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Quantum simulation of matter at the nanoscale

e Density-Functional Theory (DFT) (P. Hohenberg, W. Kohn, and
L. Sham, 1964-65)

e Pseudopotentials (J.C. Phillips, M.L. Cohen, M. Schliter, D.
Vanderbilt and many others, 1960-2000)

e Car-Parrinello and other iterative techniques (SISSA 1985, and
many other places since)

Sometimes referred to as The Standard Model of materials science



the saga of time and length scales
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Most common atomic
configurations in
amorphous CdTeO,,
xr = 0.2: work done in
collaboration with E.
Menendez

New materials
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New devices

(organic-inorganic semiconductor heterojunction, phtalocyanine over
TiO5 anatase surface; with G. Mattioli, A. Amore, R. Caminiti, F.
Filippone)



Nanocatalysis
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(3 Rh atoms and 4 CO molecules on graphene; with S. Furlan)



Biological systems

Metal-3-amyloid interactions; with V. Minicozzi, S. Morante,G. Rossi
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density functional theory
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Kohn-Sham equations from
functional minimization
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The tricks of the trade

expanding the Kohn-Sham orbitals into a suitable basis set turns
DFT into a multi-variate minimization problem, and the Kohn-
Sham equations into a non-linear matrix eigenvalue problem

the use of pseudopotentials allows one to ignore chemically inert
core states and to use plane waves

plane waves are orthogonal and the matrix elements of the
Hamiltonian are usually easy to calculate; the completeness of
the basis is easy to check

plane waves allow to efficiently calculate matrix-vector products

and to solve the Poisson equation using Fast Fourier Transforms
(FFTs)



The tricks of the trade Il

plane waves require supercells for treating finite (or semi-infinite)
systems

plane-wave basis sets are usually large: iterative diagonalization or
global minimization

summing over occupied states: special-point and Gaussian-
smearing techniques

non-linear extrapolation for self-consistency acceleration and
density prediction in Molecular Dynamics

choice of fictitious masses in Car-Parrinello dynamics



Accuracy vs. Approximations

Theoretical approximations / limitations:

e the Born-Oppenheimer approximation

e DFT functionals (LDA, GGA, ...)

e pseudopotentials

e no easy access to excited states and/or quantum dynamics
Numerical approximations / limitations

e finite/limited size/time

e finite basis set

e differentiation / integration / interpolation



Requirements on effective software
for quantum simulations at the nanoscale

e Challenging calculations stress the limits of available computer
power: software should be fast and efficient

e Diffusion of first-principle techniques among non-specialists
requires software that is easy to use and error-proof

e Introducing innovation requires new ideas to materialize into new
algorithms through codes: software should be easy to extend and
to improve

e Complex problems require a mix of solutions coming from different
approaches and methods: software should be interoperable with
other software



The Quantum ESPRESSO distribution

The Democritos National Simulation Center, based in Trieste, is
dedicated to atomistic simulations of materials, with a strong
emphasis on the development of high-quality scientific software

Quantum ESPRESSO is the result of a Democritos initiative, in
collaboration with researchers from many other institutions (SISSA,

ICTP, CINECA Bologna, Princeton, MIT, EPF Lausanne, Oxford,
Paris IV...)

Quantum ESPRESSO is a distribution of software for atomistic
calculations based on electronic structure, using density-functional
theory, a plane-wave basis set, pseudopotentials.

Quantum ESPRESSO stands for Quantum opEn-Source Package for
Research in Electronic Structure, Simulation, and Optimization



Computer requirements of quantum simulations

Quantum ESPRESSO is both CPU and RAM-intensive.
Actual CPU time and RAM requirements depend upon:

e size of the system under examination: CPU o« N?73, RAM < N?,
where N = number of atoms in the supercell or molecule

e kind of system: type and arrangement of atoms, influencing the
number of plane waves, of electronic states, of k-points needed

e desired results: computational effort increases from simple self-
consistent (single-point) calculation to structural optimization to
reaction pathways, molecular-dynamics simulations

CPU time mostly spent in FFT and linear algebra.
RAM mostly needed to store wavefunctions (Kohn-Sham orbitals)



Typical computational requirements

Basic step: self-consistent ground-state DFT electronic structure.

e Simple crystals, small molecules, up to ~ 50 atoms — CPU seconds
to hours, RAM up to 1-2 Gb: may run on single PC

e Surfaces, larger molecules, complex or defective crystals, up to a
few hundreds atoms — CPU hours to days, RAM up to 10-20 Gb:
requires PC clusters or conventional parallel machines

e Complex nanostructures or biological systems — CPU days to weeks
or more, RAM tens to hundreds Gb: massively parallel machines

Main factor pushing towards parallel machines is excessive CPU time;
but when RAM requirements exceed the RAM of single machine, one
is left with parallel machines as the only choice



Quantum ESPRESSO and High-Performance
Computing

A considerable effort has been devoted to Quantum ESPRESSO
parallelization. Several parallelization levels are implemented; the
most important, on plane waves, requires fast communications.

