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Hamiltonian for the complete system of N, electrons with coordinates
(rl ---rN ) r and N, nuclei with coordinates (Rl Ry )z R, masses
M, -+ My, “and charges Ly 1y,

=T,(R)+ W, (R)+T,(r) + W, (1) + V., (R, )
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Greek indices = nuclei

convention; e e .
Latin indices — electrons

Full Schridinger equation: Hy (£, &) =EY (£, g)




Born-Oppenheimer approximation

solve
(E.(0) + W (1) + V2 (0) + ¥, (. R)JOE (1) =20 (R) 2(r)

for each fixed nuclear configuration R.

Make adiabatic ansatz for the complete molecular wave function:

LI’Bo(g, g) =0’ (£) " (R)

I

and find best y8° by minimizing <WBO |H |W¥BO > w.rt. ¥BO:




Nuclear equation

1 :
o AV R)EV,) + < (R)

V)

T,(R)+ W,,(R)+ V™ (R) + Y|

Jone ()T, (R)0R ekt ()=

Berry connection

In this context, potential energy surfaces <" * (5) and the Berry potential ABO(E)
are APPROXIMATE concepts, i.e. they follow from the BO approximation.

“Berry phases arise when the world is approximately separated into as system and
its environment.”



GOING BEYOND BORN-OPPENHEIMER

Standard procedure:

Expand full molecular wave function in complete set of BO states:

¥, (r,R)= L (1) 20 (R)

and insert expansion in the full Schriodinger equation — standard

non-adiabatic coupling terms from T _acting on (Dl]i(?, (r)

Drawbacks:

* X;.x depends on 2 indices: — looses nice interpretation as
“nuclear wave function”
* In systems driven by a strong laser, hundreds of BO-PES can be
coupled.



¥, (R) ~ % (R) @R () +20 (R)@1R(r)

Potential energy surfaces are absolutely essential
in our understanding of a molecule




(g)- x(g) can be made EXACT

GOAL: Show that ¥(r,R)=®

I'=

Concept of EXACT potential energy surfaces (beyond BO)

Concept of EXACT Berry connection (beyond BO)

Concept of EXACT time-dependent potential energy surfaces
for systems exposed to electro-magnetic fields

Concept of ECACT time-dependent Berry connection
for systems exposed to electro-magnetic fields



Theorem I

The exact solutions of

f¥(r.R)= E¥(r.R)

can be written in the form

¥(r.R)= @, (r) 2(R)

2
=1 for each fixed R.

where j d£‘(I) R (£)

First mentioned in: G. Hunter, Int. J.Q.C. 9, 237 (1975)



Immediate consequences of Theorem I:

1. The diagonal FL) of the nuclear N _-body density matrix is identical

Wlth‘xL)‘ B

proof: T(R)=[dr¥(r,R)[ j dr|@,(r)

g

1

= in this sense, X(B) can be interpreted as a proper nuclear wavefunction.

2. O, (r)and X(R)are unique up to within the “gauge transformation”

=" oy r) 7(R)=¢""y(R)

|7
|7



proof: Let ¢-y and ¢ - be two different representations of an exact eigenfunction

¥(LR)=, (r)x(R)=,(r)T(R)
= izg =;E§; =G(R) = B,(r)=G(R) @y(r)
= [ dify (1) “=[G(R) [drloy () 2



Theorem 11: @ ( r) and x( R) satisty the following equations:

N
Vo N Vo N n 1
ext
Te+wee+ve +Ven+E

~ M,

G. Hunter, Int. J. Quant. Chem. 9, 237 (1975).
N.I. Gidopoulos, E.K.U.G. arXiv: cond-mat/0502433



OBSERVATIONS:

* Eq. © is a nonlinear equation in (DR(£)
* Eq. © contains X(&) = selfconsistent solution of @ and ® required

* Neglecting the 1/M terms in @, BO is recovered

* There is an alternative, equally exact, representation ¥ =@ (B)X(£)
(electrons move on the nuclear energy surface) -

* Eq. ® and ® are form-invariant under the “gauge” transformation

O =e"®o

-i0(R)

X>A=¢ X
A, —>A,=A,+V0R)

~~

€ (g) —> € (B) =€ (R) Exact potential energy surface is gauge invariant.

. y(C) —dA-dR isa (gauge-invariant) geometric phase
¢ the exact geometric phase



Proof of Theorem 1:

Given the exact electron-nuclear wavefuncion Y ( I, g)

IIPU

Choose: = =c" \/J‘df‘\lj £

with some real-valued funcion S( &)

O, (r):=¥(r.R)/x(R)

=
=3

2

Then, by construction, I d£‘(I)5 (£) =1




Proof of theorem II (basic idea)

first step:
Find the variationally best (I)B @) and X(E) by minimizing the total energy under

2
the subsidiary condition that f dE‘CDR(E)‘ =1. This gives two Euler equations:

i

e o[ (%

Dulr) | (Oxj0r)

> - [dRAR)[drfo, () |=

(Al
Sx(R) | (Dx|or)

second step:

=0

prove the implication

®, y satisfy Eqs. O, @ = Y:=@y satisfies HY=EY¥Y



How do the exact PES look like?




