

2221-3

Hands-on Tutorial on Electronic Structure Computations

17 - 21 January 2011

NMR and EPR Spectroscopy (Part II)

Stefano de Gironcoli SISSA and CNR-IOM DEMOCRITOS Trieste Italy

NMR and EPR spectroscopy (part II)

Stefano de Gironcoli SISSA and CNR-IOM DEMOCRITOS degironc@sissa.it

based on material by

Davide Ceresoli Department of Materials, Oxford University davide.ceresoli@materials.ox.ac.uk

Outline

• PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

• PART II:

- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

• PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

Effective NMR Hamiltonian

$$\mathcal{H}_{S}(\mathrm{NMR}) = -\hbar \sum_{I} \gamma_{I} \mathbf{B}_{\mathrm{ext}} \left(\bar{\bar{\mathbf{1}}} - \bar{\bar{\sigma}} \right) \mathbf{I}_{I} \quad \text{chemical shift} \\ + \frac{1}{2} \hbar^{2} \sum_{I} \sum_{I \neq I} \gamma_{I} \gamma_{J} \mathbf{I}_{I} \left(\bar{\bar{\mathbf{D}}}_{IJ} + \bar{\bar{\mathbf{J}}}_{IJ} \right) \mathbf{I}_{J} \\ + \sum_{I, |\mathbf{I}_{I}| \geq 1} \mathbf{I}_{I} \bar{\bar{\mathbf{Q}}}_{I} \mathbf{I}_{I} \quad \overset{\mathrm{nuclear}}{\underset{(\mathsf{I} > 1/2)}{\operatorname{nuclear}}}$$

$$\begin{split} \mathbf{I}_{I} &= \text{Nuclear spin}; \ \mu_{I} = \gamma_{I} \hbar \mathbf{I}_{I} \ ; \ \sigma = \text{Nuclear chemical shielding tensor} \\ & \bar{\bar{\mathbf{D}}}_{IJ} = \text{Nuclear magnetic dipolar coupling tensor} \\ & \bar{\bar{\mathbf{J}}}_{IJ} = \text{Indirect nuclear spin} - \text{spin coupling tensor} \\ & \bar{\bar{\mathbf{Q}}}_{II} = \text{Nuclear quarupolar coupling tensor} \end{split}$$

The chemical shift

From the NMR Hamiltonian the shielding tensor is defined as:

$${f B}_{
m ind}=-ar{ar\sigma}{f B}_{
m ext}$$

It is the second derivative of energy w.r.t. field and nuclear moment:

$$\overset{\leftrightarrow}{\sigma}_{I} = \frac{\partial^{2} E}{\partial \boldsymbol{\mu}_{I} \partial \mathbf{B}}$$

The chemical shift is then defined by:

$$\delta = - \left(\sigma - \sigma_{
m ref}
ight)$$

 σ_{ref} is a reference value in a well-characterized material.

"Direct" and "converse" methods

Direct approach (traditional):

- <u>linear response</u> to external magnetic field
- calculate the induced current, then the induced field
- Mauri, Louie (1996); GIPAW: Pickard, Mauri (2001)

$$\left. \begin{array}{c} \stackrel{\leftrightarrow}{\sigma}_{I} = - \left. \frac{\partial \mathbf{B}_{\text{ind}}}{\partial \mathbf{B}_{\text{ext}}} \right|_{r=r_{I}} \end{array} \right|_{\mathbf{B}_{\text{ind}}(\mathbf{r})} = \frac{1}{c} \int d^{3}\mathbf{r}' \frac{\mathbf{j}_{\text{ind}}(\mathbf{r}') \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^{3}}$$

Converse approach:

- no linear response, no magnetic field, no gauge-origin problem
- calculate the change of orbital magnetization due to nuclear magnetic moment
- based on the "Modern Theory of the Orbital Magnetization"

$$\mathbf{M}_{\text{orb}} = \frac{\alpha}{2} \operatorname{Im} \sum_{n\mathbf{k}} f_{n\mathbf{k}} \left\langle \partial_{\mathbf{k}} u_{n\mathbf{k}} \right| \times \left(H_{\mathbf{k}} + E_{n\mathbf{k}} - 2\mu \right) \left| \partial_{\mathbf{k}} u_{n\mathbf{k}} \right\rangle$$

