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Quantum simulation of matter at the nanoscale

• Density-Functional Theory (DFT) (P. Hohenberg, W. Kohn, and

L. Sham, 1964-65)

• Pseudopotentials (J.C. Phillips, M.L. Cohen, M. Schlüter, D.

Vanderbilt and many others, 1960-2000)

• Car-Parrinello and other iterative techniques (SISSA 1985, and

many other places since)

Sometimes referred to as The Standard Model of materials science
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New materials

Most common atomic

configurations in

amorphous CdTeOx,

x = 0.2; work done in

collaboration with E.

Menendez



New devices

(organic-inorganic semiconductor heterojunction, phtalocyanine over

TiO2 anatase surface; with G. Mattioli, A. Amore, R. Caminiti, F.

Filippone)



Nanocatalysis

(3 Rh atoms and 4 CO molecules on graphene; with S. Furlan)



Biological systems

Metal-β-amyloid interactions; with V. Minicozzi, S. Morante,G. Rossi



ab initio simulations
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Kohn-Sham 

Hamiltonian
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Kohn & Sham

HKSφv = ǫvφv

Kohn-Sham equations from 

functional minimization
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The tricks of the trade

• expanding the Kohn-Sham orbitals into a suitable basis set turns

DFT into a multi-variate minimization problem, and the Kohn-

Sham equations into a non-linear matrix eigenvalue problem

• the use of pseudopotentials allows one to ignore chemically inert

core states and to use plane waves

• plane waves are orthogonal and the matrix elements of the

Hamiltonian are usually easy to calculate; the completeness of

the basis is easy to check

• plane waves allow to efficiently calculate matrix-vector products

and to solve the Poisson equation using Fast Fourier Transforms

(FFTs)



The tricks of the trade II

• plane waves require supercells for treating finite (or semi-infinite)

systems

• plane-wave basis sets are usually large: iterative diagonalization or

global minimization

• summing over occupied states: special-point and Gaussian-

smearing techniques

• non-linear extrapolation for self-consistency acceleration and

density prediction in Molecular Dynamics

• choice of fictitious masses in Car-Parrinello dynamics

• . . .



Accuracy vs. Approximations
Theoretical approximations / limitations:

• the Born-Oppenheimer approximation

• DFT functionals (LDA, GGA, ...)

• pseudopotentials

• no easy access to excited states and/or quantum dynamics

Numerical approximations / limitations

• finite/limited size/time

• finite basis set

• differentiation / integration / interpolation



Requirements on effective software
for quantum simulations at the nanoscale

• Challenging calculations stress the limits of available computer

power: software should be fast and efficient

• Diffusion of first-principle techniques among non-specialists

requires software that is easy to use and error-proof

• Introducing innovation requires new ideas to materialize into new

algorithms through codes: software should be easy to extend and
to improve

• Complex problems require a mix of solutions coming from different

approaches and methods: software should be interoperable with
other software



The Quantum ESPRESSO distribution

The Democritos National Simulation Center, based in Trieste, is

dedicated to atomistic simulations of materials, with a strong

emphasis on the development of high-quality scientific software

Quantum ESPRESSO is the result of a Democritos initiative, in

collaboration with researchers from many other institutions (SISSA,

ICTP, CINECA Bologna, Princeton, MIT, EPF Lausanne, Oxford,

Paris IV...)

Quantum ESPRESSO is a distribution of software for atomistic

calculations based on electronic structure, using density-functional

theory, a plane-wave basis set, pseudopotentials.

Quantum ESPRESSO stands for Quantum opEn-Source Package for

Research in Electronic Structure, Simulation, and Optimization



Computer requirements of quantum simulations

Quantum ESPRESSO is both CPU and RAM-intensive.

Actual CPU time and RAM requirements depend upon:

• size of the system under examination: CPU ∝ N2÷3, RAM ∝ N2,

where N = number of atoms in the supercell or molecule

• kind of system: type and arrangement of atoms, influencing the

number of plane waves, of electronic states, of k-points needed

• desired results: computational effort increases from simple self-

consistent (single-point) calculation to structural optimization to

reaction pathways, molecular-dynamics simulations

CPU time mostly spent in FFT and linear algebra.

RAM mostly needed to store wavefunctions (Kohn-Sham orbitals)



Typical computational requirements

Basic step: self-consistent ground-state DFT electronic structure.

