15th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

Exact factorization of the time-dependent electron-nuclear wave function

GROSS Eberhard Kurt Ulrich Max Planck Institute of Microstructure Physics Weinberg 2
D-06120 Halle
Saale
Germany

Exact factorization of the time-dependent electron-nuclear wave function

E.K.U. Gross
Max-Planck Institute for Microstructure Physics

Co-workers:
Ali Abedi (MPI-Halle)
Neepa Maitra (CUNY)
Nikitas Gidopoulos (Rutherford Lab)

Exact factorization of the time-dependent electron-nuclear wave function:
 Life beyond the Born-Oppenheimer approximation

E.K.U. Gross
Max-Planck Institute for Microstructure Physics

Co-workers:
Ali Abedi (MPI-Halle)
Neepa Maitra (CUNY)
Nikitas Gidopoulos (Rutherford Lab)

Hamiltonian for the complete system of \mathbf{N}_{e} electrons with coordinates $\left(\mathbf{r}_{1} \cdots \mathbf{r}_{\mathbf{N}_{e}}\right) \equiv \underline{\underline{r}}$ and \mathbf{N}_{n} nuclei with coordinates $\left(\mathbf{R}_{1} \cdots \mathbf{R}_{\mathbf{N}_{\mathrm{n}}}\right) \equiv \underline{\underline{\mathbf{R}}}$, masses $\mathrm{M}_{1} \cdots \mathrm{M}_{\mathrm{N}_{\mathrm{n}}}$ and charges $\mathrm{Z}_{1} \cdots \mathrm{Z}_{\mathrm{Nn}}$.

$$
\hat{H}=\hat{\mathrm{T}}_{\mathrm{n}}(\underline{\underline{R}})+\hat{\mathrm{W}}_{\mathrm{nn}}(\underline{\underline{\mathrm{R}}})+\hat{\mathrm{T}}_{\mathrm{e}}(\underline{\underline{\mathrm{r}}})+\hat{\mathrm{W}}_{\mathrm{ee}}(\underline{\underline{(r}})+\hat{\mathrm{V}}_{\mathrm{en}}(\underline{\underline{\mathrm{R}}}, \underline{\underline{\mathrm{r}}})
$$

with $\quad \hat{\mathrm{T}}_{\mathrm{n}}=\sum_{v=1}^{\mathrm{N}_{\mathrm{n}}}-\frac{\nabla_{v}^{2}}{2 \mathrm{M}_{v}} \quad \hat{\mathrm{~T}}_{\mathrm{e}}=\sum_{\mathrm{i}=1}^{\mathrm{N}_{e}}-\frac{\nabla_{\mathrm{i}}^{2}}{2 \mathrm{~m}} \quad \hat{\mathrm{~W}}_{\mathrm{nn}}=\frac{1}{2} \sum_{\substack{\mu, v \\ \mu \neq v}}^{\mathrm{N}_{\mathrm{n}}} \frac{\mathrm{Z}_{\mu} \mathrm{Z}_{v}}{\left|\mathrm{R}_{\mu}-\mathrm{R}_{v}\right|}$

$$
\hat{W}_{e e}=\frac{1}{2} \sum_{\substack{\mathrm{j}, \mathrm{k} \\ \mathrm{j} k \mathrm{k}}}^{\mathrm{N}_{\mathrm{e}}} \frac{1}{\left|\mathrm{r}_{\mathrm{j}}-\mathrm{r}_{\mathrm{k}}\right|} \quad \hat{\mathrm{V}}_{\mathrm{en}}=\sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{e}}} \sum_{\mathrm{v}=1}^{\mathrm{N}_{n}}-\frac{\mathrm{Z}_{\mathrm{v}}}{\left|\mathrm{r}_{\mathrm{j}}-\mathrm{R}_{\mathrm{v}}\right|}
$$

convention:

Greek indices \rightarrow nuclei Latin indices \rightarrow electrons

Full Schrödinger equation: $\quad \hat{H} \Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})=\mathrm{E} \Psi(\underline{\underline{\mathrm{r}}, \underline{\underline{\mathrm{R}}})}$

Born-Oppenheimer approximation

solve
$\left(\hat{T}_{e}(\underline{\underline{r}})+\hat{\mathrm{W}}_{\mathrm{ee}}(\underline{\underline{r}})+\hat{\mathrm{V}}_{\mathrm{e}}^{\mathrm{ext}}(\underline{\underline{r}})+\hat{\mathrm{V}}_{\mathrm{en}}(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})\right) \Phi_{\underline{\underline{\mathbf{R}}}}^{\text {BO }}(\underline{\underline{\mathrm{r}}})=\epsilon^{\mathrm{BO}}(\underline{\underline{R}}) \Phi_{\underline{\underline{\mathbf{R}}}}^{\text {BO }}(\underline{\underline{r}})$
for each fixed nuclear configuration $\underline{\underline{R}}$.

