



2221-2

#### Hands-on Tutorial on Electronic Structure Computations

17 - 21 January 2011

NMR and EPR Spectroscopy

Stefano de Gironcoli SISSA and CNR-IOM DEMOCRITOS Trieste Italy

## NMR and EPR spectroscopy

Stefano de Gironcoli SISSA and CNR-IOM DEMOCRITOS degironc@sissa.it

Based on material by Davide Ceresoli Department of Materials, Oxford University davide.ceresoli@materials.ox.ac.uk

### Outline

#### • PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

#### • PART II:

- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

#### • PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

### Outline

#### • PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

#### • PART II:

- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

#### • PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

### **Principles of magnetic resonance**

NMR = <u>N</u>uclear <u>M</u>agnetic <u>R</u>esonance EPR = <u>E</u>lectron <u>P</u>aramagnetic <u>R</u>esonance (also ESR)



### **Principles of magnetic resonance**

A spin in a magnetic field will align parallel or antiparallel to the field. The Zeeman splitting is proportional to the <u>total</u> magnetic field.



The energy splitting can be probed by an electromagnetic wave of frequency  $\omega$ :

$$\Delta E = \hbar \omega$$

### **Some useful relations**

For a nucleus

$$\gamma = \frac{Q}{2M}g = \frac{g\mu_N}{\hbar}$$

 $\gamma =$  gyromagnetic ratio Q = charge m = mass g = g-factor  $\mu_N =$  nuclear magneton

For the electron

$$\gamma_e = \frac{e}{2m_e}g_e = \frac{g_e\mu_B}{\hbar} \qquad \mu_{\rm B} = {\rm bohr\ magneton\ (>>nuclear\ magneton)}$$

For example:  $g({}^{1}H) = 5.585694 \rightarrow \gamma({}^{1}H) = 2.67 \cdot 10^{8} \text{ Hz/T}$  $g(\text{elec.}) = -2.002319 \rightarrow \gamma(\text{elec.}) = 1760 \cdot 10^{8} \text{ Hz/T}$ 

Resonance frequency is proportional to  $\gamma$ : <sup>1</sup>H @ 9.306 T  $\rightarrow$  400 MHz

### **NMR active nuclei**

| Atom       | Isotope       | Spin | Larmor frequency<br>(MHZ at 9.306 T) | Abundance<br>(%) | Absolute<br>sensitivity | Quadrupole<br>(barn) |
|------------|---------------|------|--------------------------------------|------------------|-------------------------|----------------------|
| Hydrogen   | $1\mathrm{H}$ | 1/2  | -400.00                              | 99.98            | 1.00E+000               | 0 Í                  |
| Deuterium  | 2D            | 1    | -61.40                               | 0.02             | 1.45E-006               | 0.00273              |
| Lithium    | 6Li           | 1    | -58.86                               | 7.42             | 6.31E-004               | -0.0008              |
| Lithium    | 7Li           | 3/2  | -155.45                              | 92.58            | 2.70E-001               | -0.045               |
| Boron      | 10B           | 3    | -42.98                               | 19.58            | 3.90E-003               | 0.074                |
| Boron      | 11B           | 3/2  | -128.34                              | 80.42            | 1.30E-001               | 0.0355               |
| Carbon     | 13C           | 1/2  | -100.58                              | 1.11             | 1.76E-004               | 0                    |
| Nitrogen   | 14N           | 1    | -28.90                               | 99.63            | 1.01E-003               | 0.016                |
| Nitrogen   | 15N           | 1/2  | 40.53                                | 0.37             | 3.85E-006               | 0                    |
| Oxygen     | 170           | 5/2  | 54.23                                | 0.04             | 1.08E-005               | -0.026               |
| Fluorine   | 19F           | 1/2  | -376.31                              | 100.00           | 8.30E-001               | 0                    |
| Sodium     | 23Na          | 3/2  | -105.80                              | 100.00           | 9.25E-002               | 0.12                 |
| Magnesium  | 25Mg          | 5/2  | 24.48                                | 10.13            | 2.71E-004               | 0.22                 |
| Aluminum   | 27Al          | 5/2  | -104.23                              | 100.00           | 2.10E-001               | 0.149                |
| Silicon    | 29Si          | 1/2  | 79.46                                | 4.70             | 3.69E-004               | 0                    |
| Phosphorus | 31P           | 1/2  | -161.92                              | 100.00           | 6.63E-002               | 0                    |
| Sulfur     | 33S           | 3/2  | -30.68                               | 0.76             | 1.72E-005               | -0.055               |
| Chlorine   | 35Cl          | 3/2  | -39.19                               | 75.53            | 3.55E-003               | -0.08                |
| Chlorine   | 37Cl          | 3/2  | -32.62                               | 24.47            | 6.63E-004               | -0.0632              |
| Potassium  | 39K           | 3/2  | -18.67                               | 93.10            | 4.73E-004               | 0.055                |
| Potassium  | 41K           | 3/2  | -10.24                               | 6.88             | 5.78E-006               | 0.067                |
| Calcium    | 43Ca          | 7/2  | 26.91                                | 0.15             | 9.28E-006               | -0.05                |