MODEL
(S. Shin, H. Metiu, JCP 102, 9285 (1995), JPC 100, 7867 (1996))
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Nuclei (1) and (2) are heavy: Their positions are fixed
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= BO-PES #1
= BO-PES #2
— BO-PES #3
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m—— cxact PES #1
m— axact PES #2

e axact PES #3
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Exact Berry connection

A (R)=[dr @, (r) (-iV,) @ (r)

Insert: () (

>
=
|l
3
-
o,
[l =3
’E*
=
<
-
=
=
=
I
<
D

A(R)=1,(R)/[t(R) -V.0(R)

with the exact nuclear current density J,



Consider special cases where @
state &> DFT formulation)

(2) is real-valued (e.g. non-degenerate ground

I=

= A —1'.-drCI)= £) VVCI)=(£ —1jdr VCI)=(£)
-V Jara(r) = o

Eqgs. O, ® simplify:




Density functional theory beyond BO \

What are the “right” densities?

first attempt p (1‘) =N, j dhe 1"[ d™R ‘LP( L g)

N(R)=N,[d%r[d" 'R¥(rR)

A HK theorem (V“‘,Vj’“)(L)(N,n) is easily demonstrated (Parr et al).

n

This, however, is NOT useful (though correct) because, for Vv =0=V>™,

one has:
n = constant

N = constant

[easily verified using ¥ = e ) ]



next attempt fi(r — RCM ) N(R — RCM )

NO GOOD, because spherical for ALL systems

Useful densities are:

F(g) = J‘dﬂ‘{’(& g)‘z (diagonal of nuclear DM)

N,-1 2
Ne _‘-d £‘\P(£a B)‘
Ny (I’) = —~ is a conditional probability density
: r(R)

Note: ng(r) is the density that has always been used in the DFT within BO






KS equations

nuclear equation stays the same

® (Tn +Wm(R)+\7§Xt(B)+e(B)) X(§)=EX(

)

o (T.+V,(tR)+ W, [x](nR)+e(R))®y(r)=¢ (R)®y(r)

I

is replaced by a standard (i.e. 1-body) KS scheme



KS equations

nuclear equation stays the same

@ (Tn +Wm(R)+\7§Xt(§)+e(§)) X(g):EX(

)

o (T.+V(LR)+ %W, [;(](lzr,§)+e(g))cDR(g):eK (

I

R)®

(r)

1=

is replaced by a standard (i.e. 1-body) KS scheme

constructed by adiabatic connection, switching from

A =1 (fully interacting system) to A = 0 (non-interacting system)
and adjusting V., for each i such that p_ (r) does not change
\% @, 5) = KS potential V,(r, 5)



Electronic equation:

Vs @, 5) = local (multiplicative) one-body potential that contains
all non-adiabatic couplings

Vks depends on y and nB(r)




Time-dependent case |



Hamiltonian for the complete system of N, electrons with coordinates
(rl Ty )z r and N, nuclei with coordinates (Rl Ry )z R, masses
M, --- My, and charges Z, -~ Z .

=T,(R)+ W, (R)+T,(r)+ W, (r) + V., (R, 1)

N, V2 A N, y2 A 1N Z 7
h — = — = — i
wit T Zl oM. T, ; om W 5 Z

S ~ e Z
W, =— V., = e —
ee ZJZkk:I' I'k‘ en JZI:VZI: ‘I'.—R
J#

Time-dependent Schrodinger equation

(R 0= (HER )V




Theorem T-1

The exact solution of

where jd£‘q)5 ( £,t) =1 for any fixed R, t

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010)



Theorem T-11

D, (£, t) and x(&, t) satisfy the following equations

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010)



e(R,t)=[dr <I>11(£>t)(HBo(t)+§)

EXACT time-dependent potential energy surface

% AR -0 oy (50

A, (B, t) = —ijq); (r,t) V.o, ({, t) dr EXACT time-dependent
- — - Berry connection



Example: H," in 1D in strong laser field

exact solution of iat\P(I’, R, t) =H ‘P(I’, R, t) :

Compare with:

» Hartree approximation: | W(1,R,t) = %(R,t) - @(r,t)

 Standard Ehrenfest dynamics

* “Exact Ehrenfest dynamics” where the forces on the nuclei are
calculated from the exact TD-PES



exact
exact—-Ehrenfest -
i td-Hartree
Ehrenfest =——

<R>(a.u.)
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The internuclear separation < R>(t) for the intensities
[, = 10"“W/cm? (Ieft) and I, = 2.5 x 1013W/cm? (right)



e(R)(a.u.)

e(R)(a.u.)

Exact time-dependent PES
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Dashed: I, = 10'*W/cm?

b

Rlau)
solid: I, =2.5 x 1013W/cm?



Summary:

‘P(£, &) =0, (g) X(B) is an exact representation

of the complete electron-nuclear wavefunction if v and @
satisfy the right equations (namely Eqs. @, @ )

Eqgs. @, ® provide the proper definition of the

--- exact potential energy surface
--- exact Berry connection

both in the static and the time-dependent case

Multi-component (TD)DFT framework

TD-PES useful to interpret different dissociation meachanisms








