

2220-16

15th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

13 - 15 January 2011

Filling gaps in our understanding of gaps

Klaus Capelle Universidade Federal do ABC Santo André Brazil

Filling gaps in our understanding of gaps

Klaus Capelle, UFABC, Brazil

Gaps in our understanding of gaps

□ Brief review of some basic terminology and concepts

□ Can there be purely local functionals with a derivative discontinuity?

□ What is the effect of self-interaction on Mott gaps and band gaps?

□ How about spin gaps? Are they similar to charge gaps? Are there spin discontinuities?

Excitation gap vs. fundamental gap

Excitation gap: E^{exc} - E

Fundamental gap:I-A

These gaps are the same for noninteracting particles, but NOT for interacting particles A useful single-particle gap: Kohn-Sham gap

$$\left(-\frac{\hbar^2 \nabla^2}{2m} + v_s(\mathbf{r})\right)\phi_k(\mathbf{r}) = \epsilon_k \phi_k(\mathbf{r})$$

$$E_g^{KS} = \epsilon_{N+1}(N) - \epsilon_N(N)$$

KS single-particle gap

The KS gap is not an excitation gap and neither the fundamental gap, but a zero-order approximation to both

Fundamental gap

Gaps in our understanding of gaps

□ Can there be purely local functionals with a derivative discontinuity?

□ What is the effect of self-interaction on Mott gaps and band gaps?

□ How about spin gaps? Are they similar to charge gaps? Are there spin discontinuities?

To answer first two questions: use theoretical laboratory Hubbard model Inhomogeneous 1D Hubbard model: a theoretical laboratory for DFT

Standard 1D
Hubbard model

$$\hat{H}_{hom} = -t \sum_{i\sigma} (\hat{c}_{i\sigma}^{\dagger} \hat{c}_{i+1\sigma} + H.c.)$$

$$+U \sum_{i} \hat{c}_{i\uparrow}^{\dagger} \hat{c}_{i\uparrow} \hat{c}_{i\downarrow} + \mu \sum_{i\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{i\sigma}$$

Inhomogeneous 1D Hubbard model $\hat{H}_{inhom} = -t \sum_{i\sigma} (\hat{c}^{\dagger}_{i\sigma} \hat{c}_{i+1,\sigma} + H.c.)$ $+ \sum_{i} U_i \hat{c}^{\dagger}_{i\uparrow} \hat{c}_{i\uparrow} \hat{c}^{\dagger}_{i\downarrow} \hat{c}_{i\downarrow} + \sum_{i\sigma} v_i \hat{c}^{\dagger}_{i\sigma} \hat{c}_{i\sigma}$

XC energy of the homogeneous 1D Hubbard model

Figure 1. Exchange-correlation energy per site of the homogeneous infinite 1DHM as obtained by numerically solving the Lieb-Wu integral equations resulting from the Bethe Ansatz. Circles: U = 3, triangles: U = 6, squares: U = 9. The full lines are obtained from our expression (8) with (9) and (10). The band filling n ranges from n = 0 (empty band) over n = 1 (half-filled band) to n = 2 (filled band). The form of the curves reflects particle-hole symmetry, and the kinks at n = 1 signal the Mott metal-insulator transition.

DFT for the Hubbard model: Bethe-Ansatz LDA not: LDA+U, rather: U+LDA

$$\begin{split} E_{xc}^{BA-LDA}(n,U) &= \sum_{i} e_{xc}^{BA}(n,U)|_{n \to n_{i}} \\ \text{parametrization of XC energy} & \text{(i) } U \to 0 \text{ and any } n \leq 1 \\ \frac{e^{BA}(n,U)}{tN_{s}} &= -\frac{2\beta}{\pi} \sin\left(\frac{\pi n}{\beta}\right) & \text{(ii) } U \to \infty \text{ and any } n \leq 1 \\ \text{(iii) } U \to \infty \text{ and any } n \leq 1 \\ \text{(iii) for } n = 1 \text{ and any } U \\ \beta \sin\left(\frac{\pi}{\beta}\right) &= 2\pi \int_{0}^{\infty} dx \frac{J_{0}(x)J_{1}(x)}{x(1 + \exp(xU/2)} \\ \xrightarrow{\text{VOLUME 90, NUMBER 14}} & \text{PHYSICAL REVIEW LETTERS} \\ \end{array}$$

