

2220-19

15th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

13 - 15 January 2011

Exact factorization of the time-dependent electron-nuclear wave function

GROSS Eberhard Kurt Ulrich

Max Planck Institute of Microstructure Physics Weinberg 2 D-06120 Halle Saale Germany

Exact factorization of the time-dependent electron-nuclear wave function

E.K.U. Gross

Max-Planck Institute for Microstructure Physics

Co-workers:

Ali Abedi (MPI-Halle)
Neepa Maitra (CUNY)
Nikitas Gidopoulos (Rutherford Lab)

Exact factorization of the time-dependent electron-nuclear wave function:

Life beyond the Born-Oppenheimer approximation

E.K.U. Gross

Max-Planck Institute for Microstructure Physics

Co-workers:

Ali Abedi (MPI-Halle)
Neepa Maitra (CUNY)
Nikitas Gidopoulos (Rutherford Lab)

Hamiltonian for the complete system of N_e electrons with coordinates $(r_1 \cdots r_{N_e}) \equiv \underline{\underline{r}}$ and N_n nuclei with coordinates $(R_1 \cdots R_{N_n}) \equiv \underline{\underline{R}}$, masses $M_1 \cdots M_{N_n}$ and charges $Z_1 \cdots Z_{N_n}$.

$$\hat{H} = \hat{T}_{n}(\underline{\underline{R}}) + \hat{W}_{nn}(\underline{\underline{R}}) + \hat{T}_{e}(\underline{\underline{r}}) + \hat{W}_{ee}(\underline{\underline{r}}) + \hat{V}_{en}(\underline{\underline{R}},\underline{\underline{r}})$$

$$\begin{split} \text{with} \quad \hat{T}_{n} &= \sum_{\nu=1}^{N_{n}} -\frac{\nabla_{\nu}^{2}}{2M_{\nu}} \qquad \hat{T}_{e} = \sum_{i=1}^{N_{e}} -\frac{\nabla_{i}^{2}}{2m} \qquad \hat{W}_{nn} = \frac{1}{2} \sum_{\substack{\mu,\nu \\ \mu \neq \nu}}^{N_{n}} \frac{Z_{\mu} Z_{\nu}}{\left|R_{\mu} - R_{\nu}\right|} \\ \hat{W}_{ee} &= \frac{1}{2} \sum_{\substack{j,k \\ i \neq k}}^{N_{e}} \frac{1}{\left|r_{j} - r_{k}\right|} \qquad \hat{V}_{en} = \sum_{j=1}^{N_{e}} \sum_{\nu=1}^{N_{n}} -\frac{Z_{\nu}}{\left|r_{j} - R_{\nu}\right|} \end{split}$$

convention: Greek indices → nuclei Latin indices → electrons

Full Schrödinger equation:
$$\hat{H}\Psi(\underline{r},\underline{R}) = E\Psi(\underline{r},\underline{R})$$

Born-Oppenheimer approximation

solve

$$\left(\hat{T}_{e}(\underline{\underline{r}}) + \hat{W}_{ee}(\underline{\underline{r}}) + \hat{V}_{e}^{ext}(\underline{\underline{r}}) + \hat{V}_{en}(\underline{\underline{r}},\underline{\underline{R}})\right)\Phi_{\underline{\underline{R}}}^{BO}(\underline{\underline{r}}) = \epsilon^{BO}(\underline{\underline{R}})\Phi_{\underline{\underline{R}}}^{BO}(\underline{\underline{r}})$$

for each fixed nuclear configuration \mathbf{R} .