Outline of linear response

Vector potential $\mathbf{A}(\mathbf{r}) = (1/2)\mathbf{B} \times \mathbf{r}$ is incompatible with crystal periodicity Solution: apply a long-wavelength magnetic field (q << 1)

$$B(r) \propto \frac{\cos(q r)}{q} \hat{z} \qquad A(r) \propto \frac{\sin(q r)}{q} \hat{z} imes \hat{q}$$

The response to an incommensurate perturbation is obtained by Density Functional Perturbation Theory (DFPT):

EFG: electric field gradient tensor

Quadrupolar nuclei (I>1/2); non-zero only when no cubic symmetry:

$$ar{ar{\mathbf{Q}}}_{lphaeta}^{I} = rac{eQ}{h} ig\langle \psi_0 ig| rac{\delta \mathbf{E}_{lpha}}{\delta \mathbf{r}_{eta}} ig| \psi_0 ig
angle = rac{eQ}{h} ar{ar{\mathbf{V}}}_{lphaeta}$$

 $\mathbf{E} = \text{electric field}$; eQ = electric quadrupole moment

Principal axis system: Eigenvectors and -values of $\bar{\mathbf{V}}_{\alpha\beta}$ Convention: $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$

Observables:

- Quadrupolar coupling constant
- Asymmetry parameter

$$Cq = \frac{eQV_{zz}}{h}$$
$$\eta = \frac{V_{xx} - V_{yy}}{V_{zz}}$$

Outline

• PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

• PART II:

- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

• PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

GIPAW

PHYSICAL REVIEW B, VOLUME 63, 245101

All-electron magnetic response with pseudopotentials: NMR chemical shifts

Chris J. Pickard*

Institut für Geowissenschaften, Universität Kiel, Olshausenstrasse 40 D-24098 Kiel, Germany

Francesco Mauri

Laboratoire de Minéralogie-Cristallographie de Paris, Université Pierre et Marie Curie, 4 Place Jussieu, 75252, Paris, Cedex 05, France (Received 17 November 2000; published 10 May 2001)

A theory for the *ab initio* calculation of all-electron NMR chemical shifts in insulators using pseudopotentials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension to the projector augmented-wave approach of Blöchl [P. E. Blöchl, Phys. Rev. B **50**, 17 953 (1994)] and the method of Mauri *et al.* [F. Mauri, B. G. Pfrommer, and S. G. Louie, Phys. Rev. Lett. **77**, 5300 (1996)]. The theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and in periodic systems by comparison with plane-wave all-electron results for diamond.

DOI: 10.1103/PhysRevB.63.245101

PACS number(s): 71.45.Gm, 76.60.Cq, 71.15.-m

Need to reconstruct the wavefunction near the nuclei!

Pseudopotential / all-electron

AE wfc (blue) oscillates rapidly near the nucleus

PS wfc (red) smooth, no nodes in the core region

PAW idea

PAW (Blöchl, 1994) = projector augmented wave Idea: "reconstruct" the AE wfc from the PS wfc

PAW idea

$$\begin{split} |\psi^{AE}\rangle &= |\psi^{PS}\rangle + \sum_{R,n} \left(|\phi_{R,n}^{AE}\rangle - |\phi_{R,n}^{PS}\rangle \right) \langle p_{R,n} |\psi^{PS}\rangle \\ &= \left[\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right] + \left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \right] \\ \mathcal{T} &= 1 + \sum_{R,n} (|\phi_{R,n}\rangle - |\tilde{\phi}_{R,n}\rangle) \langle \tilde{p}_{n} | \\ \\ |\Psi\rangle &= \mathcal{T} |\tilde{\Psi}\rangle \qquad \langle \Psi | O |\Psi\rangle = \langle \tilde{\Psi} | \mathcal{T}^{\dagger} O \mathcal{T} | \tilde{\Psi}\rangle \qquad \tilde{O} = \mathcal{T}^{\dagger} O \mathcal{T} \\ \\ \tilde{O} &= O + \sum_{ij} |\tilde{p}_{i}\rangle [\langle \phi_{i} | O | \phi_{j}\rangle - \langle \tilde{\phi}_{i} | O | \tilde{\phi}_{j}\rangle] \langle \tilde{p}_{j} | \end{split}$$

