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Full Schrödinger equation: 
 � 
 �R,rER,rĤ   ���

convention:
Greek indices  nuclei

Latin indices  electrons

Hamiltonian for the complete system of Ne electrons with coordinates

and Nn nuclei with coordinates , masses

M1 ··· MNn
and charges Z1 ··· ZNn

.
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Born-Oppenheimer approximation

.Rfor each fixed nuclear configuration
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solve
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Make adiabatic ansatz for the complete molecular wave function:

and find best �BO by minimizing    <�BO | H | �BO >  w.r.t.  �BO :



Nuclear equation
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Berry connection
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is a geometric phase

In this context, potential energy surfaces                    and the Berry potential                   

are APPROXIMATE concepts, i.e. they follow from the BO approximation. 
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“Berry phases arise when the world is approximately separated into as system and 

its environment.” 



GOING BEYOND BORN-OPPENHEIMER

Standard procedure:
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 � 
 �� ��
J

JK,

BO

J,RK R�r�R,r�    

and insert expansion in the full Schrödinger equation ��	
�����

non-adiabatic coupling terms from Tn acting on  
 �.BO

J,R r�  

• �J,K depends on 2 indices: � looses nice interpretation as

“nuclear wave function”

• In systems driven by a strong laser, hundreds of BO-PES can be

coupled.

Drawbacks:

Expand full molecular wave function in complete set of BO states:
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Potential energy surfaces are absolutely essential

in our understanding of a molecule



GOAL: Show that                                            can be made EXACT  

• Concept of EXACT potential energy surfaces (beyond BO)

• Concept of EXACT Berry connection (beyond BO)

• Concept of  EXACT time-dependent potential energy surfaces

for systems exposed to electro-magnetic fields

• Concept of ECACT time-dependent Berry connection

for systems exposed to electro-magnetic fields
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Theorem I

The exact solutions of

can be written in the form
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 �R,rER,rĤ   ���
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where 
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 �� R
for each fixed .R

First mentioned in: G. Hunter, Int. J.Q.C. 9, 237 (1975)



Immediate consequences of Theorem I:

1. The diagonal            of the nuclear Nn-body density matrix is identical 

with


 �R�
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 R�

� in this sense,           can be interpreted as a proper nuclear wavefunction.
 �R�

proof: 
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2. and           are unique up to within the “gauge transformation”
 �R�  
 �r�  R
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proof: Let and           be two different representations of an exact eigenfunction 

�� i.e.

��� ~~
���
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2M

1 ext
nnn

N

�

2
��

�

n

�""
#

$
��
 

!
����	�� 
 �R � RE�R�V̂ŴAi
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Theorem II: satisfy the following equations:
 � 
 �  R r   and  R� �

G. Hunter, Int. J. Quant. Chem. 9, 237 (1975).
N.I. Gidopoulos, E.K.U.G. arXiv: cond-mat/0502433



• Eq. �� and � are form-invariant under the “gauge” transformation
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• is a (gauge-invariant) geometric phase

the exact geometric phase

 � � ��

C 
RdA:C
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Exact potential energy surface is gauge invariant. 

OBSERVATIONS:

• Eq. � is a nonlinear equation in

• Eq. � contains              � selfconsistent solution of � and � required

•


 �r�R


 �R�

• Neglecting the           terms in �, BO is recovered

• There is an alternative, equally exact, representation 

(electrons move on the nuclear energy surface)
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Proof of Theorem I:

Choose:


 � � ���

with some real-valued funcion


 � 
 � 
 �    � � � � ��� � � ��
R

Given the exact electron-nuclear wavefuncion
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Then, by construction, 



Proof of theorem II (basic idea)

first step:

Find the variationally best            and           by minimizing the total energy under 

the subsidiary condition that                            . This gives two Euler equations:
 � 1 r�rd
2
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Eq. �

Eq. �

prove the implication

�, � satisfy Eqs. �, � � �:=�� satisfies  H�=E�

second step:
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How do the exact PES look like?
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MODEL 
(S. Shin, H. Metiu, JCP 102, 9285 (1995), JPC 100, 7867 (1996))

Nuclei (1) and (2) are heavy: Their positions are fixed
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Exact Berry connection 

Insert:
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with the exact nuclear current density J�
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Consider special cases where              is real-valued (e.g. non-degenerate ground 

state  DFT formulation)
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Density functional theory beyond BO

What are the “right” densities?

first attempt 
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A HK theorem                                      is easily demonstrated (Parr et al).
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This, however, is NOT useful (though correct) because, for                                

one has:
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easily verified using �e� CMRik���

n = constant

N = constant



next attempt 
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NO GOOD, because spherical for ALL systems

Useful densities are:
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R,r�rd:R�    (diagonal of nuclear DM)
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is a conditional probability density

Note:               is the density that has always been used in the DFT within BO
 �rnR



now use decomposition

then
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KS equations

nuclear equation stays the same

is replaced by a standard (i.e. 1-body) KS scheme

�
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KS equations

nuclear equation stays the same
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is replaced by a standard (i.e. 1-body) KS scheme

constructed by adiabatic connection, switching from

� = 1 (fully interacting system) to � = 0 (non-interacting system) 

and adjusting          for each � such that              does not change 

KS potential
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Electronic equation:
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local (multiplicative) one-body potential that contains 
all non-adiabatic couplings
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Time-dependent case



Time-dependent Schrödinger equation
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Hamiltonian for the complete system of Ne electrons with coordinates

and Nn nuclei with coordinates , masses

M1 ··· MNn
and charges Z1 ··· ZNn

.
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Theorem T-I

The exact solution of

can be written in the form

where
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The exact solution of

can be written in the form

where
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RRR for any fixed             .             

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010)
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Theorem T-II
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 �t,R  and  t,r   R �� satisfy the following equations

A. Abedi, N.T. Maitra, E.K.U.G., PRL 105, 123002 (2010)




 � 
 � 
 � 
 �
 � 
 �� � ""
#

$
��
 

!
0��	���� t,r�it,RAi

2M
1tH t,r� rdt,R    R

N

�

t

2

��

�

BO

*

R

n

EXACT time-dependent potential energy surface

EXACT time-dependent 

Berry connection
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Example:   H2
+ in  1D in strong laser field

exact solution of 
 � 
 � :tR,r,� HtR,r,�i   t �0

Compare with:

• Hartree approximation:

• Standard Ehrenfest dynamics

• “Exact Ehrenfest dynamics” where the forces on the nuclei are
calculated from the exact TD-PES

�(r,R,t) = �(R,t) ·�(r,t)



The internuclear separation < R>(t) for the intensities 
I1 = 1014W/cm2 (left) and I2 = 2.5 x 1013W/cm2 (right) 



Dashed:  I1 = 1014W/cm2 ;  solid: I2 = 2.5 x 1013W/cm2 

Exact time-dependent PES



Summary:

• is an exact representation

of the complete electron-nuclear wavefunction if � and �

satisfy the right equations  

• Eqs. ��, � provide the proper definition of the 

--- exact potential energy surface

--- exact Berry connection 

both in the static and the time-dependent case

• Multi-component (TD)DFT framework 

• TD-PES useful to interpret different dissociation meachanisms
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(namely Eqs. �, � )






