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Outline
1. Motivations:
The remarkable versatility of the two-dimensional electron gas
The search for topological order

2. Are there topological phases in 3D materials and no applied field?
Yes — “topological insulators”
(experimental confirmation 2007 for 2D, 2008 for 3D)

3. Potential applications of the novel surface states



A brief history of low-dimensional electrons

At a planar heterojunction between two different semiconductors, electrons are 
trapped by a confining potential in the third direction.

2DEG = “two-dimensional electron gas”

Further patterning of a 2DEG can make a 1D quantum wire with quantized 
conductance ne2/h (van Wees et al., 1988) or a 0D quantum dot (“artificial atom”)

Another approach: carbon-based materials
0D fullerenes, 1D nanotubes and 2D graphene

E0

E1



A 2DEG in a strong magnetic field can show a quantized transverse conductance:

A semiclassical picture is that 2D electrons make circular orbits in the magnetic 
field.  At the sample boundary, these orbits are interrupted and “skip” along the 
boundary, leading to a perfectly conducting one-way quantum wire at the sample edge.

The (integer) quantum Hall effect

σxy = n
e
2

h

to 1 part in 109
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1D edge of Quantum Hall Effect

1D edge of “Quantum Spin Hall 
Effect” (discovered 2007)

2D surface of 3D Topological 
Insulator (discovered 2008)

But what is “topological” about some edge/surface states?

3D topological insulators
have a special metallic 2DEG 
at any surface...



Types of order
Much of condensed matter is about how different kinds of order emerge from 
interactions between many simple constituents.

Until 1980, all ordered phases could be understood as “symmetry breaking”:

an ordered state appears at low temperature when the system spontaneously 
loses one of the symmetries present at high temperature.

Examples:
Crystals break the translational and rotational symmetries of free space.
The “liquid crystal” in an LCD breaks rotational but not translational symmetry.
Magnets break time-reversal symmetry and the rotational symmetry of spin space.
Superfluids break an internal symmetry of quantum mechanics.



Types of order
In 1980, the first ordered phase beyond symmetry breaking was discovered.

Electrons confined to a plane and in a strong magnetic field show, at low enough 
temperature, plateaus in the “Hall conductance”:

force I along x and measure V along y

on a plateau, get

at least within 1 in 109 or so.

What type of order causes
this precise quantization?

Note I: the AC Josephson effect between superconductors similarly allows 
determination of e/h.
Note II: there are also fractional plateaus in good (modulation-doped) samples.

σxy = n
e
2

h



Topological order

Definition I:

In a topologically ordered phase, some physical response function is given by a 
“topological invariant”.

What is a topological invariant?  How does this explain the observation?

Definition II:

A topological phase is insulating but always has metallic edges/surfaces when put 
next to vacuum or an ordinary phase.

What does this have to do with Definition I?

“Topological invariant” = quantity that does not 
change under continuous deformation

What type of order causes the precise quantization
in the Integer Quantum Hall Effect (IQHE)?



Topological invariants
Most topological invariants in physics arise as integrals of some geometric quantity.

Consider a two-dimensional surface.

At any point on the surface, there are two radii of curvature.
We define the signed “Gaussian curvature”

Now consider closed surfaces.

The area integral of the curvature over the whole surface is “quantized”, and is a 
topological invariant (Gauss-Bonnet theorem).

where the “genus” g = 0 for sphere, 1 for torus, n for “n-holed torus”.

from left to right, equators
have negative, 0, positive

Gaussian curvature

κ = (r1r2)−1

∫
M

κ dA = 2πχ = 2π(2 − 2g)



Topological invariants

Bloch’s theorem:
One-electron wavefunctions in a crystal
(i.e., periodic potential) can be written

where k is “crystal momentum” and u is periodic (the same in every unit cell).

Crystal momentum k can be restricted to the Brillouin zone, a region of k-space 
with periodic boundaries.
As k changes, we map out an “energy band”.  Set of all bands = “band structure”.

The Brillouin zone will play the role of the “surface” as in the previous example,

which will give us the “curvature”.

