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First Some Very Personal Questions...

® Are you an experienced Quantum Espresso user?

/

Yes

® Are you an extraordinarily nice person?

No. - ""

l

PLEASE GO AWAY!
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First Some Very Personal Questions...

® Are you an experienced Quantum Espresso user?

/

Yes

® Are you an extraordinarily nice person?

It would be really nice if you could stick around here and
help with the hands-on session....

Yes
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First Some Very Personal Questions...

® Are you an experienced Quantum Espresso user?

\

No.

P

Then this session is aimed at YOU!

(But we are assuming that you are familiar with
electronic structure calculations, linux commands,
etc., etc.)
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The Kohn-Sham problem

® Want to solve the Kohn-Sham equations:

|:—%V2 + '/nuc(r)+ '/H[n(r)]+ ch[ﬂ(r)]:|l///-(r) = g/W/(r)

N— -
—

H

® Note that self-consistent solution necessary, as H
depends on solution:

{W/} — ﬂ(f) — H

® Convention:

e=h=m, =1

Shobhana Narasimhan, JNCASR
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Self-consistent lterative Solution

Ve known/constructed

] How to solve the
g UL GESS Kohn-Sham eqns.
! for a set of fixed
Generate Calculate V[ & Vyn] ) i

ew 0 nuc!gar (ionic)

nn Vek D)= Veud 1)+ Vir(D+ Vie (D) positions.
!

Hy(n =[-12V? + V(D] w1 = & WD)

'

Calculate new n(n = Z |y(n|?

No

Self-consistent?

Yes

Problem solved! Can now calculate energy, forces, etc.
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Plane Waves & Periodic Systems

® For a periodic system:

1 - where G = reciprocal
V(1) = 5; i lattice vector
® The plane waves that appear in this expansion can
be represented as a grid in k-space:

@ Only true for periodic
systems that grid is
discrete.

® In principle, still need
infinite number of
plane waves.

K

X

Q00000 ......\<>\\
Q00000000000
Q00000000000
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Truncating the Plane Wave Expansion

® In practice, the contribution from higher Fourier
components (large |k+GJ) is small.

® So truncate the expansion at some value of |[K+G].
® Traditional to express this cut-off in energy units:

@/
ooooooéoooooo F=F
0000000000 0OQ0 - ot
h 0000 0OFODOGED _ -
<(F 0000000 @ X000 -
'm cut 0000000000000
0000000000 OO0
OOK OO>
0000000000 HOO A,
0000666680000
) &
Input parameter ecutwfc 330000223333
0000000000000
00000 0O 000000
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Checking Convergence wrt ecutwic

Must always check.
Monotonic (variational).

Silicon: Convergence wrt plane wave cutoff

-15.734

-15.736 —

Ry)

g -15.738
()

I

-15.74

I

-15.742 1 | I | I | 1
15 20 25 30
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Step O:
Defining the (periodic) system
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How to Specify the System

All periodic systems can be specified by a Bravais
Lattice and an atomic basis.

N IXINIXIY
I i i i i
N IXINIXIY
I i i i i
N IXINIXIY
+ ®e® — _ L, _a_a_a4-4-
N IXINIXIY
I i i i i
N IXINIXIY
I i i i i
00000000 O®

l
|
l
el il ol ik S
l l
el il ol ik S
l l
el il ol ik S
l l
el il ol ik S
l l
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How to Specity the Bravais Lattice / Unit Cell

Input parameter ibrav

- Gives the type of Bravais
— lattice (SC, BCC, Hex, etc.)

Input parameters {celldm (i) |

- - Give the lengths [&
— directions, if necessary] of
the lattice vectors a,, a,, a,

Note that one can choose a non-primitive unit cell
(e.g., 4 atom SC cell for FCC structure).

