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Outline

@ Density matrix formulation of the Bethe-Salpeter
equation

Outline

@ The standard electron-hole representation of density
matrices

@ Elimination of the empty states

@ Calculation of dielectric matrices and GW energy levels
@ Practical implementation

@ Optical spectra of bulk materials: Silicon and diamond
@ Application to a 1nm silicon nanocluster

@ Application to charge-transfer excitations

@ Preliminary GW results



The starting point of our derivation is the Quantum-Liouville
equation for the COHSEX density matrix:

dp(t)

i = {I:—’COHSEX(t)aﬁ(t)]

where the Hamiltonian contains a non-local self-energy:

Heomnspx (t)pi(r,t) = [—%V2 + VH(r,t) 4 Veat (T, t)] ¢i(r,t)

+ / Ycousex (r,r', t)¢;(r', t)dr!

COHSEX=Coulomb Hole (plus) Screened Exchange

See D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109
(2010); D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem.
Phys. 128, 154105 (2008)



dp'(t)

that can be formally written as

N
AP’ (?)

By Fourier analyzing we obtain

For a small external perturbation we have

[ﬁ COHSEX s ﬁ/(t)] + [EAJ,COHSEX 16'](¢),
+ [ra{ewt (t)a ﬁo]

=L-p()+ |

(w—L) p(w) =]
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The eigenvalues of L are the EXCITATION ENERGIES of the
system.
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Since ¢}, orbitals are orthogonal to the ground-state orbitals
®», ONLY the elements of p’ between valence and conduction

w)| + |y (@) (dol]

states (and vice versa) are different from zero.

Electron-hole representation:

P’UC
PC’U

(dvlp'|¢ec)
(belp|du)



—Zlcbv w)| + 1%, (w)) (] ]

Instead of using epr|C|tIy the conduction states we use the
PROJECTOR onto the conduction state subspace

Q =1- Z |¢v><¢v|

Density Functional Perturbation Theory representation:
Ty(r) = Qﬁ/¢v(r) = Z¢C(T)P

) = (Qptour)) =2 P

See Baroni et al., Rev. Mod. Phys. 73, 515 (2001)




Dielectric
matrices

Dielectric matrix calculation

In order to solve the BSE we need to compute the screened Coulomb
potential:

Wi(r,r'") = /e_l(r,r”)vc(r”,r’)dr”

The standard approach to compute ¢! requires a SUMMATION
OVER EMPTY STATES.

We efficiently compute e " using an iterative method based on
DFPT which DOES NOT require calculations of empty states and
allows to obtain the eigenvalue decomposition of e:

1

N
e=) Aifu)(uy|.
1=1

See:

H. F. Wilson, F. Gygi, and G. Galli, Phys. Rev. B 78, 113303 (2008)
H.-V. Nguyen and S. de Gironcoli, Phys. Rev. B 79, 205114 (2009)

D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109 (2010)



The eigenvalue decomposition of the dielectric matrix

€(iw) = Z)\ (iw)|u;) ().

can be used to express the expectation value of the GW self-energy
Yew = Xx + ¢ as

(Xco(iw))n = % Z/dw'()\;l(z'w/) —1)

X (S (vF W) |(HO— i — ') ™" | (02 )

@ Real frequency results are obtained through analytic continuation

@ The matrix elements can be efficiently computed using the Lanczos
algorithm

@ NO empty states are explicitly required
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Practical implementation

We compute explicitly the absorption spectra using a
generalization of the non-Hermitian Lanczos iterative
algorithm. More details in:

D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J.
Chem. Phys. 128, 154105 (2008)

The new method has been implemented in the
QUANTUM ESPRESSO package, which uses a
plane-wave basis-set and pseudopotentials

The current implementation uses a scissor operator:
HQP ~ HKS —+ A Q

Work is in progress to introduce GW quasi-particle
corrections

Details in:

D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133,
164109 (2010)
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mesh

@ 18 Ry cut-off

— full BSE
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@ 8 x8x8k
mesh

® 40 Ry cut-off
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@ 176 electrons

@ 40 x 40 x 40 a3
supercell

® 20 Ry cut-off
@ 80 Ry for ¢

TDA = Tamm-Dancoff approximation (Hermitian

approximation)

~
3

—'

et

Si35Hzg

— full BSE

— TDA BSE

0

5

10
® [eV]

15

20



Charge transfer excitations: Study of a
dipeptide model

In order to describe charge-transfer excitations:
@ Non-local exchange in the kernel is necessary (JCP 119,
2943 (2003))
@ A proper description of the screening has to be included
(Bethe-Salpeter equation)

Charge-
transfer
excitations




Dipeptide orbitals

HOMO-1
HOMO
Charge-
trar)sfe.r

LUMO



Optical Excitation TDLDA TDLDA  CASPT2!
(TDA)

HOMO — LUMO (CT) 461 461 8.07

HOMO-1 — LUMO (CT) 5.16 5.15 7.18

HOMO—LUMO+2 (L)  5.30 5.30 5.62

HOMO-2— LUMO (L)  5.67 5.66 5.79

TDA = Tamm-Dancoff approximation (Hermitian

approximation)

CT = Charge-transfer excitation

L = Local excitation

CASPT2 = Complete Active Space with Second-order

Perturbation Theory

1JACS 1998, 120, 10912.



Outline

Density matrix
formulation of

BSE

Dielectric
matrices

Practical im-
plementation

Bulk systems

Silicon
nanoclusters

Charge-
transfer
excitations

Conclusions

Additional
material

Dipeptide excitation energies: Bethe-Salpeter
equation (BSE)

Optical Excitation BSE BSE CASPT2!
(TDA)

HOMO — LUMO (CT) 0s.~0 os~x~0 8.07 (0.s.x0)

HOMO-1 — LUMO (CT) 7.20 705  7.18

HOMO—LUMO+2 (L)~ 5.33 5.30 5.62

HOMO-2— LUMO (L)  5.63 5.60 5.79

TDA = Tamm-Dancoff approximation (Hermitian
approximation)

CT = Charge-transfer excitation

L = Local excitation

CASPT2 = Complete Active Space with Second-order
Perturbation Theory

1JACS 1998, 120, 10912.



Dipeptide absorption spectrum

Dipeptide ﬂ
. full BSE
é — TDA BSE CT
P
L L
oxiations 5 55 6 65 75 8 85
0 [eV]

TDA = Tamm-Dancoff approximation (Hermitian
approximation)



Molecule LDA PBE[1] GoWo GoW [1] Exp. [1]
CH, 0.44 943 13.95 14.40 13.60
NH3 629 6.16 10.59  10.60 10.82
Hy05 6.53  6.38 11.05 11.10 11.70
H50 731 7.4 12.25 11.90 12.62

[1] C. Rostgaard, K. W. Jacobsen, and K. S. Thygesen, PRB

81, 085103 (2010)

Work is in progress to interface the BSE and GW codes.



Conclusions

@ We have introduced a new method in which:

@ Only calculations of occupied states are needed

@ The numerical scalability is comparable to ground-state
Hartree-Fock calculations

@ The equations are solved without relying on the
Tamm-Dancoff approximation (Hermitian approximation)

@ The spectrum can be calculated in an energy range much
larger than with standard approaches

@ Dielectric matrices are obtained using an iterative method
based on DFPT (easy storage and inversion)

@ The new method as been successfully applied to the
description of bulk solids, nanoclusters and charge-transfer
Conclusions eXCitationS

D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109
(2010)
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