Gauge Including PAW

Hamiltonian in uniform magnetic field

$$H = \frac{1}{2} \left(\mathbf{p} + \frac{1}{c} \mathbf{A}(\mathbf{r}) \right)^2 + V(\mathbf{r}) \qquad \mathbf{A}(\mathbf{r}) = \frac{1}{2} \mathbf{B} \times (\mathbf{r} - \mathbf{d})$$
$$H = \frac{1}{2} \mathbf{p}^2 + V(\mathbf{r}) + \frac{1}{2c} \mathbf{L} \cdot \mathbf{B} + \frac{1}{8c^2} (\mathbf{B} \times \mathbf{r})^2$$

Translation in magnetic field yields a gauge phase factor:

$$H' = \frac{1}{2} \left(\mathbf{p} + \frac{1}{c} \mathbf{A}(\mathbf{r}) \right)^2 + V(\mathbf{r} - \mathbf{t}) \qquad \Psi'(\mathbf{r}) = e^{(i/2c)\mathbf{r} \cdot \mathbf{t} \times \mathbf{B}} \Psi(\mathbf{r})$$

from PAW
$$T = 1 + \sum_{\mathbf{R},n} (|\phi_{\mathbf{R},n}\rangle - |\tilde{\phi}_{\mathbf{R},n}\rangle) \langle \tilde{p}_n|$$

to GIPAW = PAW + magnetic field $T_{\mathbf{B}} = \mathbf{1} + \sum_{\mathbf{R},n} e^{(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}} [|\phi_{\mathbf{R},n}\rangle - |\tilde{\phi}_{\mathbf{R},n}\rangle] \langle \tilde{p}_{\mathbf{R},n} | e^{-(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}}]$ (1) wfc reconstruction (2) gauge-invariance

The GIPAW Hamiltonian

Hamiltonian in uniform magnetic field $H = \frac{1}{2} \left(\mathbf{p} + \frac{1}{c} \mathbf{A}(\mathbf{r}) \right)^2 + V(\mathbf{r})$ **GIPAW** transformation $\mathcal{T}_{\mathbf{B}} = \mathbf{1} + \sum_{\mathbf{R},n} e^{(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}} [|\phi_{\mathbf{R},n}\rangle - |\tilde{\phi}_{\mathbf{R},n}\rangle] \langle \tilde{p}_{\mathbf{R},n}|e^{-(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}}]$ $\overline{O} = \mathcal{T}_{\mathbf{B}}^{+} O \mathcal{T}_{\mathbf{B}}$ $\overline{O} = O + \sum_{\mathbf{R},n,m} e^{(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}} |\tilde{p}_{\mathbf{R},n}\rangle$ $\times [\langle \phi_{\mathbf{R},n} | e^{-(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}} O e^{(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}} | \phi_{\mathbf{R},m} \rangle$ $-\langle \tilde{\phi}_{\mathbf{R},n} | e^{-(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}} O e^{(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}} | \tilde{\phi}_{\mathbf{R},m} \rangle]$ $\times \langle \tilde{p}_{\mathbf{R},m} | e^{-(i/2c)\mathbf{r} \cdot \mathbf{R} \times \mathbf{B}}$ A C1

After some algebra...

$$\bar{H}^{(1)} = \frac{1}{2c} \left(\mathbf{L} + \sum_{\mathbf{R}} \mathbf{R} \times \frac{1}{i} [\mathbf{r}, V_{\mathbf{R}}^{nl}] + \sum_{\mathbf{R}} \mathbf{L}_{\mathbf{R}} Q_{\mathbf{R}} \right) \cdot \mathbf{B}$$

$$Q_{\mathbf{R}} = \sum_{n,m} |\tilde{p}_{\mathbf{R},n}\rangle q_{\mathbf{R},nm} \langle \tilde{p}_{\mathbf{R},m}| \qquad q_{\mathbf{R},nm} = \langle \phi_{\mathbf{R},n} | \phi_{\mathbf{R},m} \rangle - \langle \tilde{\phi}_{\mathbf{R},n} | \tilde{\phi}_{\mathbf{R},m} \rangle$$

