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Density matrix formulation of the
Bethe-Salpeter equation

The starting point of our derivation is the Quantum-Liouville
equation for the COHSEX density matrix:

i
dρ̂(t)

dt
=

[
ĤCOHSEX(t), ρ̂(t)

]
where the Hamiltonian contains a non-local self-energy:

ĤCOHSEX(t)φi(r, t) =

[
−

1

2
∇2 + vH(r, t) + vext(r, t)

]
φi(r, t)

+

∫
ΣCOHSEX(r, r′, t)φi(r

′, t)dr′

COHSEX=Coulomb Hole (plus) Screened Exchange

See D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109
(2010); D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J. Chem.
Phys. 128, 154105 (2008)
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Linearization of the Quantum-Liouville
equation

For a small external perturbation we have

i
dρ̂′(t)

dt
=

[
ĤCOHSEX , ρ̂′(t)

]
+

[
Σ̂′

COHSEX [ρ̂′](t), ρ̂0

]
+

[
v̂′ext(t), ρ̂0

]
that can be formally written as

i
dρ̂′(t)

dt
= L · ρ̂′(t) +

[
v̂′ext(t), ρ̂0

]
By Fourier analyzing we obtain

(ω − L) · ρ̂′(ω) = [v̂′ext(ω), ρ̂0]

The eigenvalues of L are the EXCITATION ENERGIES of the
system.
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Electron-hole representation of density
matrices

ρ̂′ =
∑

v

[
|φv〉〈φ

′
v(−ω)| + |φ′

v(ω)〉〈φv|
]

Since φ′
v orbitals are orthogonal to the ground-state orbitals

φv, ONLY the elements of ρ̂′ between valence and conduction
states (and vice versa) are different from zero.

Electron-hole representation:

Pvc = 〈φv|ρ̂
′|φc〉

Pcv = 〈φc|ρ̂
′|φv〉
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Explicit representation of density matrices
and operators: DFPT

ρ̂′ =
∑

v

[
|φv〉〈φ

′
v(−ω)| + |φ′

v(ω)〉〈φv|
]

Instead of using explicitly the conduction states we use the
PROJECTOR onto the conduction state subspace

Q̂ = 1 −
∑

v

|φv〉〈φv|.

Density Functional Perturbation Theory representation
:

xx
v(r) = Q̂ρ̂′φv(r) =

∑
c

φc(r)Pcv

xy
v(r) =

(
Q̂ρ̂′†φv(r)

)∗

=
∑

c

φ∗
c(r)Pvc.

See Baroni et al., Rev. Mod. Phys. 73, 515 (2001)
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Dielectric matrix calculation

In order to solve the BSE we need to compute the screened Coulomb
potential:

W (r, r′) =

∫
ε−1(r, r′′)vc(r

′′, r′)dr′′

The standard approach to compute ε−1 requires a SUMMATION
OVER EMPTY STATES.
We efficiently compute ε−1 using an iterative method based on
DFPT which DOES NOT require calculations of empty states and
allows to obtain the eigenvalue decomposition of ε:

ε̃ =

N∑
i=1

λi|ui〉〈ui|.

See:
H. F. Wilson, F. Gygi, and G. Galli, Phys. Rev. B 78, 113303 (2008)
H.-V. Nguyen and S. de Gironcoli, Phys. Rev. B 79, 205114 (2009)

D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109 (2010)
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Calculation of GW quasi-particle energies

The eigenvalue decomposition of the dielectric matrix

eε(iω) =

NX
i=1

λi(iω)|ui〉〈ui|.

can be used to express the expectation value of the GW self-energy
ΣGW = ΣX + ΣC as

〈ΣC(iω)〉n =
1

2π

NX
i=1

Z
dω

′(λ−1

i (iω′) − 1)

×〈φn(v
1

2
c ui)|(H

0− i(ω − ω
′))−1|φn(v

1

2
c ui)〉

Real frequency results are obtained through analytic continuation

The matrix elements can be efficiently computed using the Lanczos
algorithm

NO empty states are explicitly required
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Practical implementation

We compute explicitly the absorption spectra using a
generalization of the non-Hermitian Lanczos iterative
algorithm. More details in:
D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, J.
Chem. Phys. 128, 154105 (2008)
The new method has been implemented in the
QUANTUM ESPRESSO package, which uses a
plane-wave basis-set and pseudopotentials
The current implementation uses a scissor operator:
ĤQP ≈ ĤKS + Δ Q̂