Make adiabatic ansatz for the complete molecular wave function:

$$
\Psi^{\mathrm{BO}}(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathrm{R}}}}^{\mathrm{BO}}(\underline{\underline{\mathrm{r}}}) \cdot \chi^{\mathrm{BO}}(\underline{\underline{\mathrm{R}}})
$$

and find best χ^{BO} by minimizing $<\Psi^{\mathrm{BO}}|\mathrm{H}| \Psi^{\mathrm{BO}}>$ w.r.t. χ^{BO} :

Nuclear equation

$$
\begin{aligned}
& {\left[\hat{T}_{n}(\underline{\underline{R}})+\hat{W}_{n n}(\underline{\underline{R}})+\hat{V}_{n}^{\text {ext }}(\underline{\underline{R}})+\sum_{v} \frac{1}{M_{v}} A_{v}^{\text {Bo }}(\underline{\underline{R}})\left(-i \nabla_{v}\right)+\epsilon^{\text {Bo }}(\underline{\underline{R}})\right.} \\
& \left.+\int \Phi_{\underline{\underline{R}}}^{\text {BO }}{ }^{*}(\underline{\underline{\mathrm{r}}}) \hat{\mathrm{T}}_{\mathrm{n}}(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{\mathrm{R}}}}^{\mathrm{BO}}(\underline{\underline{\underline{(r}}}) \mathrm{d} \underline{\underline{\underline{r}}}\right] \chi^{\mathrm{BO}}(\underline{\underline{\mathrm{R}}})=\mathrm{E} \chi^{\mathrm{BO}}(\underline{\underline{\mathrm{R}}}) \\
& \text { Berry connection } \\
& \mathbf{A}_{v}^{\mathrm{BO}}(\underline{\underline{\mathbf{R}}})=\int \boldsymbol{\Phi}_{\underline{\underline{\mathbf{R}}}}^{\mathrm{BO}}(\underline{\underline{\mathbf{r}}})\left(-\mathrm{i} \nabla_{v}\right) \Phi_{\underline{\underline{\mathbf{R}}}}^{\mathrm{BO}}(\underline{\underline{\mathbf{r}}}) \mathrm{dr} \underline{\underline{\underline{r}}} \\
& \gamma^{\mathrm{BO}}(\mathbf{C})=\oint_{C} \overrightarrow{\mathbf{A}}^{\mathrm{BO}}(\underline{\underline{R}}) \cdot \mathbf{d} \overrightarrow{\mathbf{R}} \text { is a geometric phase }
\end{aligned}
$$

In this context, potential energy surfaces $\epsilon^{\mathrm{BO}}(\underline{\underline{\mathbf{R}}})$ and the Berry potential $\overrightarrow{\mathbf{A}}^{\mathrm{BO}}(\underline{\underline{\mathbf{R}}})$ are APPROXIMATE concepts, i.e. they follow from the BO approximation.
"Berry phases arise when the world is approximately separated into as system and its environment."

GOING BEYOND BORN-OPPENHEIMER

Standard procedure:

Expand full molecular wave function in complete set of BO states:

$$
\boldsymbol{\Psi}_{\mathbf{K}}(\underline{\underline{\mathbf{r}}, \underline{\mathbf{R}}})=\sum_{\mathbf{J}} \boldsymbol{\Phi}_{\underline{\underline{\mathbf{R}}, \mathrm{J}}}^{\mathbf{B O}}(\underline{\underline{\mathbf{r}}}) \cdot \chi_{K, \mathrm{~J}}(\underline{\underline{\mathbf{R}}})
$$

and insert expansion in the full Schrödinger equation \rightarrow standard non-adiabatic coupling terms from T_{n} acting on $\Phi_{\underline{\underline{R}}, \mathbf{J}}^{B O}(\underline{\underline{r}})$.

Drawbacks:

- $\chi_{\mathrm{J}, \mathrm{K}}$ depends on 2 indices: \rightarrow looses nice interpretation as "nuclear wave function"
- In systems driven by a strong laser, hundreds of BO-PES can be coupled.

$$
\boldsymbol{\Psi}_{0}\left(\underline{\underline{\underline{(}}, \underline{\underline{\mathbf{R}}}) \approx \chi_{00}(\underline{\underline{\mathbf{R}}}) \boldsymbol{\Phi}_{0, \underline{\underline{\mathbf{R}}}}^{\mathrm{BO}}(\underline{\underline{\mathbf{r}}})+\chi_{01}(\underline{\underline{\mathbf{R}}}) \boldsymbol{\Phi}_{1, \underline{\underline{\mathbf{R}}}}^{\mathrm{BO}}(\underline{\underline{\mathbf{r}}}) .}\right.
$$

Potential energy surfaces are absolutely essential in our understanding of a molecule

GOAL: Show that $\Psi(\underline{\underline{n}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}) \cdot \chi(\underline{\underline{\mathrm{R}}})$ can be made EXACT

- Concept of EXACT potential energy surfaces (beyond BO)
- Concept of EXACT Berry connection (beyond BO)
- Concept of EXACT time-dependent potential energy surfaces for systems exposed to electro-magnetic fields
- Concept of ECACT time-dependent Berry connection for systems exposed to electro-magnetic fields

Theorem I

The exact solutions of

$$
\hat{\mathrm{H}} \Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})=\mathrm{E} \Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})
$$

can be written in the form

$$
\Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{r}}) \cdot \chi(\underline{\underline{\mathrm{R}}})
$$

where $\int d r\left|\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}})\right|^{2}=1 \quad$ for each fixed $\underline{\underline{R}}$.