Good news:
for the invariants in the IQHE and topological insulators,

we need one fact about solids

and one property of quantum mechanics, the Berry phase

ψ(r) = eik·ruk(r)



Berry phase
What kind of “curvature” can exist for electrons in a solid?

Consider a quantum-mechanical system in its (nondegenerate)
ground state.

The adiabatic theorem in quantum mechanics implies that,
if the Hamiltonian is now changed slowly, the system remains in 
its time-dependent ground state.

But this is actually very incomplete (Berry).

When the Hamiltonian goes around a closed loop k(t) in 
parameter space, there can be an irreducible phase

relative to the initial state.

Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

Michael Berry
φ =

∮
A · dk, A = 〈ψk| − i∇k|ψk〉



Berry phase
Why do we write the phase in this form?
Does it depend on the choice of reference wavefunctions?

If the ground state is non-degenerate, then the only freedom in 
the choice of reference functions is a local phase:

Under this change, the “Berry connection” A changes by a
gradient,

just like the vector potential in electrodynamics.

So loop integrals of A will be gauge-invariant,
as will the curl of A, which we call the “Berry curvature”.

φ =
∮

A · dk, A = 〈ψk| − i∇k|ψk〉

ψk → eiχ(k)ψk

A → A + ∇kχ

F = ∇×A



Berry phases in solids
In a solid, the natural parameter space is electron momentum.

The change in the electron wavefunction within the unit cell leads 
to a Berry connection and Berry curvature:

We keep finding more physical properties that are determined 
by these quantum geometric quantities.

The first was that the integer quantum Hall effect in a 2D crystal 
follows from the integral of F (like Gauss-Bonnet!).  Explicitly,

S. S. Chern

F = ∇×A
ψ(r) = eik·ruk(r)

A = 〈uk| − i∇k|uk〉

n =

∑
bands

i

2π

∫
d
2
k

(〈
∂u

∂k1

∣∣∣ ∂u

∂k2

〉
−

〈
∂u

∂k2

∣∣∣ ∂u

∂k1

〉)

σxy = n
e
2

h
TKNN, 1982          “first Chern number”

F = ∇×A



The importance of the edge
But wait a moment...

This invariant exists if we have energy bands that are
either full or empty, i.e., a “band insulator”.

How does an insulator conduct charge?

Answer: (Laughlin; Halperin)

There are metallic edges at the boundaries of our 2D
electronic system, where the conduction occurs.

These metallic edges are “chiral” quantum wires (one-way 

streets).  Each wire gives one conductance quantum (e2/h).

The topological invariant of the bulk 2D material just tells how 
many wires there have to be at the boundaries of the system.

How does the bulk topological invariant “force” an edge mode?

σxy = n
e
2

h

n=1
IQHE

Ordinary insulator

e



The importance of the edge
The topological invariant of the bulk 2D material 
just tells how many wires there have to be at the 
boundaries of the system.

How does the bulk topological invariant “force” an 
edge mode?

Answer:

Imagine a “smooth” edge where the system 
gradually evolves from IQHE to ordinary insulator.  
The topological invariant must change.

But the definition of our “topological invariant” 
means that, if the system remains insulating so that 
every band is either full or empty, the invariant 
cannot change.

∴ the system must not remain insulating.

n=1
IQHE

Ordinary insulator

e

(What is “knotted” are the electron wavefunctions)

IQHE Ordinary insulator
(or vacuum)



2005-present and
“topological insulators” 

The same idea applies in the new topological 
phases discovered recently:

a “topological invariant”, based on the Berry phase, 
leads to a nontrivial edge or surface state at any 
boundary to an ordinary insulator or vacuum.

However, the

physical origin (spin-orbit rather than B field), 

dimensionality (2 or 3 rather than 2),

and experiments are all different.

n=1
IQHE

Ordinary insulator

e



The “quantum spin Hall effect”
Spin-orbit coupling appears in nearly every atom and 
solid.  Consider the standard atomic expression

For a given spin, this term leads to a momentum-
dependent force on the electron, somewhat like a 
magnetic field.