### **NMR history**

- 1937 Rabi predicts and observes nuclear magnetic resonance
- 1946 Bloch, Purcell first nuclear magnetic resonance of bulk sample
- 1953 **Overhauser** NOE (nuclear Overhauser effect)
- 1966 Ernst, Anderson Fourier transform NMR
- 1975 Jeener, Ernst 2D NMR
- 1985 **Wüthrich** first solution structure of a small protein (BPTI) from NOE derived distance restraints
- 1987 3D NMR + 13C, 15N isotope labeling of recombinant proteins
- 1990 pulsed field gradients (artifact suppression)
- 1996 new *long range* structural parameters: residual dipolar couplings and cross-correlated relaxation

#### **Nobel prizes**

| 1944 | Physics   | Rabi                 |
|------|-----------|----------------------|
| 1952 | Physics   | Bloch, Purcell       |
| 1991 | Chemistry | Ernst                |
| 2002 | Chemistry | Wüthrich             |
| 2003 | Medicine  | Lauterbur, Mansfield |

#### First <sup>1</sup>H NMR spectra of water



FIG. 10. Photographic record of the proton signal in water. The four traces from top to bottom correspond to the times  $t_1$ ,  $t_2$ ,  $t_3$ ,  $t_4$  of Fig. 9. In the text they are referred to as a, b, c, d, respectively.

#### Bloch, Hansen and Packard, **The nuclear induction experiment** Physical Review **70**, 474 (1946),

# First observation of the chemical shift



#### <sup>1</sup>H NMR spectra ethanol



#### Arnold, Dhamatti and Packard, J. Chem. Phys. 19, 507 (1951)

# Chemical shift as molecular fingerprint



### **Typical applications of NMR**

1) Structural (chemical) elucidation

Natural product chemistry Synthetic organic chemistry

- analytical tool of choice of synthetic chemists
- used in conjunction with mass spectroscopy and IR

#### 2) Study of dynamic processes

reaction kinetics study of equilibrium (chemical or structural)

#### 3) Structural (three-dimensional) studies

Proteins, Protein-ligand complexes DNA, RNA, Protein/DNA complexes Polysaccharides

4) Drug Design

MRI images of the Human Brain

#### 5) Medicine: MRI

### Outline

#### • PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

#### • PART II:

- Calculation of NMR parameters
- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

#### • PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

### **NMR spectrometer**



Typical fields~14 TResonance~600 MHzCost~800 k\$



### **Classical description of NMR**



On average, the magnetization lies only along the z-direction. In order to observe NMR, we must perturb the system!

### **Classical description of NMR**

We send a RF pulse to by 90° the precession axis ...



... and we start recording the spin relaxing back to the initial state.

### **Classical description of NMR**

... and we start recording the spin relaxing back to the initial state.



 $T_1 =$ longitudinal (spin-lattice) relaxation time  $T_2 =$ transverse (spin-spin) relaxation time

### **Free Induction Decay**

Signal recorded after the pulse is called Free Induction Decay (FID). The Fourier transform of the FID yields the NMR spectrum.