First mentioned in: G. Hunter, Int. J.Q.C. 9 , 237 (1975)

1. The diagonal $\Gamma(\underline{\underline{R}})$ of the nuclear $\mathbf{N}_{\mathbf{n}}$-body density matrix is identical with $|\chi(\underline{\underline{\mathbf{R}}})|^{2}$

\Rightarrow in this sense, $\chi(\underline{\underline{\mathbf{R}}})$ can be interpreted as a proper nuclear wavefunction.
2. $\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})$ and $\chi(\underline{\underline{R}})$ are unique up to within the "gauge transformation"

$$
\widetilde{\Phi}_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}}):=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathbf{R}}})} \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \quad \widetilde{\chi}(\underline{\underline{\mathrm{R}}}):=\mathrm{e}^{-\mathrm{i} \theta(\underline{\underline{\mathbf{R}}})} \chi(\underline{\underline{\mathrm{R}}})
$$

proof: Let $\phi \cdot \chi$ and $\widetilde{\phi} \cdot \widetilde{\chi}$ be two different representations of an exact eigenfunction Ψ i.e.

$$
\begin{aligned}
& \Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}) \chi(\underline{\underline{\mathrm{R}}})=\tilde{\Phi}_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}) \tilde{\chi}(\underline{\underline{\mathrm{R}}}) \\
& \Rightarrow \frac{\widetilde{\Phi}_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}})}{\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}})}=\frac{\chi(\underline{\underline{\mathrm{R}}})}{\widetilde{\chi}(\underline{\underline{\mathrm{R}}})} \equiv G(\underline{\underline{\mathrm{R}}}) \quad \Rightarrow \quad \widetilde{\Phi}_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}})=G(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \\
& \Rightarrow \underbrace{\int \operatorname{dr}\left|\widetilde{\Phi}_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}})\right|^{2}}_{1}=\mid \mathrm{G}(\left.\underline{\underline{\mathrm{R}})}\right|^{2} \underbrace{\int \mathrm{dr}\left|\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{r}})\right|^{2}}_{\mathbf{1}} \\
& \Rightarrow \quad|\mathrm{G}(\underline{\underline{\mathrm{R}}})|=1 \quad \Rightarrow \mathrm{G}(\underline{\underline{\mathrm{R}}})=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathbf{R}}})} \\
& \Rightarrow \widetilde{\Phi}_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}})=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathrm{R}}})} \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \quad \widetilde{\chi}(\underline{\underline{\mathrm{R}}})=\mathrm{e}^{-\mathrm{i} \theta(\underline{\underline{\mathrm{R}}})} \chi(\underline{\underline{\mathrm{R}}})
\end{aligned}
$$

Theorem II: $\Phi_{\underline{\underline{R}}}(\underline{\underline{\mathrm{r}}})$ and $\chi(\underline{\underline{\mathrm{R}}})$ satisfy the following equations:
Eq. (0) $\begin{aligned} & (\underbrace{\hat{\mathrm{T}}_{\mathrm{e}}+\hat{\mathrm{W}}_{\text {ee }}+\hat{\mathrm{V}}_{e}^{\text {ext }}+\hat{\mathrm{V}}_{\text {en }}}_{\hat{H}_{\text {Bo }}}+\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-i \nabla_{v}-\mathrm{A}_{v}\right)^{2} \\ & \left.\quad+\sum_{v}^{N_{n}} \frac{1}{\mathrm{M}_{v}}\left(\frac{-i \nabla_{v} \chi}{\chi}+\mathrm{A}_{v}\right)\left(-i \nabla_{v}-\mathrm{A}_{v}\right)\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{r}})=\in(\underline{\underline{R}}) \Phi_{\underline{\underline{R}}}(\underline{\underline{(r}})\end{aligned}$
Eq. (2) $\left(\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-i \nabla_{v}+\mathrm{A}_{v}\right)^{2}+\hat{\mathrm{W}}_{\mathrm{nn}}+\hat{\mathrm{V}}_{n}^{\text {ext }}+\in(\underline{\underline{R}})\right) \chi(\underline{\underline{R}})=\operatorname{Ex}(\underline{\underline{(R}})$
where $\quad A_{v}(\underline{\underline{R}})=-i \int \Phi_{\underline{\underline{R}}}^{*}(\underline{\underline{r}}) \nabla_{v} \Phi_{\underline{\underline{R}}}(\underline{\underline{\underline{r}}}) d \underline{\underline{\underline{r}}}$
G. Hunter, Int. J. Quant. Chem. 9, 237 (1975).
N.I. Gidopoulos, E.K.U.G. arXiv: cond-mat/0502433

OBSERVATIONS:

- Eq. (1) is a nonlinear equation in $\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})$
- Eq. (1) contains $\chi(\underline{\underline{R}}) \Rightarrow$ selfconsistent solution of (1) and 2 required
- Neglecting the $1 / M_{v}$ terms in $1, B O$ is recovered
- There is an alternative, equally exact, representation $\Psi=\Phi_{\underline{\underline{r}}}(\underline{\underline{\mathrm{R}}}) \chi(\underline{\underline{\mathrm{r}}})$ (electrons move on the nuclear energy surface)
- Eq. (1) and 2 are form-invariant under the "gauge" transformation

$$
\begin{aligned}
& \Phi \rightarrow \widetilde{\Phi}=\mathrm{e}^{\mathrm{i} \theta(\underline{\underline{\mathbf{R}}})} \Phi \\
& \chi \rightarrow \widetilde{\chi}=\mathrm{e}^{-\mathrm{i} \theta(\underline{\underline{\mathbf{R}}})} \chi \\
& \mathrm{A}_{v} \rightarrow \widetilde{\mathrm{~A}}_{v}=\mathrm{A}_{v}+\nabla_{v} \theta(\underline{\underline{\mathrm{R}}}) \\
& \in(\underline{\underline{\mathrm{R}}}) \rightarrow \widetilde{\in}(\underline{\underline{\mathrm{R}}})=\in(\underline{\underline{\mathrm{R}}}) \quad \text { Exact potential energy surface is gauge invariant. }
\end{aligned}
$$