Recent achievements (mostly due to Carlo Cavazzoni, CINECA):

e realistic calculations (e.g 1532-atom porphyrin-functionalized
nanotube) on up to ~ 5000 processors

e initial tests of realistic calculations on up to ~ 65000 processors
using mixed MPI-OpenMP parallelization

Obtained via addition of more parallelization levels and via careful
optimization of nonscalable RAM and computations.



Quantum ESPRESSO and the GRID

Large-scale computations with Quantum ESPRESSO require large
parallel machines with fast communications: unsuitable for GRID.
BUT: often many smaller-size, loosely-coupled or independent
computations are required. A few examples:

e the search for transition pathways (Nudged Elastic Band method);

e calculations under different conditions (pressure, temperature)
or for different compositions, or for different values of some
parameters;

e the search for materials having a desired property (e.g. largest
bulk modulus, or a given crystal structure);

e full phonon dispersions in crystals



Hand-made GRID computing
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ScrerCvens

Figure 1: Example of a conventional cubic unit cell for I-42d cristobalite. The small dark spheres
(red online) indicate O atoms, while the large grey (green online) and small light (white online)
spheres represent Si and C atoms respectively. The positions of C/Si atoms are labeled A to H (see
also Table I); the figure shows a representative structure ( g ) at a 50-50 Si-C concentration.



Vibration modes (phonons) in crystals
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Phonon frequencies w(q) are determined by the secular equation:
| G5 (@) — Mw?(@)dsibag ||= 0

where ézﬁ(q) is the matrix of force constants for a given q



Calculation of phonon dispersions

e The force constants C%’(q) are calculated for a uniform grid of
n, q-vectors, then Fourier-transformed to real space

e For each of the n, qg-vectors, one has to perform 3N linear-
response calculations, one per atomic polarization; or equivalently,
3v calculations, one per irrep (symmetrized combinations of atomic
polarizations, whose dimensions range from 1 to a maximum of 6)

Grand total: 3vn, calculations, may easily become heavy. But:

e Each C%’(q) matrix is independently calculated, then collected

e Each irrep calculation is almost independent except at the end,
when the contributions to the force constant matrix are calculated

Perfect for execution on the GRID!



A realistic phonon calculation on the GRID

~v-Al;0O3 is one of the phases of Alumina — a material of technological
interest, with a rather complex structure. Can be described as a
distorted hexagonal cell with a (simplified) unit cell of 40 atoms:
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The calculation of the full phonon dispersion requires 120 x n, linear-
response calculations, with n, ~ 10, each one costing as much as
a few times a self-consistent electronic-structure calculation in the
same crystal: several weeks on a single PC.
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Practical implementation

Only minor changes needed in the phonon code, namely

e possibility to run one g-vector at the time (already there)

e possibility to run one irrep (or one group of irreps) at the time and
to save partial results: a single row or a group of rows of the force
constant matrix (a few Kb of data)

Python server-client application, written by Riccardo di Meo, takes
care of dispatching jobs and of collecting results (uses XMLRPC).

3000 jobs submitted in chunks of 500: clients contact back the
server, receive input data and starting data files (hundreds of Mb).

Jobs lost in cyberspace (~ 60% of all contacted servers! of which 30-
40% due to failure in downloading starting data files) are resubmitted.



Execution on the GRID
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Final result

Phonon dispersions, with TO-LO
splitting, along special line I' — M.
21 x 1 x 1 q-vector grid (nq = 11).

Ultrasoft pseudos, 45Ry cutoff for
wavefunctions and 360Ry for charge
density.  Brillouin Zone sampling
with 221 Monkhorst-Pack grid.
a=5.579A, b=5.643A, c=13.67A.

ab = 120°, Gc = 90°, be = 89.5°. 00

Frequency (cm"‘)




Comments and Conclusion

e A realistic application of Quantum ESPRESSO to first-principle
calculations at the nanoscale was demonstrated on the GRID

e Results produced in a relatively short time in spite of a rather
high job failure rate: GRID can be competitive with conventional
High-Performance Computers on much cheaper hardware

Needed for larger-scale calculations:

e Possibility to select parallel machines (with MPI), or large multicore
machines (with OpenMP), to reduce RAM bottlenecks
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