The spin-dependence means that the time-reversal 
symmetry of SO coupling (even) is different from a real 
magnetic field (odd).

It is possible to design lattice models where spin-orbit 
coupling has a remarkable effect: (Murakami, Nagaosa, 
Zhang 04; Kane, Mele 05)

spin-up and spin-down electrons are in IQHE states, 
with opposite “effective magnetic fields”.

n=1
IQHE

Ordinary insulator

e

HSO = λL · S

2D topological
insulator

Ordinary insulator



The 2D topological insulator
People were somewhat skeptical until it was shown in 
2005 (Kane and Mele) that, in real solids with all spins 
mixed and no “spin current”, something of this physics 
does survive.

In a material with only spin-orbit, the “Chern number” 
mentioned before always vanishes.

Kane and Mele found a new topological invariant in 
time-reversal-invariant systems of fermions.

But it isn’t an integer! It is a Chern parity (“odd” or 
“even”), or a “Z2 invariant”.

2D topological
insulator

Ordinary insulator

Systems in the “odd” class are “2D topological insulators”

1. Where does this “odd-even” effect come from?
2. How can this edge be seen?



The 2D topological insulator
1. Where does this “odd-even” effect come from?

In a time-reversal-invariant system of electrons, all 
energy eigenstates come in degenerate pairs.

The two states in a pair cannot be mixed by any T-
invariant perturbation. (disorder)

So an edge with a single Kramers pair of modes is 
perturbatively stable (C. Xu-JEM, C. Wu et al., 2006).

But this rule does not protect
an ordinary quantum wire
with 2 Kramers pairs:

E

k

E

k

✓

The topological vs. ordinary distinction depends on time-reversal symmetry.



The 2D topological insulator
2. Key: the topological invariant predicts the “number of quantum wires”.

While the wires are not one-way, so the Hall conductance is zero, they still contribute to 
the ordinary (two-terminal) conductance.

There should be a low-temperature edge conductance from one spin channel at each edge:

G =

2e
2

h

This appears in (Hg,Cd)Te quantum wells as a quantum Hall-like plateau in zero magnetic field.

König et al., 
Science (2007)

Laurens 
Molenkamp



What about 3D?
There is no truly 3D quantum Hall effect.  There are only layered versions of 2D.
(There are 3 “topological invariants”, from xy, yz, and xz planes.)

Trying to find Kane-Mele-like invariants in 3D leads to a surprise: (JEM and Balents, 2007)

1. There are still 3 layered Z2 invariants, but there is a fourth Z2 invariant as well.

Hence there are 24 =16 different classes of “topological insulators” in 3D.

2. The nontrivial case of the fourth invariant is fully 3D and cannot be realized in any model 
that doesn’t mix up and down spin.

In 2D, we could use up-spin and down-spin copies to make the topological case.

There is a (technical) procedure to compute the fourth invariant for any band structure.
With inversion symmetry, this procedure is considerably simplified (Fu and Kane, 2007).
A topological insulator is reached from an ordinary one by an odd number of “band inversions”.

3. There should be some type of metallic surface resulting from this fourth invariant, and 
this is easier to picture...



Topological insulators in 3D
1. This fourth invariant gives a robust 3D phase whose metallic surface state in the simplest 
case is a single massless “Dirac fermion” (Fu-Kane-Mele, 2007)

Surface state = “1/4 of graphene”: no spin or valley degeneracy

2. Some fairly standard 3D materials turn out to be topological insulators!
Claim:
Certain insulators will always have metallic surfaces with strongly spin-dependent structure

How can we look at the metallic surface state of a 3D material to test this prediction?

kx

ky

E

EF

kx

ky

(a) (b)



ARPES of topological insulators
First observation by D. Hsieh et al. (Z. Hasan group), Princeton/LBL, 2008.

This is later data on Bi2Se3 from the same group in 2009:

The states shown are in the “energy gap” of the bulk material--in general no 
states would be expected, and especially not the Dirac-conical shape.