- $\gamma(\mathrm{C}):=\oint_{\mathrm{C}} \overrightarrow{\mathrm{A}} \cdot \mathrm{d} \overrightarrow{\mathrm{R}}$ is a (gauge-invariant) geometric phase the exact geometric phase

Proof of Theorem I:

Given the exact electron-nuclear wavefuncion $\Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})$

Choose: $\quad \chi\left(\underline{\underline{\mathrm{R}})}:=\mathrm{e}^{\mathrm{is}(\underline{\underline{\mathrm{R}}})} \sqrt{\int \mathrm{dr}|\Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})|^{2}}\right.$

$$
\text { with some real-valued funcion } S(\underline{\underline{R}})
$$

$$
\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}}):=\Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}}) / \chi(\underline{\underline{\mathrm{R}}})
$$

Then, by construction, $\quad \int \operatorname{dr}\left|\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{(r}})\right|^{2}=1$

first step:

Find the variationally best $\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{r}})$ and $\chi(\underline{\underline{\mathrm{R}}})$ by minimizing the total energy under the subsidiary condition that $\int \operatorname{dr}\left|\Phi_{\underline{\underline{\mathbf{R}}}}^{(\underline{\underline{r}})}\right|^{2}=1$. This gives two Euler equations:

Eq. © $\frac{\delta}{\left.\delta \Phi_{\underline{\underline{\mathbf{R}}}}^{\underline{(r}} \underline{\underline{\mathrm{r}}}\right)}\left(\left.\frac{\langle\Phi \chi| \hat{\mathrm{H}}|\Phi \chi\rangle}{\langle\Phi \chi \mid \Phi \chi\rangle}-\int \mathrm{d} \underline{\underline{\mathrm{R}}} \Lambda(\underline{\underline{\mathrm{R}}}) \int \mathrm{dr} \right\rvert\, \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}})^{2}\right)=0$
Eq. 2$) \frac{\delta}{\delta \chi(\underline{\underline{\mathrm{R}})}}\left(\frac{\langle\Phi \chi| \hat{\mathrm{H}}|\Phi \chi\rangle}{\langle\Phi \chi \mid \Phi \chi\rangle}\right)=0$
second step:
prove the implication
Φ, χ satisfy Eqs. 1), $2 \quad \Rightarrow \Psi:=\Phi \chi \quad$ satisfies $H \Psi=E \Psi$

How do the exact PES look like?

MODEL
(S. Shin, H. Metiu, JCP 102, 9285 (1995), JPC 100, 7867 (1996))

Nuclei (1) and (2) are heavy: Their positions are fixed

Exact Berry connection

$A_{v}(\underline{\underline{R}})=\int d \underline{\underline{r}} \Phi_{\underline{\underline{R}}}^{*}(\underline{\underline{\mathrm{r}}})\left(-\mathrm{i} \nabla_{v}\right) \Phi_{\underline{\underline{\underline{R}}}}(\underline{\underline{\mathrm{r}}})$

Insert: $\quad \Phi_{\underline{\underline{\underline{R}}}}(\underline{\underline{\mathrm{r}}})=\Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}}) / \chi(\underline{\underline{\mathrm{R}}})$

$$
\chi(\underline{\underline{\mathrm{R}}}):=\mathrm{e}^{\mathrm{i} \theta(\underline{\mathrm{R}})}|\chi(\underline{\underline{\mathrm{R}}})|
$$

$$
\mathrm{A}_{v}(\underline{\underline{\mathrm{R}}})=\operatorname{Im}\left\{\int d \underline{\underline{\mathrm{r}}} \Psi^{*}(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}}) \nabla_{v} \Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})\right\} /|\chi(\underline{\underline{\mathrm{R}}})|^{2}-\nabla_{v} \theta
$$

$$
\mathrm{A}_{v}(\underline{\underline{\mathrm{R}}})=\mathrm{J}_{v}(\underline{\underline{\mathrm{R}}}) / \mid \chi(\underline{\underline{\mathrm{R}}})^{2}-\nabla_{v} \theta(\underline{\underline{\mathrm{R}}})
$$

with the exact nuclear current density J_{v}

Consider special cases where $\Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\underline{r}}})$ is real-valued (e.g. non-degenerate ground state \rightarrow DFT formulation)

$$
\begin{aligned}
& \Rightarrow A_{v}(\underline{\underline{\mathrm{R}}})=-\mathrm{i} \int \mathrm{dr} \underset{=}{\Phi_{\underline{\underline{\mathrm{R}}}}^{*}(\underset{=}{\mathrm{r}}) \nabla_{v} \Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{r}})=-\mathrm{i} \int \mathrm{~d} \underset{=}{2} \frac{1}{2} \nabla_{v} \Phi_{\underline{\underline{\mathrm{R}}}}^{2}(\underline{\underline{\mathrm{r}}}) ~} \\
& =-\frac{\dot{1}}{2} \nabla_{v} \int \mathrm{dr} \Phi_{\underline{\underline{\mathrm{R}}}}^{2}(\underset{=}{\mathrm{r}})=0
\end{aligned}
$$