Calculating Shielding tensor

$$\mathbf{B}_{\text{in}}^{(1)}(\mathbf{r}) = -\vec{\sigma}(\mathbf{r})\mathbf{B}_{\text{ext}} = \frac{1}{c}\int d^3r' \mathbf{j}^{(1)}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

Current operator

$$J(\mathbf{r}') = J^{d}(\mathbf{r}') + J^{p}(\mathbf{r}')$$

$$J^{d}(\mathbf{r}') = \frac{1}{c} \mathbf{A}(\mathbf{r}') |\mathbf{r}'\rangle \langle \mathbf{r}'|$$

$$J^{p}(\mathbf{r}') = -\frac{\mathbf{p}|\mathbf{r}'\rangle \langle \mathbf{r}'| + |\mathbf{r}'\rangle \langle \mathbf{r}'|\mathbf{p}}{2}$$

$$\Delta \mathbf{J}_{\mathbf{R}}^{d}(\mathbf{r}') = -\frac{\mathbf{B} \times (\mathbf{r}' - \mathbf{R})}{2c} \sum_{n,m} |\tilde{p}_{\mathbf{R},n}\rangle [\langle \phi_{\mathbf{R},n} | \mathbf{r}'\rangle \langle \mathbf{r}' | \phi_{\mathbf{R},m}\rangle - \langle \tilde{\phi}_{\mathbf{R},n} | \mathbf{r}'\rangle \langle \mathbf{r}' | \tilde{\phi}_{\mathbf{R},m}\rangle] \langle \tilde{p}_{\mathbf{R},m}|$$

$$\Delta \mathbf{J}_{\mathbf{R}}^{p}(\mathbf{r}') = \sum_{n,m} |\tilde{p}_{\mathbf{R},n}\rangle [\langle \phi_{\mathbf{R},n} | \mathbf{J}^{p}(\mathbf{r}') | \phi_{\mathbf{R},m}\rangle - \langle \tilde{\phi}_{\mathbf{R},n} | \mathbf{J}^{p}(\mathbf{r}') | \phi_{\mathbf{R},m}\rangle - \langle \tilde{\phi}_{\mathbf{R},n} | \mathbf{J}^{p}(\mathbf{r}') | \tilde{\phi}_{\mathbf{R},m}\rangle] \langle \tilde{p}_{\mathbf{R},m}|$$

Expanding in powers of B: $\overline{\mathbf{J}}^{(0)}(\mathbf{r}') = \mathbf{J}^{p}(\mathbf{r}') + \sum_{\mathbf{R}} \Delta \mathbf{J}^{p}_{\mathbf{R}}(\mathbf{r}')$ $\overline{\mathbf{J}}^{(1)}(\mathbf{r}') = -\frac{\mathbf{B} \times \mathbf{r}'}{2c} |\mathbf{r}'\rangle \langle \mathbf{r}'| + \sum_{\mathbf{R}} \left\{ \Delta \mathbf{J}^{d}_{\mathbf{R}}(\mathbf{r}') + \frac{1}{2ci} [\mathbf{B} \times \mathbf{R} \cdot \mathbf{r}, \Delta \mathbf{J}^{p}_{\mathbf{R}}(\mathbf{r}')] \right\}$