Make adiabatic ansatz for the complete molecular wave function:

$$\Psi^{\mathbf{BO}}(\underline{\underline{\mathbf{r}}},\underline{\underline{\mathbf{R}}}) = \Phi_{\underline{\underline{\mathbf{R}}}}^{\mathrm{BO}}(\underline{\underline{\mathbf{r}}}) \cdot \chi^{\mathrm{BO}}(\underline{\underline{\mathbf{R}}})$$

and find best χ^{BO} by minimizing $\langle \Psi^{BO} | H | \Psi^{BO} \rangle$ w.r.t. χ^{BO} :

Nuclear equation

$$\begin{split} \left[\hat{T}_{n}(\underline{\underline{R}}) + \hat{W}_{nn}(\underline{\underline{R}}) + \hat{V}_{n}^{ext}(\underline{\underline{R}}) + \sum_{\upsilon} \frac{1}{M_{\upsilon}} A_{\upsilon}^{BO}(\underline{\underline{R}}) (-i\nabla_{\upsilon}) + \underset{\boldsymbol{\epsilon}^{BO}}{\boldsymbol{\epsilon}^{BO}}(\underline{\underline{R}}) \right. \\ \left. + \int \Phi_{\underline{\underline{R}}}^{BO} * \left(\underline{\underline{r}}\right) \hat{T}_{n} \left(\underline{\underline{R}}\right) \Phi_{\underline{\underline{R}}}^{BO}(\underline{\underline{r}}) d\underline{\underline{r}} \right] \chi^{BO}(\underline{\underline{R}}) = E \chi^{BO}(\underline{\underline{R}}) \\ \left. Berry \ connection \\ \left. A_{\upsilon}^{BO}(\underline{\underline{R}}) = \int \Phi_{\underline{\underline{R}}}^{BO} * \left(\underline{\underline{r}}\right) (-i\nabla_{\upsilon}) \Phi_{\underline{\underline{R}}}^{BO}(\underline{\underline{r}}) d\underline{\underline{r}} \right. \\ \left. \gamma^{BO}(\underline{C}) = \oint_{\underline{C}} \vec{A}^{BO}(\underline{\underline{R}}) \cdot d\vec{R} \quad \text{is a geometric phase} \end{split}$$

In this context, potential energy surfaces \in $(\underline{\underline{R}})$ and the Berry potential $\vec{A}^{BO}(\underline{\underline{R}})$ are APPROXIMATE concepts, i.e. they follow from the BO approximation.

"Berry phases arise when the world is approximately separated into as system and its environment."

GOING BEYOND BORN-OPPENHEIMER

Standard procedure:

Expand full molecular wave function in complete set of BO states:

$$\Psi_{K}(\underline{\underline{r}},\underline{\underline{R}}) = \sum_{J} \Phi_{\underline{R},J}^{BO}(\underline{\underline{r}}) \cdot \chi_{K,J}(\underline{\underline{R}})$$

and insert expansion in the full Schrödinger equation \to standard non-adiabatic coupling terms from T_n acting on $\Phi_{R,J}^{BO}\left(\underline{\underline{r}}\right)$.

Drawbacks:

- $\chi_{J,K}$ depends on 2 indices: \rightarrow looses nice interpretation as "nuclear—wave function"
- In systems driven by a strong laser, hundreds of BO-PES can be coupled.

Potential energy surfaces are absolutely essential in our understanding of a molecule

GOAL: Show that
$$\Psi(\underline{\underline{r}}, \underline{\underline{R}}) = \Phi_{\underline{R}}(\underline{\underline{r}}) \cdot \chi(\underline{\underline{R}})$$
 can be made EXACT

- Concept of EXACT potential energy surfaces (beyond BO)
- Concept of EXACT Berry connection (beyond BO)
- Concept of EXACT time-dependent potential energy surfaces for systems exposed to electro-magnetic fields
- Concept of ECACT time-dependent Berry connection for systems exposed to electro-magnetic fields

Theorem I

The exact solutions of

$$\hat{H}\Psi(\underline{\underline{r}},\underline{\underline{R}}) = E\Psi(\underline{\underline{r}},\underline{\underline{R}})$$

can be written in the form

$$\Psi(\underline{\underline{r}},\underline{\underline{R}}) = \Phi_{\underline{\underline{R}}}(\underline{\underline{r}}) \cdot \chi(\underline{\underline{R}})$$

where
$$\int d\underline{\underline{r}} |\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})|^2 = 1$$
 for each fixed $\underline{\underline{R}}$.