19
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Atoms Within Unit Cell - How many, wheree¢

Input parameter nat

- Number of atoms in the unit cell

Input parameter ntyp
L - - Number of types of atoms

FIELD ATOMIC POSITIONS

- Initial positions of atoms (may vary when “relax” done).
-Can choose to give in units of lattice vectors (“crystal”)
or in Cartesian units ("alat” or “bohr” or “angstrom”)

20
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Step 1: Obtaining V.

e
Ve known/constructed

\ 4

Initial guess n(r)
|
Generate Calculate V[ & Vyn]

new !
nrn Ve = Viue(n) + V(D + Ve (1)
'
Hy(n =[-12V* + Ve(N] wAN = & i)
|

Calculate new n(n = Z |y(n|?

No

Self-consistent?

Yes

Problem solved! Can now calculate energy, forces, etc.
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Nuclear Potentidl

» Electrons experience a Coulomb potential due to the
nuclei.

« This has a known and simple form:

« But this leads to computational problems!

Shobhana Narasimhan, JNCASR
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Problem for Plane-Wave Basis

Core wavefunctions:
sharply peaked near lots of wiggles near
nucleus. nucleus.

N\

High Fourier components present

i.e., need large £, @

23
Shobhana Narasimhan, JNCASR



Solutions for Plane-Wave Basis

Core wavefunctions:
sharply peaked near

nucleus.

lots of wiggles near
nucleus.

High Fourier components present

i.e., need large £, @

Don’t solve for the
core electrons!

Shobhana Narasimhan, JNCASR

Remove wiggles from
valence electrons.
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Pseudopotentials

Replace nuclear potential by pseudopotential
This is a numerical trick that solves these problems

There are different kinds of pseudopotentials
(Norm conserving pseudopotentials, ultrasoft
pseudopotentials, etc.)

Which kind you use depends on the element.

25
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Pseudopotentials for Quantum Espresso - |

Go to http://www.quantum-espresso.org; Click on “PSEUDO”

[J
{ Onunmumsmssu Pl
*  HOME :PROJECT WHAT CAN QE DO ::DOWNLOAD ::LERR‘ PSEUDO :')OOLS 2

QE WIKI ZCONTACTS ::QUOTE ::LOGOS ::

13 July 2010 A bugfix release, v.4.2.1, of the Quantum

ESPRESSO distribution is available for download.

10 May 2010
A new version, v.4.2, of the
puantum ESPRESSO distribution is

available for download. Quantum ESPRESSO is an integrated suite of computer codes for electronic-

12 April 2010 structure calculations and materials modeling at the nanoscale. It is based on

[he final bugfix release, v.4.1.3, of density-functional theory, plane waves, and pseudopotentials (both norm-conserving
e Quantum ESPRESSO distribution
) ) _ and ultrasoft).
is available for download. This

supersedes all previous 4.1.x

releases.

20 July 2009

The new release of the Quantum
SPRESS0 distribution is available
for download {version 4.1)

21 April 2009
[he final bugfix release, v.4.0.5, of
the Quantum ESPRESS 0O
distribution, is available for
download. This supersedes all
previous 4.0.% releases. What | cannot compute, | do not understand [adapted from Richard P, Feynman

Shobhana Narasimhan, JNCASR
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e g e,

Pseudopotentials for Quantum Espresso - 2

L
B

« Click on element for which pseudopotential wanted.

LS
QUANTUMJESPRESSD
HOME ::PROJECT :=WHAT CAN QE DO ::DOWHMNLOAD ::LEARN ::PSEUDO ::TOOLS ::
QE WIKI =:CONTACTS ::QUOTE :LOGOS =
PSEUDOPOTENTIALS Updated: Sat, 14 Aug 2010 21:16:03 CEST
* Abhout
“ Notes

Download the full archive (~30MB)
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Pseudopotentials for Quantum-ESPRESSO

MName: Oxygen

Symbaol: O

Atomic number: 8

Atomic configuration: [He] 252 2p4
Atomic mass: 15.9994 (3)

Available pseudopotentials:

( )
Becke-Lee-Yang-Parr (BLYP) exch-corr
Martins-Troullier

( )
Perdew-Burke-Ernzerhof (PBE) exch-corr

Rabe Rappe Kaxiras Joannopoulos {ultrasoft)