Calculating Shielding tensor

$$\begin{split} \overline{\mathbf{J}}^{(0)}(\mathbf{r}') &= \mathbf{J}^{p}(\mathbf{r}') + \sum_{\mathbf{R}} \Delta \mathbf{J}^{p}_{\mathbf{R}}(\mathbf{r}') & \text{induced current} \\ \overline{\mathbf{J}}^{(1)}(\mathbf{r}') &= -\frac{\mathbf{B} \times \mathbf{r}'}{2c} |\mathbf{r}'\rangle \langle \mathbf{r}'| + \sum_{\mathbf{R}} \left\{ \Delta \mathbf{J}^{d}_{\mathbf{R}}(\mathbf{r}') + \frac{1}{2ci} [\mathbf{B} \times \mathbf{R} \cdot \mathbf{r}, \Delta \mathbf{J}^{p}_{\mathbf{R}}(\mathbf{r}')] \right\} \\ \mathbf{j}^{(1)}(\mathbf{r}') &= 2\sum_{o} \left[\langle \overline{\Psi}^{(1)}_{o} | \overline{\mathbf{J}}^{(0)}(\mathbf{r}') | \overline{\Psi}^{(0)}_{o} \rangle + \langle \overline{\Psi}^{(0)}_{o} | \overline{\mathbf{J}}^{(0)}(\mathbf{r}') | \overline{\Psi}^{(1)}_{o} \rangle + \langle \overline{\Psi}^{(0)}_{o} | \overline{\mathbf{J}}^{(1)}(\mathbf{r}') | \overline{\Psi}^{(0)}_{o} \rangle \right] \\ \overline{H}^{(1)} &= \frac{1}{2c} \left(\mathbf{L} + \sum_{\mathbf{R}} \mathbf{R} \times \frac{1}{i} [\mathbf{r}, V^{\text{nl}}_{\mathbf{R}}] + \sum_{\mathbf{R}} \mathbf{L}_{\mathbf{R}} Q_{\mathbf{R}} \right) \cdot \mathbf{B} \\ \mathbf{B}^{(1)}_{\text{in}}(\mathbf{r}) &= -\overline{\sigma}(\mathbf{r}) \mathbf{B}_{\text{ext}} = \frac{1}{c} \int d^{3}r' \mathbf{j}^{(1)}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3}} \end{split}$$

All needed first order wfc variations can be calculated b DFPT

Outline

• PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

• PART II:

- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

• PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

Example: molecules

					-[]		
Molecule	Core	bare	$\sigma_{ ext{GIPAW}} \Delta ext{d}$	Δp	Total	$\sigma_{\rm IGAIM}$ Total	red = GIPAW
H atom							Blue=Gaussiar
CH4	0.00	30.47	0.40	0.00	30.87	30.99	
CH ₂ F	0.00	25.71	0.41	0.00	26.13	26.50	
CeHe	0.00	22.33	0.41	0.00	22.74	23.25	
TMS	0.00	30.41	0.40	0.00	30.80	31.02	
SiH ₃ F	0.00	24.92	0.38	0.00	25.30	25.13	
Si ₂ H ₄	0.00	24.53	0.36	0.00	24.90	24.78	
SiH ₄	0.00	26.96	0.37	0.00	27.33	27.28	
C atom	15						
CO	198.88	- 126.25	4.59	- 100.15	-22.93	-21.16	
CH₄	198.88	16.86	3.97	-28.76	190.96	191.22	
CH ₃ F	198.88	-49.64	3.93	- 54.70	98.47	99.66	
CH ₃ NH ₂	198.88	-13.98	3.91	- 39.05	149.77	150.44	
C ₆ H ₆	198.88	- 89.51	4.07	-77.32	36.12	39.52	
CF ₄	198.88	-92.12	3.51	-76.05	34.22	35.29	
TMS	198.88	9.12	3.97	-32.65	179.33	182.08	
Si atom	1s2s2p						
SiF ₄	832.39	-19.43	5.28	- 408.26	409.97	409.69	
SiH ₃ F	832.39	- 19.50	5.70	- 510.30	308.29	305.45	
Si ₂ H ₄	832.39	- 9.04	5.80	- 622.45	206.70	202.99	
SiH ₄	832.39	-0.21	5.98	-410.20	427.97	424.37	
TMS	832.39	-17.39	5.70	-518.00	302.70	304.39	
P atom	1s2s2p						
PF ₃	902.47	-32.94	6.08	- 697.61	178.00	172.52	
P ₂	902.47	- 33.84	7.58	- 1236.95	- 360.75	- 375.45	Pickard, Mauri
P ₄	902.47	49.84	7.42	- 126.79	832.94	826.62	PRB 63 , 245101
Computation			tum Ecoro	cco and related			(2001)

red = GIPAWBlue=Gaussian[™]

Example: ¹⁹F

Outline

• PART I:

- Basic principles of magnetic resonance spectroscopy
- Introduction to experimental NMR
- Interpretation of NMR spectra
- Solid state NMR

• PART II:

- Effective NMR spin hamiltonian
- The GIPAW method
- Examples
- Brief introduction to EPR spectroscopy and EPR parameters

• PART III: (Emine Kuçukbenli)

- GIPAW pseudopotentials
- The gipaw.x code: input file and description of the output

