

EU-India collaborations in molecular and materials science

Steven Blundell CEA-Grenoble, France

inac.cea.tr

Outline

Collaborations between Univ. Pune (Prof. Dilip Kanhere) and CEA-Grenoble, France 2000–present

Funded by: IFCPAR (2000–2003, 2004–2008) (Indo-French Centre for the

Promotion of Advanced Research)

EU-IndiaGrid2 (2010-)

Collaborators:

Prof. D. G. Kanhere (Univ. Pune, India) Dr. Kavita Joshi Soumyajyoti Haldar (student) Dr. Sajeev Chacko (now Jawaharlal Nehru Univ., New Delhi) Dr. Utpal Sarkar (now Assam University)

- Atomic clusters
 - structure
 - thermodynamics and melting
 - effect of substrate
- Electronic structure of quantum dots
 - Wigner molecules

Clusters: methodology

- Density functional theory
- Ab initio molecular dynamics

Clusters: properties can differ from bulk

- Ab initio statistical mechanics (melting)
 - sample ionic phase space (microcanonical or canonical MD, or Monte-Carlo)
 - extract classical ionic density of states $\Omega(E)$ (multihistogram fit)
 - thermodynamic averages

Melting of Na clusters

Aim: to understand the pattern of *size-dependent* (N = 50-300) melting temperatures measured by Haberland and co-workers (Nature, 1997)

- Find lowest-energy structures at *T* = 0 K ('basin hopping' with model potentials, local minimization with DFT)
- Large-scale *ab initio* (DFT) molecular dynamics simulations (1–2 ns per cluster size)
- Statistical analysis of data: classical density of states, entropy, specific heat, etc. (multiple histogram analysis, with isokinetic sampling of phase space)

TABLE I. Theoretical and experimental melting temperatures in Na clusters.

N	KS	Expt.	SMA^{a}	$\rm SMA^b$	DB
55	280	290	175	162	190
92	195	210	170	133	240
142	290	270	240	186	270

First principles calculations of melting temperatures for free Na clusters *S. Chacko, D. G. Kanhere and S. A. Blundell*, Phys. Rev. B **71**, 155407 (2005)

Steven Blundell - Direction des Sciences de la Matière

Thermal properties of Si and Sn nanoparticles

Finite-temperature behavior of small Si and Sn clusters: an *ab initio* molecular dynamics study *S. Krishnamurty, K. Joshi, D. G. Kanhere and S. A. Blundell*, Phys. Rev. B **73**, 045419 (2006)

Ga clusters: "Magic melters"

Thermodynamics of transition-metal clusters on a substrate

U. Sarkar and S. Blundell, Phys. Rev. B 79, 125441 (2009)

Motivation: transition-metal clusters act as catalysts for the growth of carbon nanotubes

Semiconductor quantum dots

- nm sized region where carrier electrons (holes) are confined by electrostatic fields
- Examples: semiconductor heterostructures, vertical and lateral arrangements

Ζ

Steven Blundell - Direction des Sciences de la Matière

Artificial atoms

- Typical de Broglie wavelength in a semiconductor ~ 10 nm
- Confinement on nm scale → discrete energy levels
- Lateral dimensions may be controlled experimentally
- Shell effects

(calculated by spin-density functional theory)

10

Configuration interaction (CI)

• Construct many-electron basis of Slater determinants (with given S_z and optionally L_z)

Full CI for *N* = 6 at low electronic density: low-lying states

S. A. Blundell and S. Chacko, Phys. Rev. B 81, 121104(R) (2010)

	circular parabolic confining potential	$r_{s} = 12 a_{0}^{*}$	Units: Ha*	
	^{1}S	^{3}P	⁷ S	
Zeroth	0.96757	0.96454	0.96170	
Singles	-0.01691(3)	-0.01350(3)	-0.01123(2)	
Doubles	-0.00672(1)	-0.00649(1)	-0.00558(1)	
Triples	-0.00153(1)	-0.00142(4)	-0.00109(1)	
Quadruples	-0.00027(2)	-0.00024(2)	-0.00018	
Quintuples	-0.00004(2)	-0.00002(2)	-0.00002(2)	
Sextuples	0.00000	0.00000	0.00000	
TOTAL	0.94211(6)	0.94287(6)	0.94360(4)	
DMC(2007	$)^{1} 0.94258(1)$	0.94379(1)	0.94363(1)	
CI-SHO(20)	006) ² 0.948	0.949	0.950	
PIMC(1999)) ³	0.9433(3)	0.9441(3)	

¹ A. Ghosal, A. D. Güçlü, C. J. Umrigar, D. Ullmo, and H. U. Baranger, Phys. Rev. B (2007); Nature Phys. (2006) Variational + Diffusion Monte Carlo (fixed-node approximation)

 $r_s \le 18 a_0$, lowest-energy state with a given symmetry (L_z , S)

- ² M. Rontani, C. Cavazzoni, D. Bellucci, and G. Goldoni, J. Chem. Phys. (2006) CI with simple-harmonic-oscillator basis set
- ³ R. Egger, W. Hausler, C. H. Mak, and H. Grabert, Phys. Rev. Lett. (1999) Path-integral Monte-Carlo

Wigner molecules

• Low electron densities: electrons become localized into an 'electron molecule'

• Example with CI methods: N = 4, $r_s = 15 a_0^*$

Excited states of Wigner molecules: classical limit

rotational

vibrational (normal modes, w_a)

spin

isomeric

• Effective Hamiltonian (classical limit, one isomer)

$$H_{\text{eff}} = \frac{\hbar^2 L_z^2}{2I} + \sum_a (\hbar \omega_a) n_a + \sum_{i>j}^N J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$$

Excited states of Wigner molecules: CI

S. A. Blundell and S. Chacko, Phys. Rev. B 81, 121104(R) (2010)

- S-wave states ($L_z = 0$)
- Non-Born-Oppenheimer ordering of vibrational and isomeric excited states

Steven Blundell - Direction des Sciences de la Matière

3/28/10

15

euindiagrid

œ