Eqs. (1), (2) simplify:

- $\left(\hat{H}_{\text {Bo }}+\sum_{v} \frac{-\nabla_{v}^{2}}{2 M_{v}}-\sum_{v} \frac{1}{2 M_{v}}\left(\frac{\nabla_{v} x}{\chi}\right) \cdot \nabla_{v}\right) \Phi_{\underline{\underline{g}}}(\underline{\underline{r}})=\epsilon(\underline{\underline{R}}) \Phi_{\underline{\underline{E}}}(\underline{\underline{(r}})$
- $\left(\hat{\mathrm{T}}_{n}+\hat{W}_{\text {min }}+\hat{v}_{n}^{\left({ }^{\prime \prime}\right.}+\epsilon(\underline{\underline{\mathrm{R}}})\right) \chi(\underline{\underline{\mathrm{R}}})=E x(\underline{\underline{\mathrm{R}}})$

Density functional theory beyond BO

What are the "right" densities?

first attempt

$$
\begin{gathered}
\mathrm{n}(\mathrm{r})=\mathrm{N}_{\mathrm{e}} \int \mathrm{~d}^{\mathrm{N}_{\mathrm{e}}-1} \underline{\underline{r}} \int \mathrm{~d}^{\mathrm{N}_{\mathrm{n}}} \underline{\underline{R}}|\Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})|^{2} \\
\mathrm{~N}(\mathrm{R})=\mathrm{N}_{\mathrm{n}} \int \mathrm{~d}^{\mathrm{N}_{\mathrm{e}}} \underline{\underline{r}} \int \mathrm{~d}^{\mathrm{N}_{\mathrm{n}}-1} \underline{\underline{\mathrm{R}}}|\Psi(\underline{\underline{\mathrm{r}}, \underline{\mathrm{R}}})|^{2}
\end{gathered}
$$

A HK theorem $\left(\mathbf{V}_{n}^{\text {ext }}, \mathbf{V}_{\mathrm{e}}^{\text {ext }}\right) \stackrel{1-1}{\longleftrightarrow}(\mathbf{N}, \mathbf{n})$ is easily demonstrated (Parr et al).

This, however, is NOT useful (though correct) because, for $V_{n}^{\text {ent }} \equiv 0 \equiv V_{e}^{\text {ext }}$, one has:

$$
\begin{aligned}
\mathbf{n} & =\text { constant } \\
\mathbf{N} & =\text { constant }
\end{aligned}
$$

(easily verified using $\boldsymbol{\Psi}=\mathbf{e}^{-i \mathbf{k} \cdot \mathbf{R}_{\mathrm{CM}}} \boldsymbol{\Psi}$)
next attempt $\quad \widetilde{\mathrm{n}}\left(\mathrm{r}-\mathrm{R}_{\mathrm{CM}}\right) \quad \widetilde{\mathrm{N}}\left(\mathrm{R}-\mathrm{R}_{\mathrm{CM}}\right)$

NO GOOD, because spherical for ALL systems

Useful densities are:

$$
\left.\Gamma(\underline{\underline{\mathrm{R}}}):=\int \mathrm{dr}|\Psi(\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})|^{2} \quad \text { (diagonal of nuclear } \mathbf{D M}\right)
$$

$\mathrm{n}_{\underline{\underline{R}}}(\mathrm{r}):=\frac{\mathrm{N}_{\mathrm{e}} \cdot \int \mathrm{d}^{\mathbf{N}_{\mathrm{e}}-1} \underline{\underline{r}}|\Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})|^{2}}{\Gamma(\underline{\underline{\mathrm{R}}})}$ is a conditional probability density

Note: $n_{\underline{\underline{R}}}(r)$ is the density that has always been used in the DFT within BO
now use decomposition $\Psi(\underset{\underline{r}}{\underline{r}} \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}}) \chi(\underline{\underline{\mathrm{R}}})$
then $\Gamma(\underline{\underline{\mathrm{R}}})=\int \underbrace{\mathrm{dr}}_{1}\left|\Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}})\right|^{2}|\chi(\mathrm{R})|^{2}=|\chi(\mathrm{R})|^{2}$

$$
\mathrm{n}_{\underline{\underline{\underline{R}}}}(\mathrm{r})=\frac{\mathrm{N}_{\mathrm{e}} \cdot \int \mathrm{~d}^{\mathrm{N}^{-1}} \underline{\underline{r}}\left|\Phi_{\underline{\underline{\underline{R}}}}(\underline{\underline{\mathrm{r}}})\right|^{2} \mid()^{2}}{\mid \underline{\mathrm{n}})} \mathrm{N}_{\mathrm{e}} \cdot \int \mathrm{~d}^{\mathrm{N}^{-1}} \underline{=}\left|\Phi_{\underline{\underline{\underline{R}}}}(\underline{\underline{\mathrm{r}}})\right|^{2} \quad \text { (like in B.O.) ! }
$$