First mentioned in: G. Hunter, Int. J.Q.C. <u>9</u>, 237 (1975)

Immediate consequences of Theorem I:

1. The diagonal $\Gamma(\underline{R})$ of the nuclear N_n -body density matrix is identical with $|\chi(\underline{R})|^2$

proof:
$$\Gamma(\underline{\underline{R}}) = \int d\underline{\underline{r}} |\Psi(\underline{\underline{r}},\underline{\underline{R}})|^2 = \underbrace{\int d\underline{\underline{r}} |\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})|^2}_{1} |\chi(\underline{R})|^2 = |\chi(\underline{\underline{R}})|^2$$

- \Rightarrow in this sense, $\chi(\underline{\mathbf{R}})$ can be interpreted as a proper nuclear wavefunction.
- 2. $\Phi_{\underline{\underline{R}}}(\underline{\underline{\underline{r}}})$ and $\chi(\underline{\underline{\underline{R}}})$ are <u>unique</u> up to within the "gauge transformation"

$$\widetilde{\Phi}_{\underline{\underline{R}}}(\underline{\underline{r}}) := e^{i\theta(\underline{\underline{R}})} \Phi_{\underline{\underline{R}}}(\underline{\underline{r}}) \qquad \qquad \widetilde{\chi}(\underline{\underline{R}}) := e^{-i\theta(\underline{\underline{R}})} \chi(\underline{\underline{R}})$$

<u>proof</u>: Let $\phi \cdot \chi$ and $\widetilde{\phi} \cdot \widetilde{\chi}$ be two different representations of an exact eigenfunction Ψ i.e.

$$\Psi\left(\underline{\underline{r}},\underline{\underline{R}}\right) = \Phi_{\underline{\underline{R}}}\left(\underline{\underline{r}}\right)\chi\left(\underline{\underline{R}}\right) = \tilde{\Phi}_{\underline{\underline{R}}}\left(\underline{\underline{r}}\right)\tilde{\chi}\left(\underline{\underline{R}}\right)$$

$$\Rightarrow \frac{\widetilde{\Phi}_{\underline{R}}(\underline{\underline{r}})}{\Phi_{R}(\underline{\underline{r}})} = \frac{\chi(\underline{\underline{R}})}{\widetilde{\chi}(\underline{\underline{R}})} \equiv G(\underline{\underline{R}}) \qquad \Rightarrow \widetilde{\Phi}_{\underline{\underline{R}}}(\underline{\underline{r}}) = G(\underline{\underline{R}}) \Phi_{\underline{\underline{R}}}(\underline{\underline{r}})$$

$$\Rightarrow \underbrace{\int d\underline{\underline{r}} |\widetilde{\Phi}_{\underline{R}}(\underline{\underline{r}})|^2}_{1} = |G(\underline{\underline{R}})|^2 \underbrace{\int d\underline{\underline{r}} |\Phi_{\underline{R}}(\underline{\underline{r}})|^2}_{1}$$

$$\Rightarrow$$
 $|G(\underline{\underline{R}})| = 1$ $\Rightarrow G(\underline{\underline{R}}) = e^{i\theta(\underline{\underline{R}})}$

$$\Rightarrow \widetilde{\Phi}_{\underline{\mathbf{R}}}(\underline{\underline{\mathbf{r}}}) = e^{i\theta(\underline{\mathbf{R}})} \Phi_{\underline{\mathbf{R}}}(\underline{\underline{\mathbf{r}}}) \qquad \widetilde{\chi}(\underline{\underline{\mathbf{R}}}) = e^{-i\theta(\underline{\underline{\mathbf{R}}})} \chi(\underline{\underline{\mathbf{R}}})$$

Theorem II: $\Phi_R(\underline{r})$ and $\chi(\underline{R})$ satisfy the following equations:

Eq.
$$\begin{array}{c}
\Phi \\
\frac{\hat{T}_{e} + \hat{W}_{ee} + \hat{V}_{e}^{ext} + \hat{V}_{en}}{\hat{H}_{BO}} + \sum_{\nu}^{N_{n}} \frac{1}{2M_{\nu}} (-i\nabla_{\nu} - A_{\nu})^{2} \\
+ \sum_{\nu}^{N_{n}} \frac{1}{M_{\nu}} \left(\frac{-i\nabla_{\nu}\chi}{\chi} + A_{\nu} \right) (-i\nabla_{\nu} - A_{\nu}) \Phi_{\underline{R}}(\underline{\underline{r}}) = \in (\underline{\underline{R}}) \Phi_{\underline{R}}(\underline{\underline{r}})
\end{array}$$