( )
Perdew-Burke-Ernzerhof (PEE) exch-corr
Vanderbilt ultrasoft

author: bm ——

( )
Perdew-Zunger (LDA) exch-corr
Martins-Troullier

Pseudopotential’'s name
gives information about :

® type of exchange-
correlation functional

® type of pseudopotential
® eq.:

i L
| |

L

erdew—Eurke—Erﬁzerhnf (PBE) exch-corr
Rabe Rappe Kaxiras Joannopoulos (ultrasoft)

( )
Perdew-Zunger (LDA) exch-corr

Rabe Rappe Kaxiras Joannopoulos {ultrasoft)

( )
Becke-Lee-Yang-Parr (BLYP) exch-corr
Vanderbilt ultrasoft

author: ak

Shobhana Narasimhan, JNCASR

28




Element & V,,, for Quantum-ESPRESSO

e.g, for calculation on BaTiOy:

ATOMIC SPECIES

Ba 137.327 Ba.pbe-nsp-van.UPF
Ti 47.867 Ti.pbe-sp-van ak.UPF
O 15.999 O.pbe-van ak.UPF

« ecutwfc, ecutrho depend on type of
pseudopotentials used (should test).

« When using ultrasoft pseudopotentials, set
ecutrho = 8-12 x ecutwfc !!

29
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Element & V., for Qucm’rum ESPRESSO

« Should have same exchange co'r“r‘eiatlon Tu'ﬁ“é’ﬁ’ﬁ"ﬁ‘é‘l“fbr

all pseudopotentials.

—m‘wml“\‘gm
mixing beta = 0.7, conv_thr = 1.0

: /
Input ATOMIC_SPECIES _ . _——
Fe 55.85 Fe/pz-Nd-rrkjus.UPF
Co 58.93 Co\pbesnd-rrkjus.UPF
ATOMIC_POSITIONS {crystal)
Fe D.OO0 O0.00 0.00

Max angular momentum in pseudopotentials

__— oops!

from readpp : error # 2
Output inconsistent DFT read

30
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Step 2: Initial Guess for /(r)

V/on known/constructed

el \ 4
Initial guess n@
~—

A
Generate Calculate V[ & Vyn]
new !
nr) Vel )= Viorl(r) + Viy (N + Ve (D)
'
Hyln) = [-172V2 + Ve (D] wlD) = & yA1)
'

Calculate new n(n = Z |y(n|?

No

Self-consistent?

Yes
Problem solved! Can now calculate energy, forces, etc.

Shobhana Narasimhan, JNCASR
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Starting Wavefunctions

The closer your starting wavefunction is to the true
wavefunction (which, of course, is something you don't

necessarily know to start with!), the fewer the scf iterations
needed.

startingwfc ‘atomic’  Superposition of atomic orbitals
‘random’
‘file’

“The beginning is the most important part of the work” - Plato

32
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Steps 3 & 4: Effective Potential

Vion known/constructed
I
Initial guess 71(7) or wi(r)

n
—_—]

Generate
new

nrn

E Calculate V[ & Vyc[n]

(@# Vi 1)+ V(0 + Vig (D)

Hy(n =[-1/2V2 + V/(N] wAD = & w(D

'

Calculate new n(n =X |w(n|?

No
Self-consistent?

Yes

Note that type

of exchange-
correlation chosen
while specifying
pseudopotential

Problem solved! Can now calculate energy, forces, etc.

Shobhana Narasimhan, JNCASR
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g. Exchange-Correlation Potential

« Vy.=03Ey/oncontains all the many-body information.

* Known [numerically, from Quantum Monte Carlo ;
various analytical approximations] for homogeneous
electron gas.

* Local Density Approximation:

E.dril = 1) V,foVn(n)] ab
-surprisingly successful!

pz (in name of pseudopotential)

Replace

terms involving gradients of 7(r)
pw9l, pbe (in name of pseudopotential)

34
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Step 5: Diagonalization

V;on known/constructed

A 4

Generate
new

nr

\ 4

Initial guess n(r)

|

Calculate Vy[n] & Vyc[n]

|

Ve )= Vion(r) + Viy(N+ Ve (D

Towo

No

win =[-112V2 + V(D] wAD = & w1

e

Calculate new n(n = Z |y(n|?