HK theorem

$$
\left(\mathrm{n}_{\underline{\underline{\mathrm{R}}}}^{\mathrm{gs}}(\mathrm{r}), \Gamma^{\mathrm{gs}}(\underline{\underline{\mathrm{R}}})\right) \stackrel{1-1}{\longleftrightarrow}\left(\mathrm{v}_{\mathrm{e}}(\mathrm{r}, \underline{\underline{\mathrm{R}}}), \mathrm{v}_{\mathrm{n}}(\underline{\underline{\mathrm{R}}})\right)
$$

Eq. (1) $\left(\hat{T}_{\mathrm{e}}+\hat{\mathrm{V}}_{\mathrm{e}}+\hat{\mathrm{W}}_{\text {int }}\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{\mathrm{r}}})=\in(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{R}}}(\underline{\underline{\mathrm{r}}})$
Eq. (2) $\left(\hat{\mathrm{T}}_{\mathrm{n}}+\hat{\mathrm{V}}_{\mathrm{n}}\right) \chi(\underline{\underline{R}})=\mathrm{E} \chi(\underline{\underline{R}})$

$$
\begin{aligned}
\text { where } & V_{e}(\underline{\underline{r}}, \underline{\underline{R}})=\sum_{j} v_{e}\left(r_{j}, \underline{\underline{R}}\right)=\sum_{j} v_{e n}\left(r_{j}, \underline{\underline{R}}\right)+v_{e}^{\text {ext }}\left(r_{j}\right) \\
& V_{n}(\underline{\underline{R}})=W_{n n}(\underline{\underline{R}})+v_{n}^{\text {ext }}(\underline{\underline{R}})+\in(\underline{\underline{R}})
\end{aligned}
$$

KS equations

nuclear equation stays the same
(2) $\left(\hat{\mathrm{T}}_{\mathrm{n}}+\hat{\mathrm{W}}_{\mathrm{nn}}(\underline{\underline{R}})+\hat{\mathrm{V}}_{\mathrm{n}}^{\text {ext }}(\underline{\underline{\mathrm{R}}})+\in(\underline{\underline{\mathrm{R}}})\right) \chi(\underline{\underline{\mathrm{R}}})=\mathrm{E} \chi(\underline{\underline{\mathrm{R}}})$

- $\left(\hat{\mathrm{T}}_{\mathrm{e}}+\hat{\mathrm{V}}_{\mathrm{e}}(\underline{\underline{\mathrm{r}}}, \underline{\underline{\underline{R}}})+\quad \mathrm{W}_{\text {int }}[\chi](\underline{\underline{\mathrm{r}}}, \underline{\underline{\underline{R}}})+\in(\underline{\underline{R}})\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{\mathrm{r}}})=\in(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{\underline{R}}}}(\underline{\underline{\mathrm{r}}})$
is replaced by a standard (i.e. 1-body) KS scheme

KS equations

nuclear equation stays the same
(2) $\left(\hat{\mathrm{T}}_{\mathrm{n}}+\hat{\mathrm{W}}_{\mathrm{nn}}(\underline{\underline{R}})+\hat{\mathrm{V}}_{\mathrm{n}}^{\text {ext }}(\underline{\underline{R}})+\in(\underline{\underline{R}})\right) \chi(\underline{\underline{R}})=\mathrm{E} \chi(\underline{\underline{R}})$
(0) $\left(\hat{\mathrm{T}}_{\mathrm{e}}+\hat{\mathrm{V}}_{\mathrm{e}}^{\lambda}(\underset{\underline{\mathrm{r}}}{\underline{\mathrm{r}}} \underline{\underline{R}})+\lambda \cdot \mathrm{W}_{\text {int }}[\chi](\underline{\underline{\mathrm{r}}}, \underline{\underline{\mathrm{R}}})+\in(\underline{\underline{\mathrm{R}}})\right) \Phi_{\underline{\underline{\mathrm{R}}}}(\underline{\underline{\mathrm{r}}})=\epsilon^{\lambda}(\underline{\underline{\mathrm{R}}}) \Phi_{\underline{\underline{\underline{R}}}}(\underline{\underline{\mathrm{r}}})$
is replaced by a standard (i.e. 1-body) KS scheme
constructed by adiabatic connection, switching from
$\boldsymbol{\lambda}=\mathbf{1}$ (fully interacting system) to $\boldsymbol{\lambda}=\mathbf{0}$ (non-interacting system) and adjusting V_{e}^{λ} for each λ such that $\mathbf{n}_{\underline{\underline{R}}}(r)$ does not change

Electronic equation:

$$
\begin{aligned}
& \left(-\frac{\nabla^{2}}{2 m}+v_{K S}(r, \underline{\underline{R}})\right) \varphi_{\underline{\underline{R}}, j}(r)=\eta_{j}(\underline{\underline{R}}) \varphi_{\underline{\underline{R}}, j}(r) \\
& v_{\text {KS }}(r, \underline{\underline{R}})=v_{\text {en }}(r, \underline{\underline{R}})+v_{\mathrm{e}}^{\text {ext }}(r)+v_{\text {Hxc }}\left(\chi, n_{\underline{\underline{R}}}\right)(r, \underline{\underline{R}})
\end{aligned}
$$