Eq. 2
$$\left(\sum_{v}^{N_{n}} \frac{1}{2M_{v}} \left(-i\nabla_{v} + A_{v}\right)^{2} + \hat{W}_{nn} + \hat{V}_{n}^{ext} + \epsilon \left(\underline{\underline{R}}\right)\right) \chi(\underline{\underline{R}}) = E\chi(\underline{\underline{R}})$$

where
$$A_{\nu}(\underline{\underline{R}}) = -i \int \Phi_{\underline{\underline{R}}}^* (\underline{\underline{r}}) \nabla_{\nu} \Phi_{\underline{\underline{R}}} (\underline{\underline{r}}) d\underline{\underline{r}}$$

G. Hunter, Int. J. Quant. Chem. <u>9</u>, 237 (1975). N.I. Gidopoulos, E.K.U.G. arXiv: cond-mat/0502433

OBSERVATIONS:

- Eq. \bullet is a nonlinear equation in $\Phi_{\underline{R}}(\underline{r})$
- Eq. \bullet contains $\chi(\mathbb{R})$ \Rightarrow selfconsistent solution of \bullet and \bullet required
- Neglecting the 1/M, terms in **1**, BO is recovered
- There is an alternative, equally exact, representation $\Psi = \Phi_{\underline{r}}(\underline{\underline{R}})\chi(\underline{\underline{r}})$ (electrons move on the nuclear energy surface)
- Eq. 10 and 22 are form-invariant under the "gauge" transformation

$$\Phi \to \widetilde{\Phi} = e^{i\theta(\underline{\underline{R}})}\Phi$$

$$\chi \to \widetilde{\chi} = e^{-i\theta(\underline{\underline{R}})}\chi$$

$$A_{\nu} \to \widetilde{A}_{\nu} = A_{\nu} + \nabla_{\nu} \theta \left(\underline{R} \right)$$

$$\in (\underline{R}) \rightarrow \widetilde{\in} (\underline{R}) = \in (\underline{R})$$
 Exact potential energy surface is gauge invariant.

• $\gamma(C) := \oint_C \vec{A} \cdot d\vec{R}$ is a (gauge-invariant) geometric phase the exact geometric phase

Proof of Theorem I:

Given the exact electron-nuclear wavefuncion $\Psi(\underline{r},\underline{\underline{R}})$

$$\underline{\text{Choose:}} \qquad \chi\left(\underline{\underline{R}}\right) := e^{is(\underline{\underline{R}})} \sqrt{\int d\underline{\underline{r}} \left| \Psi\left(\underline{\underline{r}},\underline{\underline{R}}\right) \right|^2}$$

with some real-valued funcion $S(\underline{\underline{R}})$

$$\Phi_{\underline{\mathbf{R}}}\left(\underline{\underline{\mathbf{r}}}\right) := \Psi\left(\underline{\underline{\mathbf{r}}},\underline{\underline{\mathbf{R}}}\right) / \chi\left(\underline{\underline{\mathbf{R}}}\right)$$

Then, by construction, $\int d\underline{\underline{r}} |\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})|^2 = 1$

Proof of theorem II (basic idea)

first step:

Find the variationally best $\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})$ and $\chi(\underline{\underline{R}})$ by minimizing the total energy under the subsidiary condition that $\int d\underline{\underline{r}} |\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})|^2 = 1$. This gives two Euler equations:

$$\underline{\underline{\mathbf{Eq. \Phi}}} \quad \frac{\delta}{\delta \Phi_{\underline{\mathbf{R}}}^*(\underline{\mathbf{r}})} \left(\frac{\left\langle \Phi \chi \middle| \hat{\mathbf{H}} \middle| \Phi \chi \right\rangle}{\left\langle \Phi \chi \middle| \Phi \chi \right\rangle} - \int d\underline{\underline{\mathbf{R}}} \Lambda(\underline{\underline{\mathbf{R}}}) \int d\underline{\underline{\mathbf{r}}} \middle| \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathbf{r}}}) \middle|^2 \right) = 0$$