Density Functionals Not Based on the Electron Gas: Local-Density Approximation for a Luttinger Liquid

N. A. Lima, M. F. Silva, and L. N. Oliveira

Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, 13560-970 São Paulo, Brazil

K. Capelle

Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 780, São Carlos, 13560-970 São Paulo, Brazil

Energy depends on particle number

EUROPHYSICS LETTERS

Europhus. Lett., 60 (4), pp. 601-607 (2002)

Density-functional study of the Mott gap in the Hubbard model

N. A. LIMA¹, L. N. OLIVEIRA¹ and K. CAPELLE²

$$\Delta_{xc} = \frac{\delta E_{xc}[n]}{\delta n} \Big|_{N+\delta} - \frac{\delta E_{xc}[n]}{\delta n} \Big|_{N-\delta}$$
$$\Delta(U) = U + 4t \cos\left(\frac{\pi}{\beta(U/t)}\right)$$

Proof: derivative discontinuity of DFT = Mott gap

Filling gaps in our understanding of gaps

Can there be purely local functionals with a derivative discontinuity?
 Yes, but our example is a model Hamiltonian with a gap in its spatially homog. phase

□ What is the effect of self-interaction on Mott gaps and band gaps?

□ How about spin gaps? Are they similar to charge gaps? Are there spin discontinuities?

Effect of self-interaction on gaps

Filling gaps in our understanding of gaps

- Can there be purely local functionals with a derivative discontinuity?
 Yes, but our example is a model Hamiltonian with a gap in its spatially homog. phase
- □ What is the effect of the (PZ) self-interaction on Mott gaps and band gaps?
 - improves LDA total energies, but only for strong interactions,
 - improves band gaps, but only if spin-symmetry is allowed to break

□ How about spin gaps? Are they similar to charge gaps? Are there spin discontinuities?

Spin gaps

Spintronics aims at controlling spin degrees of freedom

•How shall we define spin gaps in DFT?

• Are there spin derivative discontinuities?

PHYSICAL REVIEW B 81, 125114 (2010)

S

Spin gaps and spin-flip energies in density-functional theory

K. Capelle,^{1,2} G. Vignale,³ and C. A. Ullrich³

¹Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André 09210-170, SP, Brazil ²Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13560-970, SP, Brazil ³Department of Physics and Astronomy, University of Missouri–Columbia, Columbia, Missouri 65211, USA (Received 9 November 2009; revised manuscript received 18 February 2010; published 16 March 2010)

Some analogies between spin and charge

$$A(N) = E(N) - E(N+1)$$

I(N) = E(N-1) - E(N). $E^{sf-}(N) = E(N, S-1) - E(N, S)$ energies!

 $E^{sf+}(N) = E(N, S+1) - E(N, S)$

Excitation

$$E_{g,KS}^{sf+} = \epsilon_{l(\uparrow)} - \epsilon_{H(\downarrow)}$$
$$E_{KS}^{sf-} = \epsilon_{l(\downarrow)} - \epsilon_{H(\downarrow)}$$

$$E_{g} = E_{g}^{KS} + \Delta_{xc}$$

$$E^{sf-} = E_{KS}^{sf-} + \Delta_{xc}^{sf-}$$
Formal introduction
$$E^{sf+} = E_{KS}^{sf+} + \Delta_{xc}^{sf+}$$
of "discontinuity"

But is this a true derivative discontinuity?Is it nonzero?

Atomic spin gaps from exact energies

TABLE II. Single-particle spin-flip energies [Eqs. (34) and (35)] and spin stiffness [Eq. (29)], their experimental (Expt.) counterparts, Eqs. (20), (21), and (26), and the resulting *xc* corrections defined in Eqs. (30)–(32), for the lithium atom. In the columns labeled KS we employ KS eigenvalues obtained from near-exact densities, while in the columns labeled XX, KLI-XX, and LSDA we use approximate eigenvalues obtained from standard SDFT calculations. The experimental values were obtained using spectroscopic data for the lowest quartet state ${}^{4}P^{0}$ from Ref. 15 as well as accurate wave-function based theory from Ref. 16. All values are in eV.