EPR/ESR spectroscopy

<u>Electron Paramagnetic Resonance / Electron Spin Resonance</u>

Tipical fields ~0.5 T Resonance ~14 GHz

- Paramagnetic defects in solids, radicals in proteins
- Sensitive to local geometry and electronic structure (charge, hybridization)
- Non destructive, small samples, dilute spins

Interpretation of EPR spectra

Effective Spin Hamiltonian

Zero Field Splitting

In case: S > 1/2

$$\mathcal{H}_{\text{ZFS}} = \frac{g_e \,\mu_B}{r^5} \left[\left(\mathbf{s}_1 \cdot \mathbf{s}_2 \right) r^2 - 3 \left(\mathbf{s}_1 \cdot \mathbf{r} \right) \left(\mathbf{s}_2 \cdot \mathbf{r} \right) \right]$$

- Two electron integrals
- Usually small (?)
- Not implemented in Espresso

 $\mathbf{r} \equiv \mathbf{r}_1 - \mathbf{r}_2$

Theory of EPR parameters

The effective spin Hamiltonian allows to extract EPR parameters from the experiments, but in order to calculate EPR parameters, we need a "physical" Hamiltonian. The simplest non-relativistic Hamiltonian that accounts for spin is the Pauli Hamiltonian:

... plus other terms

Table 2.2. Partial listing of $\mathcal{O}(\alpha^2)$ *terms of the approximate Hamiltonian.*

Label	Description	Operator
	Scalar relativistic corrections	
h^{mv}	Mass-velocity term	$-\frac{1}{8}\alpha^2 \sum_i \nabla_i^4$
$h^{\operatorname{Dar}(1)}$	Electron-nuclear Darwin term	$\frac{\pi}{2} \alpha^2 \sum_{i,K} Z_K \delta(\mathbf{r}_{iK})$
$h^{\operatorname{Dar}(2)}$	Electron-electron Darwin term	$-\frac{\pi}{2} \alpha^2 \sum_{i,j}^{\prime} \delta(\mathbf{r}_{ij})$
h^{OO}	Electron-electron orbital interaction	$\frac{1}{4}\alpha^2 \sum_{i,j}' \frac{\vec{\nabla}_i \cdot \nabla_j}{r_{ij}} - \frac{(\nabla_i \cdot \mathbf{r}_{ij})(\mathbf{r}_{ij} \cdot \nabla_j)}{r_{ij}^3}$
	Spin-dependence, no field-dependence	
$h^{SO(1)}$	Spin-orbit interaction	$\frac{1}{4} \alpha^2 g_e \sum_{i \in V} \frac{Z_K}{2} \mathbf{s}_i \cdot \mathbf{l}_{iK}$
1 \$\$0(2)	- p	
$h^{550(2)}$	Electron-electron spin-orbit interaction	$-\frac{1}{4}\alpha^2 g_e \sum_{i,j} s_i \cdot \frac{\eta}{r_{ij}^3}$
$h^{\mathrm{SOO}(2)}$	Electron-electron spin-other-orbit interaction	$-\frac{1}{2}\alpha^2 g_e \sum_{i,j}' s_j \cdot \frac{\mathbf{l}_{ij}}{r^3}$
$h^{\mathrm{SSD}(2)}$	Spin-spin dipolar interaction	$\frac{1}{4}\alpha^2 g_e^2 \sum_{i,j}' \frac{r_{ij}^2(\mathbf{s}_i \cdot \mathbf{s}_j) - (\mathbf{s}_i \cdot \mathbf{r}_{ij})(\mathbf{r}_{ij} \cdot \mathbf{s}_j)}{r_{ij}^5}$
$h^{\mathrm{SSC}(2)}$	Spin-spin contact interaction	$-\frac{\pi g_e^2}{3} \alpha^2 \sum_{i,j}' \mathbf{s}_i \cdot \mathbf{s}_j \delta(\mathbf{r}_{ij})$
$h_K^{\rm PSO}$	Orbital hyperfine interaction	$\alpha^2 \gamma_K \sum_i \mathbf{I}_K \cdot \frac{\mathbf{I}_{iK}}{r^3}$
	Electron and nuclear spins	' iK
$h_K^{ m SD}$	Dipolar hyperfine interaction	$\frac{1}{2} \alpha^2 g_e \gamma_K \sum_i \mathbf{s}_i \cdot \frac{3 \mathbf{r}_{iK} \mathbf{r}_{iK} - 1 r_{iK}^2}{r_{iK}^5} \cdot \mathbf{I}_K$
$h_K^{ m FC}$	Fermi contact hyperfine interaction	$\frac{4\pi}{3}\alpha^2 g_e \gamma_K \sum_i \delta(\mathbf{r}_{iK}) \mathbf{s}_i \cdot \mathbf{I}_K$