$$\underline{\mathbf{Eq. 2}} \quad \frac{\delta}{\delta \chi (\underline{\mathbf{R}})} \left(\frac{\left\langle \Phi \chi \middle| \hat{\mathbf{H}} \middle| \Phi \chi \right\rangle}{\left\langle \Phi \chi \middle| \Phi \chi \right\rangle} \right) = 0$$

second step:

prove the implication

 Φ , χ satisfy Eqs. \bullet , \bullet \Rightarrow Ψ := $\Phi\chi$ satisfies $H\Psi$ = $E\Psi$

How do the exact PES look like?

MODEL (S. Shin, H. Metiu, JCP <u>102</u>, 9285 (1995), JPC <u>100</u>, 7867 (1996))

Nuclei (1) and (2) are heavy: Their positions are fixed

Exact Berry connection

$$A_{v}\left(\underline{\underline{R}}\right) = \int d\underline{\underline{r}} \Phi_{\underline{R}}^{*}\left(\underline{\underline{r}}\right) \left(-i\nabla_{v}\right) \Phi_{\underline{R}}\left(\underline{\underline{r}}\right)$$

Insert:
$$\Phi_{\underline{R}}(\underline{\underline{r}}) = \Psi(\underline{\underline{r}}, \underline{\underline{R}}) / \chi(\underline{\underline{R}})$$
$$\chi(\underline{\underline{R}}) \coloneqq e^{i\theta(\underline{\underline{R}})} |\chi(\underline{\underline{R}})|$$

$$A_{\nu}\left(\underline{\underline{R}}\right) = \operatorname{Im}\left\{\int d\underline{\underline{r}} \ \Psi^{*}\left(\underline{\underline{r}},\underline{\underline{R}}\right) \ \nabla_{\nu}\Psi\left(\underline{\underline{r}},\underline{\underline{R}}\right)\right\} / \left|\chi\left(\underline{\underline{R}}\right)\right|^{2} - \nabla_{\nu}\theta$$

$$A_{v}(\underline{\underline{R}}) = J_{v}(\underline{\underline{R}}) / |\chi(\underline{\underline{R}})|^{2} - \nabla_{v}\theta(\underline{\underline{R}})|$$

with the exact nuclear current density J_{v}

Consider special cases where $\Phi_{\underline{R}}(\underline{\underline{r}})$ is real-valued (e.g. non-degenerate ground state \rightarrow DFT formulation)

$$\Rightarrow A_{\nu}\left(\underline{R}\right) = -i\int d\underline{r} \,\Phi_{\underline{R}}^{*}\left(\underline{r}\right) \,\nabla_{\nu} \Phi_{\underline{R}}\left(\underline{r}\right) = -i\int d\underline{r} \frac{1}{2} \nabla_{\nu} \Phi_{\underline{R}}^{2}\left(\underline{r}\right)$$

$$= -\frac{i}{2} \nabla_{\nu} \int d\underline{r} \,\Phi_{\underline{R}}^{2}\left(\underline{r}\right) = 0$$

Eqs. 0, 2 simplify:

Density functional theory beyond BO

What are the "right" densities?

$$\frac{\text{first attempt}}{n(r) = N_e \int d^{N_e-1} \underline{\underline{r}} \int d^{N_n} \underline{\underline{R}} \left| \Psi(\underline{\underline{r}}, \underline{\underline{R}}) \right|^2}$$

$$N(R) = N_n \int d^{N_e} \underline{\underline{r}} \int d^{N_n-1} \underline{\underline{R}} \left| \Psi(\underline{\underline{r}}, \underline{\underline{R}}) \right|^2$$

A HK theorem $(V_n^{ext}, V_e^{ext}) \leftarrow (N, n)$ is easily demonstrated (Parr et al).