	KS ^a	KS ^b	XX ^a	KLI-XX	LSDA	Expt.	
E ^{sf+}	60.87	60.87	63.70	63.64	49.47	57.41	
E ^{sf-}	-2.77	-0.48	-2.91	-2.89	1.07	0	
E_s	58.10	60.39	60.79	60.75	50.54	57.41	
Δ_{xc}^{sf+}	-3.46	-3.46	-6.29	-6.23	7.94		
Δ_{xc}^{sf-}	2.77	0.48	2.91	2.89	-1.07		
Δ^s_{xc}	-0.69	-2.98	-3.38	-3.34	6.87		
	negative						

"discontinuity"!

Spin discontinuities: ensemble theory

 $E^{w} = (1 - w)E_{A} + wE_{B},$ $n^{w} = (1 - w)n_{A} + wn_{B}$

But which ensemble should we use ?

Not: Perdew, Parr, Levy, Balduz, (PPLB) ensemble of fractional particle numbers Not: Yang ensemble of fractional spins

But: Oliveira-Gross-Kohn ensemble of excited states

 $E_{B} - E_{A} = \epsilon_{M+1}^{w} - \epsilon_{M}^{w} + \frac{\partial E_{xc}^{w}[n]}{\partial w} \Big|_{n=n_{w}}$ E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A **37**, 2805 (1988); **37**, 2809 (1988); L. N. Oliveira, E. K. U. Gross, and W. Kohn, *ibid.* **37**, 2821 (1988).

$$\frac{\partial E_{xc}^{w}[n]}{\partial w}\Big|_{n=n^{w}} = \frac{\delta E_{xc}^{w=0}[n]}{\delta n(\mathbf{r})}\Big|_{n=n^{w=0}} - \frac{\delta E_{xc}^{w}[n]}{\delta n(\mathbf{r})}\Big|_{n=n^{w}} \qquad \text{M. Levy, Phys. Rev. A 52, R4313 (1995)}$$

Spin discontinuities: ensemble theory

 $E^{sf+}(N) = E(N, S+1) - E(N, S)$ The difference between KS spin gaps and many-body spin gaps $= \epsilon_{l(\uparrow)}^{w} - \epsilon_{H(\downarrow)}^{w} + \frac{\partial E_{xc}^{w}[n_{\uparrow}, n_{\downarrow}]}{\partial w} \Big|_{\substack{n_{\uparrow} = n_{\uparrow}^{w} \\ n_{\downarrow} = n_{\downarrow}^{w}}}$ is a derivative discontinuity

 $= \epsilon_{l(\uparrow)}^{w} - \epsilon_{H(\downarrow)}^{w} + \frac{\delta E_{xc}^{w=0}[n_{\uparrow}, n_{\downarrow}]}{\delta n_{\downarrow}(\mathbf{r})} \Big|_{\substack{n_{\uparrow} = n_{\uparrow}^{w=0} \\ n_{\downarrow} = n_{\downarrow}^{w=0}}} \qquad \text{But this is not a practical expression for calculating it}$

PHYSICAL REVIEW B 81, 125114 (2010)

 $=E^{sf+}_{w,KS}(N) + \Delta^{sf+}_{w,v}$

 $- \frac{\delta E_{xc}^{w}[n_{\uparrow}, n_{\downarrow}]}{\delta n_{\downarrow}(\mathbf{r})} \Big|_{n_{\uparrow}=n_{\uparrow}^{w}}$