Work is in progress to introduce GW quasi-particle
corrections
Details in:
D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133,
164109 (2010)
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Optical spectra of bulk materials: Silicon

8 × 8 × 8 k
mesh

18 Ry cut-off
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Convergence with respect to the number of
eigenvalues in the dielectric matrix

ε̃ =
N∑

i=1

λi|ui〉〈ui|
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Tamm-Dancoff approximation (TDA)



Outline

Density matrix

formulation of

BSE

Dielectric

matrices

Practical im-

plementation

Bulk systems

Silicon

nanoclusters

Charge-

transfer

excitations

Conclusions

Additional

material

Optical spectra of bulk materials: Diamond

8 × 8 × 8 k
mesh

40 Ry cut-off
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A large system application: absorption
spectrum of a 1nm silicon nanocluster

176 electrons

40 × 40 × 40 a3

0

supercell

20 Ry cut-off

80 Ry for ε

TDA = Tamm-Dancoff approximation (Hermitian
approximation)
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Charge transfer excitations: Study of a
dipeptide model

In order to describe charge-transfer excitations:

Non-local exchange in the kernel is necessary (JCP 119,
2943 (2003))
A proper description of the screening has to be included
(Bethe-Salpeter equation)
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Dipeptide orbitals

HOMO-1

HOMO

LUMO
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Failure of TDLDA to describe charge-transfer
excitations

Optical Excitation TDLDA TDLDA CASPT21

(TDA)
HOMO → LUMO (CT) 4.61 4.61 8.07
HOMO-1 → LUMO (CT) 5.16 5.15 7.18
HOMO→LUMO+2 (L) 5.30 5.30 5.62
HOMO-2→ LUMO (L) 5.67 5.66 5.79

TDA = Tamm-Dancoff approximation (Hermitian
approximation)
CT = Charge-transfer excitation
L = Local excitation
CASPT2 = Complete Active Space with Second-order
Perturbation Theory

1JACS 1998, 120, 10912.
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Dipeptide excitation energies: Bethe-Salpeter
equation (BSE)

Optical Excitation BSE BSE CASPT21

(TDA)
HOMO → LUMO (CT) o.s.≈ 0 o.s.≈ 0 8.07 (o.s.≈ 0)
HOMO-1 → LUMO (CT) 7.20 7.05 7.18
HOMO→LUMO+2 (L) 5.33 5.30 5.62
HOMO-2→ LUMO (L) 5.63 5.60 5.79

TDA = Tamm-Dancoff approximation (Hermitian
approximation)
CT = Charge-transfer excitation
L = Local excitation
CASPT2 = Complete Active Space with Second-order
Perturbation Theory

1JACS 1998, 120, 10912.
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Dipeptide absorption spectrum

TDA = Tamm-Dancoff approximation (Hermitian
approximation)
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Preliminary GW results: IP for small
molecules (eV)

Molecule LDA PBE [1] G0W0 G0W0 [1] Exp. [1]

CH4 9.44 9.43 13.95 14.40 13.60
NH3 6.29 6.16 10.59 10.60 10.82
H2O2 6.53 6.38 11.05 11.10 11.70
H2O 7.31 7.24 12.25 11.90 12.62

[1] C. Rostgaard, K. W. Jacobsen, and K. S. Thygesen, PRB
81, 085103 (2010)

Work is in progress to interface the BSE and GW codes.



Outline

Density matrix

formulation of

BSE

Dielectric

matrices

Practical im-

plementation

Bulk systems

Silicon

nanoclusters

Charge-

transfer

excitations

Conclusions

Additional

material

Conclusions

We have introduced a new method in which:

Only calculations of occupied states are needed
The numerical scalability is comparable to ground-state
Hartree-Fock calculations
The equations are solved without relying on the
Tamm-Dancoff approximation (Hermitian approximation)
The spectrum can be calculated in an energy range much
larger than with standard approaches
Dielectric matrices are obtained using an iterative method
based on DFPT (easy storage and inversion)

The new method as been successfully applied to the
description of bulk solids, nanoclusters and charge-transfer
excitations

D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109
(2010)
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