Summary of basics
1. There are now at least 3 strong topological insulators that have been seen 
experimentally (BixSb1-x, Bi2Se3, Bi2Te3), and many more predicted theoretically.

2. Their metallic surfaces exist in zero field and have the predicted form.  
Similar surface states should exist in B phase of 3He.

3. The temperature over which topological behavior is observed can extend up 
to room temperature or so (0.3 eV = 3600 K).

What are important consequences of these surface states?
Thermoelectricity
Unusual Berry phases in transport
Spintronics

Future needs and a puzzle

Last part



Topological insulators and energy
Topological insulators already have one application: thermoelectricity

“(Gordon) Moore’s Law”: (1965-present)
The number of transistors on an IC doubles every 2 years
“Moore’s Law” of thermoelectrics: the figure of merit doubles every 50 years

Majumdar, Science 303, 777 (2004)

Hicks & Dresselhaus, PRB (1993)

DiSalvo, Science (1999)

Mahan et al, Phys. Today (1997)

Our proposal for how to use TI behavior in thin thermoelectric films: Ghaemi, Mong, JEM, PRL 2010
A. Balandin’s group (Riverside) has recently created monolayers by exfoliation (APL 2010)

?



Topological insulators and energy
Big question: 
Does knowing that Bi2Te3 has these unusual surface states help with thermoelectric 
applications?

Yes, at least for low temperature (10K - 77K), where ZT=1 is not currently possible.
We hope to double achievable ZT in this regime.
(P. Ghaemi, R. Mong, JEM, PRL, 2010)

Thermoelectrics work best when the band gap is about 5 times kT.
Gap of Bi2Te3 = 1800 K = 0.15 eV.

Idea: in a thin film, the top and bottom 
surfaces of a topological insulator “talk” to 
each other, and a controllable thickness-
dependent gap opens.

Key: good thickness and Fermi-level control

Recent development: exfoliated thin films 
(Balandin et al., UC Riverside, APL) Fermi-level control

in crystals (Hsieh et al., 2009)



Berry phases in transport
For observation of the above in existing TIs, reduction of bulk residual conductivity is 
important and seems to be underway.

Magnetic field experiments can isolate 2D surface state features.

Puzzle 1: Stanford nanowire experiment (Yi Cui et al., Nature Materials)

sees Aharonov-Bohm (h/e) oscillations, as expected for a clean system, rather than Sharvin & 
Sharvin (h/2e), as expected for a 

The sign is also not what is expected
in the strong-disorder limit: the Berry
phase protects a mode at pi flux, rather
than 0 flux as in a nanotube.

(Bardarson, Brouwer, JEM, PRL 2010;
Zhang and Vishwanath, arXiv 1005.3042).
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Puzzle 2: Where is the Zeeman effect in surface-state magnetoconductance?
Key difference between TIs and either graphene or a 2DEG.
An alternate mechanism to E-dependent velocity
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Spin-charge coupling

Align 10 spins/micron2 ⇒ 1 microamp

•Observation of giant spin-charge coupling

Charge current = spin density

About 100 times larger than QWs

The locking of spin and momentum at a TI surface means that a charge 

current at one surface generates a spin density.

Similarly a charge density is associated with a spin current.

While these effects could cancel out between the top and bottom 

surfaces of an unbiased thin film, any asymmetry (such as electrical bias 

or substrate effects) leads to a net spin-charge coupling.

(O. Yazyev, JEM, S. Louie, PRL 2011)
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•Observation of giant spin-charge coupling

First-principles calculations 

of surface states, including 

reduced spin polarization

(O. Yazyev, JEM, S. Louie, 

PRL 2011)

1. Gives numerical strength of spin-charge coupling, e.g., in “inverse spin-galvanic 

effect’ (Garate and Franz): use TI surface current to switch an adsorbed magnetic film

2. Can bias electrically so that combination of surfaces has net spin-charge coupling 



A puzzle.   Future directions.
The Hall effect is quantized in the IQHE.
What is quantized in topological insulators?