• Simple crystals, small molecules, up to ∼ 50 atoms – CPU seconds

to hours, RAM up to 1-2 Gb: may run on single PC

• Surfaces, larger molecules, complex or defective crystals, up to a

few hundreds atoms – CPU hours to days, RAM up to 10-20 Gb:

requires PC clusters or conventional parallel machines

• Complex nanostructures or biological systems – CPU days to weeks

or more, RAM tens to hundreds Gb: massively parallel machines

Main factor pushing towards parallel machines is excessive CPU time;

but when RAM requirements exceed the RAM of single machine, one

is left with parallel machines as the only choice



Quantum ESPRESSO and High-Performance
Computing

A considerable effort has been devoted to Quantum ESPRESSO

parallelization. Several parallelization levels are implemented; the

most important, on plane waves, requires fast communications.

Recent achievements (mostly due to Carlo Cavazzoni, CINECA):

• realistic calculations (e.g 1532-atom porphyrin-functionalized

nanotube) on up to ∼ 5000 processors

• initial tests of realistic calculations on up to ∼ 65000 processors

using mixed MPI-OpenMP parallelization

Obtained via addition of more parallelization levels and via careful

optimization of nonscalable RAM and computations.



Quantum ESPRESSO and the GRID

Large-scale computations with Quantum ESPRESSO require large

parallel machines with fast communications: unsuitable for GRID.

BUT: often many smaller-size, loosely-coupled or independent

computations are required. A few examples:

• the search for transition pathways (Nudged Elastic Band method);

• calculations under different conditions (pressure, temperature)

or for different compositions, or for different values of some

parameters;

• the search for materials having a desired property (e.g. largest

bulk modulus, or a given crystal structure);

• full phonon dispersions in crystals



Hand-made GRID computing



Vibration modes (phonons) in crystals

Phonon frequencies ω(q) are determined by the secular equation:

‖ C̃αβ
st (q)−Msω

2(q)δstδαβ ‖= 0

where C̃αβ
st (q) is the matrix of force constants for a given q



Calculation of phonon dispersions

• The force constants C̃αβ
st (q) are calculated for a uniform grid of

nq q-vectors, then Fourier-transformed to real space

• For each of the nq q-vectors, one has to perform 3N linear-

response calculations, one per atomic polarization; or equivalently,

3ν calculations, one per irrep (symmetrized combinations of atomic

polarizations, whose dimensions range from 1 to a maximum of 6)

Grand total: 3νnq calculations, may easily become heavy. But:

• Each C̃αβ
st (q) matrix is independently calculated, then collected

• Each irrep calculation is almost independent except at the end,

when the contributions to the force constant matrix are calculated

Perfect for execution on the GRID!



A realistic phonon calculation on the GRID

γ-Al2O3 is one of the phases of Alumina – a material of technological

interest, with a rather complex structure. Can be described as a

distorted hexagonal cell with a (simplified) unit cell of 40 atoms:

The calculation of the full phonon dispersion requires 120×nq linear-

response calculations, with nq ∼ 10, each one costing as much as

a few times a self-consistent electronic-structure calculation in the

same crystal: several weeks on a single PC.





Practical implementation

Only minor changes needed in the phonon code, namely

• possibility to run one q-vector at the time (already there)

• possibility to run one irrep (or one group of irreps) at the time and

to save partial results: a single row or a group of rows of the force

constant matrix (a few Kb of data)

Python server-client application, written by Riccardo di Meo, takes

care of dispatching jobs and of collecting results (uses XMLRPC).

3000 jobs submitted in chunks of 500: clients contact back the

server, receive input data and starting data files (hundreds of Mb).

Jobs lost in cyberspace (∼ 60% of all contacted servers! of which 30-

40% due to failure in downloading starting data files) are resubmitted.



Execution on the GRID

Resources spent on the GRID (compchem Virtual Organization):

cumulative CPU time as a function of wall time, for three different

distributions of irreps per CPU (1, 4, 6 resp. for grid1, grid2, grid3)



Number of computed irreps and of clients present over time



Final result

Phonon dispersions, with TO-LO

splitting, along special line Γ −M .

21× 1× 1 q-vector grid (nq = 11).

Ultrasoft pseudos, 45Ry cutoff for

wavefunctions and 360Ry for charge

density. Brillouin Zone sampling

with 221 Monkhorst-Pack grid.

a=5.579Å, b=5.643Å, c=13.67Å.

âb = 120o, âc = 90o, b̂c = 89.5o.



Comments and Conclusion

• A realistic application of Quantum ESPRESSO to first-principle

calculations at the nanoscale was demonstrated on the GRID

• Results produced in a relatively short time in spite of a rather

high job failure rate: GRID can be competitive with conventional

High-Performance Computers on much cheaper hardware

Needed for larger-scale calculations:

• Possibility to select parallel machines (with MPI), or large multicore

machines (with OpenMP), to reduce RAM bottlenecks
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