This, however, is NOT useful (though correct) because, for $V_n^{ext} \equiv 0 \equiv V_e^{ext}$, one has:

$$n = constant$$
 $N = constant$

easily verified using
$$\Psi = e^{-ik \cdot R_{CM}} \psi$$

$$\underline{\text{next attempt}} \qquad \widetilde{n} \big(r - R_{CM} \big) \quad \widetilde{N} \big(R - R_{CM} \big)$$

NO GOOD, because spherical for ALL systems

Useful densities are:

$$\Gamma(\underline{\underline{R}}) := \int d\underline{\underline{r}} |\Psi(\underline{\underline{r}}, \underline{\underline{R}})|^2 \qquad \text{(diagonal of nuclear DM)}$$

$$n_{\underline{\underline{R}}}(r) := \frac{N_e \cdot \int d^{N_e-1} \underline{\underline{r}} |\Psi(\underline{\underline{r}}, \underline{\underline{R}})|^2}{\Gamma(\underline{\underline{R}})} \quad \text{is a conditional probability density}$$

Note: $n_R(r)$ is the density that has always been used in the DFT within BO

now use decomposition
$$\Psi\left(\underline{\underline{r}},\underline{\underline{R}}\right) = \Phi_{\underline{\underline{R}}}\left(\underline{\underline{r}}\right)\chi\left(\underline{\underline{R}}\right)$$

then
$$\Gamma(\underline{\underline{R}}) = \int \underline{d\underline{\underline{r}}} |\Phi_{\underline{\underline{R}}}(\underline{\underline{r}})|^2 |\chi(R)|^2 = |\chi(R)|^2$$

$$n_{\underline{R}}(r) = \frac{N_e \cdot \int d^{N_e-1} \underline{r} \left| \Phi_{\underline{R}}(\underline{r}) \right|^2 \left| \chi(R) \right|^2}{\left| \chi(R) \right|^2} = N_e \cdot \int d^{N_e-1} \underline{r} \left| \Phi_{\underline{R}}(\underline{r}) \right|^2 \quad \text{(like in B.O.)}$$

$$\underline{\textbf{HK theorem}} \quad \left(n^{gs}_{\underline{\underline{R}}} \left(r \right), \Gamma^{gs} \left(\underline{\underline{R}} \right) \right) \xrightarrow{1-1} \left(v_e \left(r, \underline{\underline{R}} \right), v_n \left(\underline{\underline{R}} \right) \right)$$

Eq.
$$\Phi$$
 $\left(\hat{T}_e + \hat{V}_e + \hat{W}_{int}\right) \Phi_{\underline{R}} \left(\underline{\underline{r}}\right) = \in \left(\underline{\underline{R}}\right) \Phi_{\underline{R}} \left(\underline{\underline{r}}\right)$

Eq. 2
$$\left(\hat{T}_n + \hat{V}_n\right) \chi\left(\underline{\underline{R}}\right) = E \chi\left(\underline{\underline{R}}\right)$$

$$\begin{aligned} \textbf{where} \quad & V_{e}\left(\underline{\underline{r}},\underline{\underline{R}}\right) = \sum_{j} v_{e}\left(r_{j},\underline{\underline{R}}\right) = \sum_{j} v_{en}\left(r_{j},\underline{\underline{R}}\right) + v_{e}^{ext}\left(r_{j}\right) \\ & V_{n}\left(\underline{\underline{R}}\right) = W_{nn}\left(\underline{\underline{R}}\right) + v_{n}^{ext}\left(\underline{\underline{R}}\right) + \in \left(\underline{\underline{R}}\right) \end{aligned}$$

KS equations

nuclear equation stays the same

is replaced by a standard (i.e. 1-body) KS scheme

KS equations

nuclear equation stays the same

$$\Phi \left(\hat{T}_{e} + \hat{V}_{e}^{\lambda} \left(\underline{\underline{r}}, \underline{\underline{R}} \right) + \lambda \cdot W_{int} \left[\chi \right] \left(\underline{\underline{r}}, \underline{\underline{R}} \right) + \epsilon \left(\underline{\underline{R}} \right) \right) \Phi_{\underline{\underline{R}}} \left(\underline{\underline{r}} \right) = \epsilon^{\lambda} \left(\underline{\underline{R}} \right) \Phi_{\underline{\underline{R}}} \left(\underline{\underline{r}} \right)$$

is replaced by a standard (i.e. 1-body) KS scheme

constructed by adiabatic connection, switching from $\lambda=1 \ (\text{fully interacting system}) \ \text{to} \ \lambda=0 \ (\text{non-interacting system})$ and adjusting V_e^{λ} for each λ such that $\mathbf{n}_{\underline{R}}(\mathbf{r})$ does not change $V_a^{\lambda=0}(\mathbf{r},\mathbf{R})= \ \mathbf{KS} \ \text{potential} \ V_{KS}(\underline{\mathbf{r}},\underline{\mathbf{R}})$