Hint: There is something special about the diagonal part of dP/dB.
The “polarization quantum” of one charge per unit cell area at the surface
(King-Smith and Vanderbilt) combines nicely with the flux quantum:

see Malashevich, Souza, Coh, Vanderbilt, NJP 2010; Essin, Turner, Moore, Vanderbilt, PRB 2010

Future insights that could come from electronic structure theory:

1. Better understanding of interfaces between TIs and magnetic/superconducting materials.

2. Multifunctional TI materials (combinations with antiferrromagnetism, superconductivity, ...)

3. Are there plausible realizations of “fractional” topological insulators?

ΔP

B0
=

e/Ω
h/eΩ

= e2/h.



What about other symmetries?
It turns out that interesting things happen when we think about breaking some 
of the symmetries of the original topological insulators.

1. We can add a weak magnetic field, or surface magnetic impurities, which 
leads to a half-integer quantum Hall effect at each surface.

(One Dirac fermion contributes a half-integer times e2/h, as observed in 
graphene.)

2. We can consider the interaction between topological insulators and 
superconductivity, which breaks a U(1) symmetry.

(3. We can consider materials that support antiferromagnetism and TI 
behavior:)

“antiferromagnetic topological insulators”
(Mong, Essin, JEM, 2010)
possibly GdPtBi?



Electrodynamics in insulators

We know that the constants ε and μ in Maxwell’s equations can be modified 
inside an ordinary insulator.

Particle physicists in the 1980s considered what happens if a 3D insulator 
creates a new term (“axion electrodynamics”, Wilczek 1987)

This term is a total derivative, unlike other magnetoelectric couplings.

The angle θ is periodic “as a bulk property” and odd under T.

A T-invariant insulator can have two possible values: 0 or π.

These correspond to “positive” and “negative” Dirac mass for the electron
(Jackiw-Rebbi, Callan-Harvey, ...)

ΔLEM =
θe2

2πh
E · B =

θe2

16πh
εαβγδFαβFγδ.



Axion E&M, then and now

This explains a number of properties of the 3D topological insulator when its 
surfaces become gapped by weakly breaking T-invariance:

Quantized magnetoelectric effect: (Qi et al., 2008; ...)
applying B generates polarization P, applying E generates magnetization M

Quantized coefficient in Gaussian units is essentially the fine structure constant

ΔLEM =
θe2

2πh
E · B =

θe2

16πh
εαβγδFαβFγδ.

Topological insulator slab

E j

E j

B

σxy = (n +
θ

2π
)
e2

h

σxy = (m − θ

2π
)
e2

h



Orbital magnetoelectric polarizability
One mysterious fact about the previous result:

We reproduced the “Chern-Simons term” of Qi et al. from a semiclassical approach.

But in our approach, it is not at all clear why this should be the only magnetoelectric term 
from orbital motion of electrons.

More precisely: on general symmetry grounds, it is natural to decompose the tensor
into trace and traceless parts

The traceless part can be further decomposed into symmetric and antisymmetric parts.  
(The antisymmetric part is related to the “toroidal moment” in multiferroics;
cf. M. Fiebig and N. Spaldin)

But consideration of simple “molecular” models shows that even the trace part is not always 
equal to the Chern-Simons formula...

∂P i

∂Bj
=

∂Mj

∂Ei
= αi

j = α̃i
j + αθδ

i
j .



Orbital magnetoelectric polarizability
Computing orbital dP/dB in a fully quantum treatment reveals that there are additional terms 
in general.  (Essin et al., PRB 2010)
For dM/dE approach and numerical tests, see Malashevich, Souza, Coh, Vanderbilt, NJP 2010. 

The “ordinary part” indeed looks like a Kubo formula of electric and magnetic dipoles.

Not inconsistent with previous results:
in topological insulators, time-reversal means that only the Berry phase term survives.

There is an “ordinary” part and a “topological” part, which is scalar but is the only nonzero 
part in TIs.  But the two are not physically separable in general.
Both parts are nonzero in multiferroic materials.