$\mathbf{v}_{\mathrm{KS}}(\underline{\underline{\mathbf{r}}}, \underline{\underline{\mathbf{R}}})=$ local (multiplicative) one-body potential that contains all non-adiabatic couplings
$\mathbf{v}_{\text {KS }}$ depends on χ and $\mathrm{n}_{\underline{\underline{R}}}(\mathrm{r})$
\rightarrow self-consistency with

$$
\mathrm{n}_{\underline{\underline{R}}}(\mathrm{r})=\sum_{\mathrm{j}=1}^{\mathbf{N}_{\mathrm{e}}} \mid \varphi_{\underline{\underline{R}, j}}(r)^{2}
$$

and with nuclear equation (2) required:

$$
\in(\underline{\underline{\mathrm{R}}})=\sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{e}}} \eta_{\mathrm{j}}(\underline{\underline{\mathrm{R}}})-\int \mathrm{n}_{\underline{\underline{R}}}(\mathrm{r}) \mathrm{v}_{\mathrm{Hxc}}(\mathrm{r}, \underline{\underline{\mathrm{R}}}) \mathrm{d}^{3} \mathrm{r}+\mathrm{E}_{\mathrm{Hxc}}\left(\chi, \mathrm{n}_{\underline{\underline{R}}}\right)
$$

Time-dependent case

Hamiltonian for the complete system of \mathbf{N}_{e} electrons with coordinates $\left(\mathbf{r}_{1} \cdots \mathbf{r}_{\mathbf{N}_{e}}\right) \equiv \underline{\underline{r}}$ and \mathbf{N}_{n} nuclei with coordinates $\left(\mathbf{R}_{1} \cdots \mathbf{R}_{\mathbf{N}_{\mathrm{n}}}\right) \equiv \underline{\underline{R}}$, masses $\mathrm{M}_{1} \cdots \mathrm{M}_{\mathrm{N}_{\mathrm{n}}}$ and charges $\mathrm{Z}_{1} \cdots \mathrm{Z}_{\mathrm{N}_{\mathrm{n}}}$.

$$
\hat{H}=\hat{\mathrm{T}}_{\mathrm{n}}(\underline{\underline{R}})+\hat{\mathrm{W}}_{\mathrm{nn}}(\underline{\underline{\mathrm{R}}})+\hat{\mathrm{T}}_{\mathrm{e}}(\underline{\underline{\mathrm{r}}})+\hat{\mathrm{W}}_{\mathrm{ee}}(\underline{\underline{(r}})+\hat{\mathrm{V}}_{\mathrm{en}}(\underline{\underline{\mathrm{R}}}, \underline{\underline{r}})
$$

with $\hat{T}_{n}=\sum_{v=1}^{N_{n}}-\frac{\nabla_{v}^{2}}{2 \mathrm{M}_{v}} \quad \hat{T}_{e}=\sum_{i=1}^{N_{e}}-\frac{\nabla_{i}^{2}}{2 m} \quad \hat{W}_{n n}=\frac{1}{2} \sum_{\substack{\mu, v \\ \mu \neq v}}^{N_{n}} \frac{Z_{\mu} Z_{v}}{\left|R_{\mu}-R_{v}\right|}$

$$
\hat{W}_{e e}=\frac{1}{2} \sum_{\substack{\mathrm{j}, \mathrm{k} \\ \mathrm{j} \neq \mathrm{k}}}^{\mathrm{N}_{\mathrm{e}}} \frac{1}{\left|\mathrm{r}_{\mathrm{j}}-\mathrm{r}_{\mathrm{k}}\right|} \quad \hat{\mathrm{V}}_{\mathrm{en}}=\sum_{\mathrm{j}=1}^{\mathrm{N}_{\mathrm{e}}} \sum_{\mathrm{v}=1}^{\mathrm{N}_{\mathrm{n}}}-\frac{\mathrm{Z}_{v}}{\left|\mathrm{r}_{\mathrm{j}}-\mathrm{R}_{v}\right|}
$$

Time-dependent Schrödinger equation

$$
\begin{aligned}
& i \frac{\partial}{\partial t} \Psi(\underline{\underline{r}}, \underline{\underline{R}}, \mathrm{t})=\left(\mathrm { H } \left(\underline{\left.\underline{\underline{r}}, \underline{\underline{R}})+V_{\text {laser }}(\underline{\underline{r}}, \underline{\underline{R}}, \mathrm{t})\right) \psi(\underline{\underline{r}}, \underline{\underline{R}}, \mathrm{t})}\right.\right. \\
& \mathrm{V}_{\text {laser }}(\underline{\underline{r}}, \underline{\underline{R}}, \mathrm{t})=\left(\sum_{\mathrm{j}=1}^{N_{o}} \mathrm{r}_{\mathrm{j}}-\sum_{v=1}^{N_{n}} Z_{v} R_{v}\right) \cdot \mathrm{E} \cdot \mathrm{f}(\mathrm{t}) \cdot \cos \omega \mathrm{t}
\end{aligned}
$$

Theorem T-I

The exact solution of
can be written in the form

$$
\begin{aligned}
& \Psi(\underline{r}, \underline{\underline{R}}, \mathrm{t})=\Phi_{\underline{\underline{R}}}(\underline{r}, \mathrm{t}) \chi(\underline{\underline{\mathrm{R}}, \mathrm{t})} \\
& \text { where } \int \mathrm{d} \underset{=}{\underline{r}}\left|\Phi_{\underline{\underline{R}}}(\underline{\underline{r}}, \mathrm{t})\right|^{2}=1 \text { for any fixed } \underline{\underline{R}}, \mathrm{t}
\end{aligned}
$$