Self-consistent?

Yes

Expensive! @

Problem solved! Can now calculate energy, forces, etc.

Shobhana Narasimhan, JNCASR
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Diagonalization

Need to diagonalize a matrix of size X

>> /|/, = number of bands required = N./2 or a
little more (for metals).

OK to obtain lowest few eigenvalues.
Exact diagonalization is expensive!

Use iterative diagonalizers that recast
diagonalization as a minimization problem.

Input parameter diagonalization

-which algorithm used for iterative diagonalization
Input parameter nbnd

-how many eigenvalues computed
for metals, choose depending on value of degauss

36
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Step 6: New Charge Density

V;on known/constructed

v

Initial guess n(r)

\ 4

|
Generate Calculate V[ & Vyn]
new !
nr) Vel )= Viorl(r) + Viy (N + Ve (D)
'

Hy(n) =[-12V* + Ve D] Wi = & wAD

@ulate new m(n==x} w,(@

No

Self-consistent?

Yes
Problem solved! Can now calculate energy, forces, etc.

Shobhana Narasimhan, JNCASR
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Brillouin Zone Sums

® Many quantities (e.g., n, £,,) involve sums over K.

® In principle, need infinite number of k’s.

® |n practice, sum over a finite number: BZ “Sampling”.
® Number needed depends on band structure.

® Typically need more k’s for metals.

® Need to test convergence wrt k-point sampling.

(= 3 POW,

/Vk keBZ

38
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Types of k-point meshes

® Special Points: [Chadi & Cohen]

Points designed to give quick convergence for particular
crystal structures.

® Monkhorst-Pack:
Equally spaced mesh in reciprocal space.
May be centred on origin ['non-shifted’] or not ['shifted’]

15t B7 1 D, K POINTS { tpiba | automatic | crystal | gamma }
\ If ‘automatic’, use M-P mesh:
° ° |1 ° ° nkl, nk2, nk3, k1, k2, k3
o o o o \ /
= Y
o0 o o b, shift
° o o ©° {Ink1=nk2=4

39
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Convergence wrt BZ sampling

Carbon in diamond structure
Lat. Const. = 3.57A

-22.65 L] I T I T I T I L] I I T
-22.855 : : .
‘x -22.85505 —
2271 -22.8551 o
- -22.85515 |- —
& [ ]
- -22.8552 | —
o -Z4. — = o gt
g -22.85525 - Tt .
9 i
-5 o 1 | 1 | 1 | 1 | 1 -1
| 2855 4 5 6 7 8
S 228} -
= \
2285 \5\“ & = & - » _T
1 I L I 1 I L I 1 I L I L
1 2 3 4 5 6 7 8 Madhura Marathe

N (NxNxN k-point mesh)

Note: Differences in energy usually converge faster than
absolute value of total energy because of error cancellation
(if supercells & k-points are identical or commensurate).

40
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« Also can lead to scf convergence problems

Problems with Metals

Recall: (P) = €2 S [BK)d*

(272') noccgy

For metals, at 7=0, this corresponds to (for
highest band) an integral over all wave-vectors
contained within the Fermi surface, i.e., for
highest band, sharp discontinuity in k-space
between occupied and unoccupied /
states...need many k-points to reproduce this ‘-
accurately. *

because of band-crossings above/below Fermi c,.i surace of cu
Ievel . iramis.cea.fr

41
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A Smear Campaign!

Problems arise because of sharp
discontinuity at Fermi surface / Fermi
energy.

‘Smear” this out using a smooth
operator!

Will now converge faster w.r.t. number
of k-points (but not necessarily to the
right answer?!)

The larger the smearing, the quicker
the convergence w.r.t. number of k-
points, but the greater the error
introduced.

The trick is to use a clever smearing PhD Comics
function so that the error is small.

