on connectivity layer to control and access resources (Ex: data servers)
- Collective Layer coordinates interactions across multiple resources
 - Ties multiple resources and services together
 - (Ex: metacatalogues)
- Application Layer user applications use collective, resource, and connective layers to perform grid operations in a virtual organization

Some Solutions

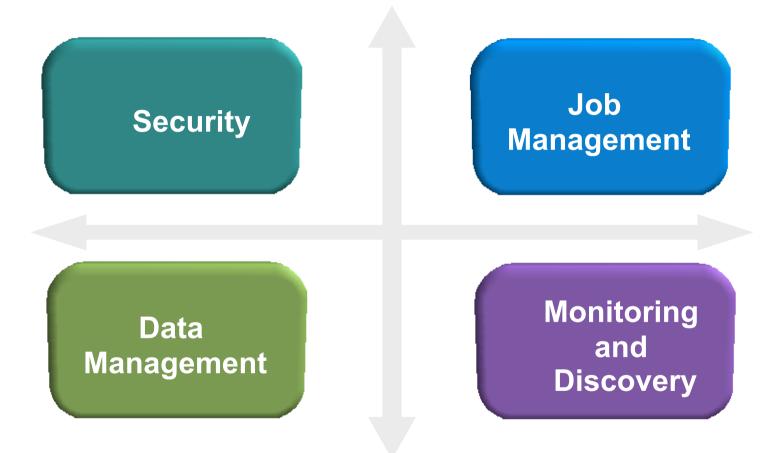
- Middleware Toolkits:
 - Condor
 - Globus Toolkit
 - Legion/Avaki
 - Glite
 - Garuda..
 - Condor (now Sun Grid Engine)

- Higher Level Toolkits
 - JavaCoG
 - GridPortal Toolkit, Grid
 Portal Development Toolkit
 (GPDK)
 - Vine
 - Condor-G
 - SGE

- Unicore
- Arc

NEED OF COMMON STANDARD AND INTEROPERABILITY SOLUTIONS

Middleware: gLite


- gLite is the middleware for grid computing born from the collaborative efforts from academic and industrial research centers as part of the EGEE Project.
- The gLite Grid services follow a Service Oriented Architecture
 - facilitate interoperability among Grid services
 - allow easier compliance with upcoming standards
- Architecture is not bound to specific implementations
 - services are expected to work together
 - services can be deployed and used independently
- The gLite service decomposition has been largely influenced by the work performed in the LCG project

Grid Resource

- Storage systems
- Computer clusters
- HPC clusters
- Supercomputers (IBM SP, blue gene, etc)
- Databases
- Keyword: heterogeneous as regards hardware and software

MW generic services

Explore gLite middleware

- Bottom-up
 - From low level services to global services
 - From fabric to GRID
 - From Unix user to GRID user

The Resources

- Group of "sites" glued by the Middleware
- Sites are homogeneous as regards OS and SW:
 - Scientific Linux cern 4
- Sites are heterogeneous as regards HW:
 - x86/x86_64 arch
- Some collective services: WMS, DMS etc.

A Grid Site

- Computing Element
- Storage Element
- Worker nodes

- Master node
- Storage system
- Computing nodes

• Scheduler+queue system (torque+maui, LSF, etc.

The Low level services

Security

Grid is a highly complex system

- Authentication: establishing identity
- Authorization: establishing rights
- Message protection

Passwords are not scalable and secure!!!

What do we require to security?

- Users point of view
 - Easy to use, transparent, single-sign on, no password sharing
- Administrators point of view
 - Define local access control
 - Define local polices
- The Grid Security Infrastructure
 - X509 digital certificates

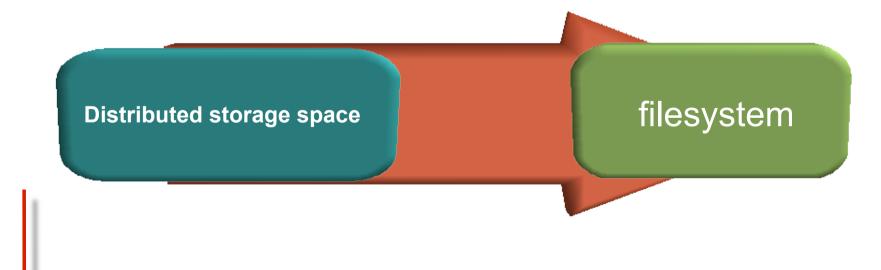
Monitor and discovery service

- What is the status of a resource?
- What are the available resources?

Data Management

- Requirements
 - Fast: as fast as networks and protocols allow
 - Secure: server must only share files with strongly authenticated clients and no passwords in the clear or similar
 - Robust: Fault tolerant, time-tested protocol

High Level Services


Information system

- Which resources are available?
- Where are them?
- What is their status?
- How can I optimize their use?

We need a general information infrastructure: Information System

Data Management

- Where are data/files?
- Which data/file exist?
- How can I reach it?
- Are they accessible by others?
- ex. LFC file catalogue

Applications for Grid computing

- Computation intensive
 - Large-scale simulation and analysis (e.g. atomistic simulations)
 - Engineering (parameter studies, optimization model)
- Data intensive
 - Experimental data analysis (e.g., H.E.P.)
 - Image & sensor analysis (climate)
- Distributed collaboration
 - Online instrumentation (microscopes, x-ray)
 - Remote visualization (climate studies, biology)

Building your own computational infrastructure

- Open source software + commodity off the shelf hardware provides now tools to build low cost HPC infrastructure
 - based on clusters
- GRID infrastructures are just two clicks away
 - they can provide a looot of resources

Which computational infrastructure do you want?

Elements of a computational infrastructure

- Hardware
 - The basic bricks
- Software
 - To make hardware usable
- People
 - installers/sys adm. /planners/ users etc..
- Problems to be solved
 - Any action in building such an infrastructure should be motivated by real needs

Which paradigm/infrastructure for your problem ?

- HPC infrastructure:
 - Hpc systems + high performance network to link them together
- Grid Computing infrastructures :
 - many systems tightly coupled by software, perhaps geographically distributed, to work together on single problems or on related problems

Not an "either/or" question

- Each addresses different needs
- Each are part of an integrated solution

Which HPC/GRID infrastructure do I need ?

- Which applications ?
 - Parallel
 - Tightly coupled
 - Loosely coupled
 - Embarrassingly
 - Serial
 - Memory / I/O requirements
- Budget considerations
- Time to solution considerations

Summing up

- Modern Science requires a large amount of computing resources and extended collaboration
- GRID computing address this requirement envision transparent access to resources and dynamic virtual organization interacting space
- HPC and GRID computing are not mutually exclusive but can be both used to address computational resources in a transparent way.