Theorem T-II

$$
\Phi_{\underline{\underline{R}}}(\underline{\underline{r}}, \mathrm{t}) \text { and } \chi(\underline{\underline{\mathrm{R}}, \mathrm{t}}) \quad \text { satisfy the following equations }
$$

Eq. (1)

$$
\begin{aligned}
& (\underbrace{\hat{\mathrm{W}}_{\mathrm{ce}}+\hat{\mathrm{V}}_{\mathrm{ec}}^{\text {ext }}(\underline{r}, t)+\hat{\mathrm{V}}_{\mathrm{cn}}(\underline{\underline{r}}, \underline{\underline{R}})}_{\hat{H}_{\text {Bo }}(t)}+\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-i \nabla_{v}-A_{v}(\underline{\underline{R}}, t)\right)^{2} \\
& \left.+\sum_{v}^{N_{n}} \frac{1}{M_{v}}\left(\frac{-i \nabla_{v} \chi(\underline{\underline{R}}, t)}{\chi(\underline{\underline{R}}, t)}+A_{v}(\underline{\underline{R}}, t)\right)\left(-i \nabla_{v}-A_{v}\right)-\in(\underline{\underline{R}}, t)\right) \Phi_{\underline{\underline{R}}}(\underline{\underline{r}})=i \partial_{t} \Phi_{\underline{\underline{R}}}(\underline{\underline{r}}, t)
\end{aligned}
$$

Eq. 2

$$
\left(\sum_{v}^{N_{n}} \frac{1}{2 M_{v}}\left(-i \nabla_{v}+A_{v}(\underline{\underline{R}}, t)\right)^{2}+\hat{W}_{n n}(\underline{\underline{R}})+\hat{V}_{n}^{\text {ext }}(\underline{\underline{R}}, t)+(\underline{\underline{R}}, t)\right) \chi(\underline{\underline{R}}, t)=i \partial_{t} \chi(\underline{\underline{R}}, t)
$$

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010)

$$
\in(\underline{\underline{R}}, \mathrm{t})=\int \mathrm{dr} \underline{\underline{\underline{r}}} \Phi_{\underline{\mathrm{R}}}^{*}(\underline{\underline{r}}, \mathrm{t})\left(\mathrm{H}_{\mathrm{BO}}(\mathrm{t})+\sum_{v}^{N_{n}} \frac{1}{2 \mathrm{M}_{v}}\left(-i \nabla_{v}-\mathrm{A}_{v}(\underline{\underline{R}}, \mathrm{t})\right)^{2}-\mathrm{i} \partial_{\mathrm{t}}\right) \Phi_{\underline{\mathrm{R}}}(\underline{\underline{\mathrm{r}}}, \mathrm{t})
$$

EXACT time-dependent potential energy surface

$$
A_{v}(\underline{\underline{R}}, \mathrm{t})=-\mathrm{i} \int \Phi_{\underline{\underline{\mathbf{R}}}}^{*}(\underset{\underline{\mathrm{r}, \mathrm{t}}}{\underline{2}}) \nabla_{v} \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathrm{r}}, \mathrm{t}}) \mathrm{dr} \underset{\underline{\text { Berry connection }}}{\text { EXACT time-dependent }}
$$

Example: $\mathbf{H}_{\mathbf{2}}{ }^{+}$in 1 D in strong laser field

 exact solution of $i \partial_{t} \Psi(r, R, t)=H \Psi(r, R, t):$Compare with:

- Hartree approximation:

$$
\Psi(\mathrm{r}, \mathrm{R}, \mathrm{t})=\chi(\mathrm{R}, \mathrm{t}) \cdot \varphi(\mathrm{r}, \mathrm{t})
$$

- Standard Ehrenfest dynamics
- "Exact Ehrenfest dynamics" where the forces on the nuclei are calculated from the exact TD-PES

The internuclear separation $<\mathrm{R}\rangle(\mathrm{t})$ for the intensities $\mathrm{I}_{1}=10^{14} \mathrm{~W} / \mathrm{cm}^{2}$ (left) and $\mathrm{I}_{2}=2.5 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$ (right)

Exact time-dependent PES

Dashed: $\mathrm{I}_{1}=10^{14} \mathrm{~W} / \mathrm{cm}^{2}$; solid: $\mathrm{I}_{2}=2.5 \times 10^{13} \mathrm{~W} / \mathrm{cm}^{2}$

Summary:

- $\Psi(\underline{\underline{r}}, \underline{\underline{\mathrm{R}}})=\Phi_{\underline{\mathrm{R}}}(\underline{\underline{\mathrm{r}}}) \cdot \chi(\underline{\underline{\mathrm{R}}}) \quad$ is an exact representation of the completēe electron-nuclear wavefunction if χ and Φ satisfy the right equations (namely Eqs. ©, (2))
- Eqs. © , (2) provide the proper definition of the
--- exact potential energy surface
--- exact Berry connection
both in the static and the time-dependent case
- Multi-component (TD)DFT framework
- TD-PES useful to interpret different dissociation meachanisms
Tha:aks!