From: Pekka Manninen PhD thesis, University of Oulo, Finland (2004). http://herkules.oulu.fi/isbn9514274318/

g-tensor: the easy part

From the effective spin Hamiltonian, the g-tensor is defined as:

$$\stackrel{\leftrightarrow}{g} = \frac{2}{\alpha} \frac{\partial^2 \mathcal{H}}{\partial \mathbf{S} \partial \mathbf{B}}$$

The Zeeman and Zeeman-Kinetic Energy term yield:

$$\begin{split} & \stackrel{\leftrightarrow}{g}_{\rm Z} = g_e \stackrel{\leftrightarrow}{1} \\ \Delta \stackrel{\leftrightarrow}{g}_{\rm Z-KE} = -\frac{g_e \alpha^2}{2} \left(\sum_{\substack{S=\pm 1/2}} S T_S \right) \stackrel{\leftrightarrow}{1} \\ & \stackrel{\rm Kinetic\ energy}{} \\ & \stackrel{\rm Kinetic\ energy}{} \\ & \stackrel{\rm of\ occupied\ orbitals} \end{split}$$

g-tensor: SO and SOO

The SO and SOO don't depend explicitly on the magnetic field, but implicitly through the wavefunctions. Their contribution can be calculated in perturbation theory:

$$\Delta \overset{\leftrightarrow}{g}_{\text{SOO}} \simeq \alpha \sum_{S=\pm 1/2} S \int d^3 \mathbf{r}' \overset{\leftrightarrow}{B}^{(1)}_S(\mathbf{r}') \rho_S(\mathbf{r}')$$

Finally:

Hyperfine coupling

$$\overset{\leftrightarrow}{A}_{R} = \left\langle \frac{\partial^{2} \mathcal{H}}{\partial \mathbf{S} \, \partial \mathbf{I}_{R}} \right\rangle = A_{\mathrm{iso,R}} \overset{\leftrightarrow}{1} + \overset{\leftrightarrow}{A}_{\mathrm{dip,R}}$$

Isotropic (Fermi-contact)

$$A_{\rm iso} = \frac{4\pi}{3} \frac{g_e \,\mu_e \,g_N \,\mu_N}{S} \int d^3 \mathbf{r} \, n_s(\mathbf{r}) \underline{\delta(\mathbf{r})}$$
$$\mathbf{r} \equiv \mathbf{r} - \mathbf{R}$$

Dipolar (traceless)

$$A_{\rm dip}^{\alpha\beta} = \frac{1}{2} \frac{g_e \,\mu_e \,g_N \,\mu_N}{S} \int d^3 \mathbf{r} \, n_s(\mathbf{r}) \frac{3r_\alpha r_\beta - \delta_{\alpha\beta} r^2}{r^5}$$

Spin density:
$$n_s({f r})=n_{\uparrow}({f r})-n_{\downarrow}({f r})$$

Spin densities of isolated atoms

Atom	Configuration	1 s	2s	3s	4s	Total
Li	2s(1↑,0↓)	0.003	0.219			0.222
С	2s² 2p(2↑,0↓)	-0.199	0.178			-0.021
N	2s² 2p(3↑,0↓)	-0.440	0.429			-0.011
0	2s² 2p(3↑,1↓)	-0.417	0.437			0.019
Na	3s(1↑,0↓)	0.019	-0.030	0.810		0.799
Si	3s² 3p(2↑,0↓)	-0.094	0.056	-0.193		-0.232
Mn	4s² 3d(5↑,0↓)	-0.008	-2.203	0.913	1.384	0.086
Mn ⁺	4s¹ 3d(5↑,0↓)	0.040	-2.215	0.833	7.194	5.852
Mn ²⁺	4sº 3d(5↑,0↓)	-0.018	-2.294	0.888	0.000	-1.424
Mn ³⁺	4sº 3d(4↑,0↓)	-0.018	-2.103	0.942	0.000	-1.179
Mn ⁴⁺	4sº 3d(3↑,0↓)	-0.017	-1.793	0.904	0.000	-0.907