Electronic equation:

$$\left(-\frac{\nabla^2}{2m} + v_{KS}(r, \underline{\underline{R}})\right) \varphi_{\underline{\underline{R}}, j}(r) = \eta_j(\underline{\underline{R}}) \varphi_{\underline{\underline{R}}, j}(r)$$

$$v_{KS}(r,\underline{\underline{R}}) = v_{en}(r,\underline{\underline{R}}) + v_{e}^{ext}(r) + v_{Hxc}(\chi,n_{\underline{\underline{R}}})(r,\underline{\underline{R}})$$

 $v_{KS}(\underline{r},\underline{R})$ = local (multiplicative) one-body potential that contains all non-adiabatic couplings

 v_{KS} depends on χ and $n_{R}(r)$

$$\rightarrow$$
 self-consistency with $n_{\underline{R}}(r) = \sum_{j=1}^{N_e} |\phi_{\underline{R},j}(r)|^2$

and with nuclear equation 2 required:

$$\in \left(\underline{\underline{R}}\right) = \sum_{j=1}^{N_e} \eta_j \left(\underline{\underline{R}}\right) - \int n_{\underline{\underline{R}}}(r) v_{Hxc} \left(r, \underline{\underline{R}}\right) d^3r + E_{Hxc} \left(\chi, n_{\underline{\underline{R}}}\right)$$

Time-dependent case

Hamiltonian for the complete system of N_e electrons with coordinates $(r_1 \cdots r_{N_e}) \equiv \underline{\underline{r}}$ and N_n nuclei with coordinates $(R_1 \cdots R_{N_n}) \equiv \underline{\underline{R}}$, masses $M_1 \cdots M_{N_n}$ and charges $Z_1 \cdots Z_{N_n}$.

$$\hat{H} = \hat{T}_{n}(\underline{\underline{R}}) + \hat{W}_{nn}(\underline{\underline{R}}) + \hat{T}_{e}(\underline{\underline{r}}) + \hat{W}_{ee}(\underline{\underline{r}}) + \hat{V}_{en}(\underline{\underline{R}},\underline{\underline{r}})$$

Time-dependent Schrödinger equation

$$i\frac{\partial}{\partial t}\Psi(\underline{r},\underline{R},t) = (H(\underline{r},\underline{R}) + V_{laser}(\underline{r},\underline{R},t)) \psi(\underline{r},\underline{R},t)$$

$$V_{laser}(\underline{r},\underline{R},t) = \left(\sum_{j=1}^{N_e} r_j - \sum_{\nu=1}^{N_n} Z_{\nu} R_{\nu}\right) \cdot E \cdot f(t) \cdot \cos \omega t$$

Theorem T-I

The exact solution of

$$i\partial_t \Psi\left(\underline{\underline{r}},\underline{\underline{R}},t\right) = H\left(\underline{\underline{r}},\underline{\underline{R}},t\right) \Psi\left(\underline{\underline{r}},\underline{\underline{R}},t\right)$$

can be written in the form

$$\Psi\left(\underline{\underline{r}},\underline{\underline{R}},t\right) = \Phi_{\underline{\underline{R}}}\left(\underline{\underline{r}},t\right) \chi\left(\underline{\underline{R}},t\right)$$
where
$$\int d\underline{\underline{r}} \left|\Phi_{\underline{\underline{R}}}\left(\underline{\underline{r}},t\right)\right|^2 = 1 \quad \text{for any fixed } \underline{\underline{R}},t \quad .$$