Spin gaps and spin-flip energies in density-functional theory

K. Capelle,^{1,2} G. Vignale,³ and C. A. Ullrich³

Spin gaps: time-dependent DFT

$$E^{sf+} = \omega_{\uparrow\downarrow} + M_{\uparrow\downarrow,\uparrow\downarrow}$$

$$M_{\alpha\alpha',\sigma\sigma'} = K_{H\alpha l\alpha',H\sigma l\sigma'}^{\alpha'\alpha,\sigma'\sigma}(\omega)$$

$$E^{sf-} = \omega_{\downarrow\uparrow} + M_{\downarrow\uparrow,\downarrow\uparrow}$$

$$K^{\alpha\alpha',\sigma\sigma'}_{i\alpha\alpha\alpha',i'\sigma\alpha'\sigma'}(\omega) = \int d^3r \int d^3r' \psi_{i\alpha}(\mathbf{r}) \psi_{a\alpha'}(\mathbf{r}) \qquad f^{xc}_{\uparrow\uparrow,\uparrow\uparrow} = \frac{\partial^2 (ne^h_{xc})}{\partial n^2} + 2(1-\zeta) \frac{\partial^2 e^h_{xc}}{\partial n \,\partial \zeta} + \frac{(1-\zeta)^2}{n} \frac{\partial^2 e^h_{xc}}{\partial \zeta^2} + \frac{\partial^2 (ne^h_{xc})}{\partial \zeta^2} + \frac{\partial^2 (ne^h_{xc})}{\partial z^2} +$$

$$f^{\rm xc}_{\uparrow\uparrow,\downarrow\downarrow} = \frac{\partial^2 (ne^h_{\rm xc})}{\partial n^2} - 2\zeta \frac{\partial^2 e^h_{\rm xc}}{\partial n \,\partial \zeta} - \frac{(1-\zeta^2)}{n} \frac{\partial^2 e^h_{\rm xc}}{\partial \zeta^2},$$

PHYSICAL REVIEW B 81, 125114 (2010)

nsf+

Spin gaps and spin-flip energies in density-functional theory

$$f^{\mathrm{xc}}_{\uparrow\downarrow,\uparrow\downarrow} = \frac{2}{n\zeta} \frac{\partial e^h_{\mathrm{xc}}(n,\zeta)}{\partial \zeta},$$

TD-DFT calculation of spin gaps

TABLE III. Top part: lowest spin-conserving and spin-flip excitation energies for the lithium atom, calculated with LSDA and KLI-XX using differences of KS eigenvalues and TDDFT in the single-pole approximation (51)–(53). Bottom part: TDDFT *xc* corrections to the KS spin-flip excitation energies, from Eqs. (52) and (53), and to the KS spin gap, Eq. (54). All numbers are in eV.

	LSDA		KLI-XX		Exact	
	KS	TDDFT	KS	TDDFT	KS ^a	Expt. ^b
$E^{sc\uparrow}$	1.83	2.00	1.84	2.01	1.85	1.85
$E^{sc\downarrow}$	48.72	48.89	58.90	59.31	56.25	56.36
E^{sf+}	49.47	48.23	63.64	62.12	60.87	57.41
E^{sf-}	1.07	0.99	-2.89	-2.97	-2.77	0.0
Δ_{xc}^{sf+}	-1.24		-1.52		-3.46	
Δ_{xc}^{sf-}	-0.08		-0.07		+2.77	
Δ^s_{xc}	-1.32		-1.59		-0.69	
		PHYSICA	L REVIEW B 81, 125	5114 (2010)	=	

Ś

Spin gaps and spin-flip energies in density-functional theory

K. Capelle,^{1,2} G. Vignale,³ and C. A. Ullrich³

Filling gaps in our understanding of gaps

- Can there be purely local functionals with a derivative discontinuity?
 Yes, but our example is a model Hamiltonian with a gap in its spatially homog. phase
- □ What is the effect of the (PZ) self-interaction on Mott gaps and band gaps?
 - improves LDA total energies, but only for strong interactions,
 - improves band gaps, but only if spin-symmetry is allowed to break

□ How about spin gaps? Are they similar to charge gaps? Are there spin discontinuities?

Similar: * can define KS and many-body spin gaps, and related quantities

* there are spin discontinuities

Different: * spin gaps are excitation energies

* spin discontinuities may be negative (KS spin gap > many-body spin gap)