#### **Pulse sequences**

The NMR spectrometer is a programmable machine! Pulse sequences have been designed to:

- increase resolution and sensitivity, decouple spins
- find correlations between neighboring nuclei (2D and 3D NMR)



### Outline

#### • PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

#### • PART II:

- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

#### • PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

### **Chemical shift**

- Different nuclei/isotopes resonate at different Larmor frequencies.
- The resonance frequency is modified by the chemical environment.
- $\bullet$  Every nucleus experiences a different local magnetic field. Definition: shielding tensor  $\sigma$

$$\mathbf{B}_{\rm eff} = \mathbf{B}_{\rm ext} (1 - \overset{\leftrightarrow}{\sigma})$$

Definition: chemical shift  $\delta$ 

$$\delta = -(\sigma - \sigma_{\rm ref})$$

- $\sigma$  independent of magnetic field
- usually  $\sigma << 1$
- measured in ppm (1 ppm =  $10^{-6}$ )
- $\delta$  given as deviation from a <u>reference</u> compound
- measured in ppm (1 ppm =  $10^{-6}$ )

Reference compounds can be liquids, solutions, solids.

### **Chemical shift**

In practice  $\delta$  is obtained from the resonance frequencies:

$$\delta = \frac{\omega - \omega_{\rm ref}}{\omega_{\rm ref}} \cdot 10^6$$

Some reference compounds:

- <sup>1</sup>H, <sup>13</sup>C, <sup>29</sup>Si  $\rightarrow$  tetramethylsilane (TMS)
- $^{15}N \rightarrow \text{liquid NH}_{3}$
- <sup>17</sup>O  $\rightarrow$  liquid H<sub>2</sub>O
- <sup>19</sup>F  $\rightarrow$  liquid CFCl<sub>3</sub>
- ${}^{27}\text{Al} \rightarrow \text{AlCl}_3 \text{ in } \text{D}_2\text{O}$
- ${}^{43}Ca \rightarrow CaCl_2(aq) 1 mol/L$

It is possible to use a secondary reference if you know its chemical shift from the primary reference.





### **Chemical shift**

The origin of the chemical shift are the orbital currents induced by the external magnetic field.

The shielding  $\sigma$  can be decomposed into a diamagnetic ( $\sigma_{d} > 0$ ) and paramagnetic ( $\sigma_{p} < 0$ ) term:

## $\sigma_d$ depends on the density of circulating electrons increases with electronegativity of substituents

 $\sigma_p$  depends on the hindering free circulation dominates in presence of p and d orbitals, anysotropic chemical bond, positive charges, low lying electronic states, high atomic number elements



Electronic current in benzene, induced by a perpendicular magnetic field

### **NMR terminology**



### **Ring current effect**

Atoms on the equatorial plane are strongly de-shielded (higher  $\delta$ ).



### **Chemical shift tables**



### **Interpretation of NMR spectra**

Area of the peaks (red curve)  $\rightarrow$  number of equivalent nuclei Chemical shift table  $\rightarrow$  possible chemical group Splitting (J-coupling)  $\rightarrow$  connectivity between groups nuclei are coupled Heisenberg-like: -J S<sub>i</sub> · S<sub>j</sub> The "exchange" coupling J decays as 1/r<sub>ij</sub><sup>3</sup>

J is independent of the magnetic field (higher  $B \rightarrow$  better resolution)



### Outline

#### • PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

#### • PART II:

- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

#### • PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

#### Solid-state NMR

Molecules in liquids move very fast w.r.t. NMR time, averaging over all orientations:

→ sharp NMR lines (isotropic chemical shift)

In solids nuclei are fixed in the lattice, no averaging:

- → broad NMR peaks (anysotropy)
- → interactions between spins are not averaged-out (broader lines)
- $\rightarrow$  long T<sub>1</sub> relaxation time (which implies longer experiments)



### **Magic Angle Spinning**

The magnetic dipole interaction goes like ( $3\cos^2 \theta - 1$ ), where  $\theta$  is the angle with the magnetic field.



Solution: spin the sample at the magic angle  $\theta \sim 54.74^{\circ}$ 



## MAS reduces effect of chemical shift anisotropy and dipolar interactions.

### Magic Angle Spinning

sample spinning frequency (kHz)



#### ss-NMR:

- sophisticated pulse sequences
- peak assignment more difficult
- need for calculations and simulations

### Summary

- NMR uses radio-frequency radiation to induce transitions between different nuclear spin states of samples in a magnetic field.
- NMR can be used for quantitative measurements, but it is most useful for determining the structure of molecules.
- Different atoms in a molecule experience slightly different magnetic fields and therefore resonate at different frequencies (chemical shift).
- Splittings of the spectra lines (J-coupling) provide information about the proximity of different atoms in a molecule.

#### Advanced NMR topics (not covered in these notes):

- multidimensional NMR
- relaxation time, nuclear Overhauser effect