αi
j = (αI)i

j + αCSδi
j

(αI)i
j =

∑
n occ

m unocc

∫
BZ

d3k

(2π)3
Re

{ 〈unk|e �ri
k|umk〉〈umk|e(vk×�rk)j − e(�rk × vk)j − 2i∂H ′

k/∂Bj |unk〉
Enk − Emk

}

αCS = − e2

2�
εabc

∫
BZ

d3k

(2π)3
tr
[
Aa∂bAc − 2i

3
AaAbAc

]
.



Magnetoelectric theory: a spinoff of TIs

This leads to a general theory for the orbital magnetoelectric response tensor in a crystal,
including contributions of all symmetries (Essin, Turner, Vanderbilt, JEM, 2010).

It is not a pure Berry phase in general, but it is in topological insulators.

Such magnetoelectric responses have been measured, e.g., in Cr2O3 
(Obukhov, Hehl, et al.).

Example of the ionic “competition”: BiFeO3

Can make a 2x2 table of “magnetoelectric mechanisms”:
(ignore nuclear magnetism)

θ ≈ π/24 P

electronic P, 
orbital M

ionic P
orbital M

electronic P, 
spin M

ionic P
spin M

electronic P effects (left column) should be 
faster and less fatiguing than magnetoelectric 
effects requiring ionic motion.



Application I of topological insulators:
The hunt for new particles

We all know that “quarks” have fractional electric charge and are not seen in 
isolation.

Condensed matter systems sometimes generate “emergent” quasiparticles with 
different quantum numbers than the original nuclei and electrons.
A familiar example is the “Cooper pairs” in a superconductor.

Another example:
Fractional plateaus in the quantum Hall effect are seen experimentally (1983).
Eventually many fractions are seen, all with odd denominators.  The strongest is often 
at 1/3 filled Landau level.

Theorists find profound explanation why odd denominators will always be seen.
The picture (Laughlin) involves an interacting electron liquid that hosts 
“quasiparticles” with fractional charge (1/3 in simplest case) and fractional “anyonic” 
statistics

What other particles remain to be found?



The hunt for the Majorana fermion
Prehistory:
We can imagine splitting one ordinary spinless fermion (a “Dirac fermion”) into two 
Majorana fermions as

Then these “Majorana fermions” are their own antiparticles.

We can always rewrite Dirac fermions in this form, but when is it 
physically meaningful?  When are there isolated Majorana fermions?

γ1 =
c + c†√

2
, γ2 = i

c† − c√
2



Majorana fermions as fundamental particles

Neutrinoless double beta decay:

If the neutrino is a Majorana fermion, the neutrino and antineutrino are the same 
particle.

Then the two (anti-)neutrinos produced in a double beta decay of an element such as 
U-238 can annihilate as particle and antiparticle.

There is at least one claim from 2001 that neutrinoless double beta decay has actually 
been observed; future experiments are a high priority.

Gran Sasso



Majorana fermions as emergent particles

Several condensed matter systems are believed to support Majorana fermion excitations.

The first was an unusual fractional quantum Hall state at 5/2 filled Landau levels, first 
observed around 1990.  In the most popular theoretical model for this state, there are 
Majorana fermion quasiparticles.

A 2009 experiment (R. L. Willett et al., PNAS) constructing an interferometer to “braid” 
one Majorana fermion around another supports this theoretical model, but is rather 
indirect.



Majorana fermions from SC/TI junctions
It turns out that the core of a magnetic vortex in a two-dimensional “p+ip” 
superconductor should have a Majorana fermion.  (But we haven’t found one yet.)

However, a superconducting layer with similar properties exists at the boundary between 
a 3D topological insulator and an ordinary 3D superconductor (Fu and Kane, 2007).

Idea: the proximity effect

couples to the “time-reversal-symmetric
half-metal” at the TI surface

to create a superconductor with half
as many degrees of freedom as a
normal s-wave superconductor.

Can store one “qubit” in two spatially
separated Majorana fermions--protected quantum memory.
Can we find topological superconductors that host Majoranas by themselves?