42
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Smearing in Quantum-ESPRESSO

occupations ‘smearing’ Instruction: use smearing

smearing ‘gaussian’
‘methfessel-paxton’
‘marzari-vanderbilt’
‘fermi-dirac’

Type of
smearing

degauss Smearing width

Methfessel & Paxton, Phys. Rev. B 40, 3616 (1989).
Marzari & Vanderbilt, Phys Rev. Lett. 82, 3296 (1999).

43
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Total energy (Ry)

-4.14

Convergence wrt grid & smearing

« (Gaussian:

Bulk Al (a, = 4.05 A)

Gaussian Smearing

-4.1405 -

@@ smearing = 0.02 Ry | |
B3 smearing = 0.03 Ry
4—¢ smearing = 0.04 Ry

8 9 10 11 12 13 14 15 16 17

N (NxNxN k-point mesh)

Total energy (Ry)

-4.1402

-4.1404

-4.1406

-4.1408

-4.141

7 8 9 0 11 12 13 14 15 16 17 18

 Methfessel-Paxton:

Bulk Al (a, =4.05 A)
m-p smearing
— T T T T T T

@@ smearing = 0.02 Ry
B smearing = 0.03 Ry
49 smearing = 0.04 Ry

N (NxNxN k-point mesh)

represents an energy difference of 1 mRy

Shobhana Narasimhan, JNCASR
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Convergence wrt
K-poinfs & smearing width

e.g., for bcc Fe, using 14 x14 x 14 grid:

0 : ; T T
t‘x\‘\i -\$\ l l
h \.\\H \‘\‘_\‘
M_\\\R
500} e |
| P | ‘-.\
£ ks
= ™
-10001~  [e—e marzari-vanderbilt \ i
e—e gaussean A
il ! | I | : | | | |
B 002 004 006 008 01

degauss [Ry]
R. Gebauer

45
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Step 7. Check if Convergence Achieved

Vion known/constructed
|

—, | Initial guesg (1) or wi(r)
|

Generate Calculate Vy[m & Vyn]
new !

nr) Vel = Vi D+ V(D + Vxe (D
!
Hy(n) =[-12V2 + V(D] wAD = & w(D

'

Calculate new n(n =X |w(n|?

No

Self-consistent?

Problem solved! Can now calculate energy, forces, etc.
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Testing for scf convergence

« Compare nth and (n-1)th approximations for
density, and see if they are close enough that self-
consistency has been achieved.

« Examine squared norm of difference between the
charge density in two successive iterations...should
be close to zero.

)
i 3 Input parameter conv_thr

{

i

LR
Wik,

47
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Can take a long

Step 8: Mixing

Vion known/constructed

time to reach -
self-consistency! [ nitial guess 7(7) or w(r)
® |
Generate Calculate Vy[m & Vyn]
new !
nr) Ve )= Vioud D) + Vig(D+ Ve (D
|
Hy(n =[-12V2 + V(D] wAN = & wAr)
!

Calculate new n(n =X |w(n|?

No

Self-consistent?

Yes

Problem solved! Can now calculate energy, forces, etc.

Shobhana Narasimhan, JNCASR
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Mixing
® |terations 71 of self-consistent cycle:

® Successive approximations to density:
/7/'/7(”) — noul(n) — /7//7(/7'/'1)-

® 1,,An) fed directly as 77,(n+1) ?? No, usually doesn’t
converge.

® Need to mix, take some combination of input and output
densities (may include information from several previous
iterations).

® Goal is to achieve self consistency (71,,; = 11;,) in as few
iterations as possible.

49
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Mixing in Quantum-ESPRESSO

ﬂ\ Input parameter mixing mode
%

P

,j -Prescription used for mixing.

Input parameter mixing beta

-How much of new density is used at each step
- Typically use value between 0.1 & 0.7

Shobhana Narasimhan, JNCASR
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Output Quantities: Total Energy

® Perhaps the most
Important output
quantity is the TOTAL

Silicon

-15.71

ENERGY

® Canuse, e.g., to
optimize structure

® e.g., for a cubic
crystal, where the
structure can be
specified by a single N

etot (Ry)

1573 —

-15.74 —

parameter (side of SRT—
cube):
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