A. Abedi, N.T. Maitra, E.K.U.G., PRL <u>105</u>, 123002 (2010)

Theorem T-II

 $\Phi_{\underline{R}}(\underline{\underline{r}},t)$ and $\chi(\underline{\underline{R}},t)$ satisfy the following equations

Eq. 0

$$\left(\underbrace{\hat{T}_{e} + \hat{W}_{ee} + \hat{V}_{e}^{ext}(\underline{r}, t) + \hat{V}_{en}(\underline{r}, \underline{R})}_{\hat{H}_{BO}(t)} + \sum_{\nu}^{N_{n}} \frac{1}{2M_{\nu}} (-i\nabla_{\nu} - A_{\nu}(\underline{R}, t))^{2} + \sum_{\nu}^{N_{n}} \frac{1}{M_{\nu}} \left(\frac{-i\nabla_{\nu}\chi(\underline{R}, t)}{\chi(\underline{R}, t)} + A_{\nu}(\underline{R}, t)\right) (-i\nabla_{\nu} - A_{\nu}) - \in (\underline{R}, t) \Phi_{\underline{R}}(\underline{r}) = i\partial_{t}\Phi_{\underline{R}}(\underline{r}, t)$$

Eq. 2

$$\left(\sum_{v}^{N_{n}} \frac{1}{2M_{v}} \left(-i\nabla_{v} + A_{v}(\underline{\underline{R}}, t)\right)^{2} + \hat{W}_{nn}(\underline{\underline{R}}) + \hat{V}_{n}^{ext}(\underline{\underline{R}}, t) + \in (\underline{\underline{R}}, t)\right) \chi(\underline{\underline{R}}, t) = i\partial_{t}\chi(\underline{\underline{R}}, t)$$

A. Abedi, N.T. Maitra, E.K.U.G., PRL <u>105</u>, 123002 (2010)

$$\in \left(\underline{\underline{R}},t\right) = \int d\underline{\underline{r}} \, \Phi_{\underline{\underline{R}}}^* \left(\underline{\underline{r}},t\right) \left(H_{BO}(t) + \sum_{v}^{N_n} \frac{1}{2M_v} \left(-i\nabla_v - A_v \left(\underline{\underline{R}},t\right)\right)^2 - i\partial_t\right) \Phi_{\underline{\underline{R}}} \left(\underline{\underline{r}},t\right)$$

EXACT time-dependent potential energy surface

$$A_{\nu}\left(\underline{\underline{R}},t\right) = -i\int \Phi_{\underline{\underline{R}}}^{*}\left(\underline{\underline{r}},t\right) \nabla_{\nu} \Phi_{\underline{\underline{R}}}\left(\underline{\underline{r}},t\right) d\underline{\underline{r}} \qquad \text{EXACT time-dependent} \\ \text{Berry connection}$$

Example: H_2^+ in 1D in strong laser field

exact solution of
$$i\partial_t \Psi(r,R,t) = H \Psi(r,R,t)$$
:

Compare with:

• Hartree approximation:

$$\Psi(r,R,t) = \chi(R,t) \cdot \varphi(r,t)$$

- Standard Ehrenfest dynamics
- "Exact Ehrenfest dynamics" where the forces on the nuclei are calculated from the **exact** TD-PES

The internuclear separation < R>(t) for the intensities $I_1 = 10^{14} \text{W/cm}^2$ (left) and $I_2 = 2.5 \times 10^{13} \text{W/cm}^2$ (right)

Exact time-dependent PES

Dashed: $I_1 = 10^{14} \text{W/cm}^2$; solid: $I_2 = 2.5 \times 10^{13} \text{W/cm}^2$

Summary:

- $\Psi(\underline{\underline{r}}, \underline{\underline{R}}) = \Phi_{\underline{\underline{R}}}(\underline{\underline{r}}) \cdot \chi(\underline{\underline{R}})$ is an exact representation of the complete electron-nuclear wavefunction if χ and Φ satisfy the right equations (namely Eqs. \bullet , \bullet)
- Eqs. **0**, **2** provide the proper definition of the
 - --- exact potential energy surface
 - --- exact Berry connection

both in the static and the time-dependent case

- Multi-component (TD)DFT framework
- TD-PES useful to interpret different dissociation meachanisms

Thanks