Majorana states

SC

TI

H =
∑

k

(Δck↑c−k↓ + h.c.)



An existing application of TIs: Energy

Thermoelectric materials can convert waste heat to electrical energy.
The 3D topological insulators discovered so far are all useful thermoelectric materials.



Topological insulators and energy
Thermoelectric cooling: refrigeration with no moving parts.

Some consumer thermoelectrics use Bi2Te3, a topological insulator.

Cuisinart CWC-600 6-Bottle Private Reserve Wine Cellar 
6 Bottle Wine Cooler:
FRYS.com #: 5049475
Protect the integrity of your favorite wines with the Cuisinart 
Private Reserve Wine Cellar. This elegant countertop cellar chills 
wines using thermoelectric cooling technology, which eliminates 
noise and vibration. Eight temperature presets for a variety of 
reds and whites keep up to 6 bottles of wine at the perfect 
serving temperature. Designed in the style of full-size cellars, 
with a stainless steel door and interior light, the Cuisinart Private 
Reserve is a beautiful way to display wines and champagnes.



Topological insulators and energy
What makes a material a good thermoelectric?
The “thermoelectric figure of merit” ZT determines Carnot efficiency:

a
b

V

T1
T2

a

S = V / ΔT
“Seebeck 
coefficent”

k
TSZT σ2

=
Bi2Te3



Topological insulators and energy
So why aren’t thermoelectrics everywhere?  Will they be soon?

“(Gordon) Moore’s Law”: (1965-present)
The number of transistors on an IC doubles every 2 years
“Moore’s Law” of thermoelectrics: the figure of merit doubles every 50 years

Majumdar, Science 303, 777 (2004)

Hicks & Dresselhaus, PRB (1993)

DiSalvo, Science (1999)

Mahan et al, Phys. Today (1997)

Our proposal for how to use TI behavior in thin thermoelectric films: Ghaemi, Mong, JEM, PRL 2010
A. Balandin’s group (Riverside) has recently created monolayers by exfoliation (APL 2010)

?



Conclusions
1. “Topological insulators” exist in two and three dimensions in zero magnetic field.
The 3D topological insulator has a special metallic 2DEG at any surface.

2. When the surfaces are gapped, the 3D topological insulator generates a quantized 
magnetoelectric coupling

3. These insulators might be useful to find the Majorana fermion, for spintronic devices, 
or for improved thermoelectrics (not so big a leap).

4. The combination of symmetry and topology probably has more surprises in store.

ΔLEM =
θe2

2πh
E · B =

θe2

16πh
εαβγδFαβFγδ.
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Correlated phases from TI surfaces
Idea of exciton condensation:

(Conventional) Superconductivity occurs when we have identical spin-
up and spin-down electron Fermi surfaces and a weak attractive 
interaction.

Exciton condensation occurs when we have
identical electron and hole Fermi surfaces and
an attractive interaction between electrons
and holes, i.e., Coulomb repulsion.

Why is this difficult?  Need an applied field
or some other mechanism to keep electrons
and holes from recombining.

Alternately can study nonequilibrium
condensation before electrons & holes recombine (Butov, Chemla et 
al.)

surface
states

gates

STI

a) �� ��



Correlated phases from TI surfaces
Formally, exciton condensation is like BCS in the “particle-hole” 
channel: continuously connected to BEC of excitons.

Key: unscreened interlayer Coulomb repulsion, with no tunneling.

Generated gap in weak-coupling limit:

Need large voltage V and coupling U, with
chemical potentials symmetric around Dirac
point.  New materials (e.g., Ca doping) allow
the Dirac point to be moved out of the bulk
bandgap.

Transition temperature is of same order or higher than in graphene.  
Goal: first stable exciton condensate outside quantum Hall regime.

surface
states

gates

STI

a) �� ��

HMF = H0 + (ψ†1Mψ2 + h.c.) +
1
U

Tr(M†M),

m ≈ 2
√

V Λe−Λ2/UV