- Calculated with *ld1.x*, extrapolated at the nucleus
- Spin-polarized LDA
- values in elec./bohr³

Mn orbitals and ΔV_{xc}

Core relaxation

Project valence density around atoms and add GIPAW reconstruc.

$$n_{\sigma}(r) = n_{\operatorname{val},\sigma}(r) + n_{\operatorname{rec},\sigma}(r), \qquad r < R_c$$

- Calculate ΔV_{xc} from projected spherical density

$$\Delta V_{\rm XC} = -\frac{2}{\pi} \frac{n_{\uparrow} - n_{\downarrow}}{\left(n_{\uparrow} + n_{\downarrow}\right)^{2/3}}$$

Core spin density from Incomplete Perturbation Theory

$$n_{\rm s,core}(r) = 4 \sum_{u \in \text{core } v \neq u} \sum_{v \neq u} \frac{\langle \phi_{us} | \Delta V_{\rm XC} | \phi_{vs} \rangle}{\epsilon_{us} - \epsilon_{vs}} \phi_{us}(r) \phi_{vs}(r)$$

Not yet available in Espresso-4.2. Experimental! ask Davide Ceresoli,,,

Hyperfine couplings of 2nd row radicals

Molecule	e Atom	no core relax core	e relax exper	riment
CH●	C	204	90	47
	H	-50	-50	-58
ОН●	O	-142	-61	-45
	H	-56	-56	-73
CH₃●	C	210	122	107
	H	-69	-69	-70
CN	C	636	581	588
	N	-7	-18	- 13
H_2^{CN}	C	-73	-67	-81
	N	70	34	26
	H	230	230	234

0

Fermi contact (A_{iso}), values in MHz

Not yet available in Espresso-4.2. Experimental!

Computational spectroscopy using Quantum Espresso and related codes, SISSA, July

CN

Bibliography and references

Books

- P. T. Callaghan, *Principles of Nuclear Magnetic Resonance Microscopy*, Clarendon Press
- T. N. Mitchell and B. Costisella, NMR From Spectra to Structures, Springer
- G. S. Rule and T. K. Hitchens, *Fundamentals of Protein NMR Spectroscopy*, Springer
- N. Jacobsen, *NMR spectroscopy explained*, Wiley
- M. Duer, Solid state NMR spectroscopy, Blackwell
- J. A. Weil and J. R. Bolton, *Electron Paramagnetic Resonance*, Wiley
- M. Knaupp, M. Bühl and V. G. Malkin, *Calculation of NMR and EPR Parameters*, Viley-VCH

Hamiltonians

The simplest Hamiltonian describing all the physics of NMR and EPR is the <u>Dirac-Breit Hamiltonian</u>. The DB Hamiltonian is fully relativistic (four-component) and difficult to solve. In order to make it numerically tractable, it must be reduced to a two-component non-relativistic Hamiltonian by some transformations and approximations.

Physicists apply the <u>Foldy-Wouthuysen</u> transformation to obtain the <u>Pauli</u> Hamiltonian. Chemists prefer the <u>Douglas-Kroll-Hess</u> transformation. Another popular approximation is the <u>ZORA</u> (zeroth-order regular approximation). These transformation lead to different expressions for the Hamiltonian terms, that are numerically very close.

• Pekka Manninen PhD thesis, University of Oulo, Finland (2004). http://herkules.oulu.fi/isbn9514274318/

Theory of EPR parameters

- G. Schreckenbach and T. Ziegler, J. Phys. Chem. A **101**, 3388 (1997)
- C. J. Pickard and F. Mauri, Phys. Rev. Lett. 88, 086403 (2002)
- S. Patchkovskii, R. T. Strong, C. J. Pickard and S. Un, J. Chem. Phys. **122**, 214101 (2005)

GIPAW and core-relaxation

- C. J. Pickard and F. Mauri, Phys. Rev. B 65, 245101 (2001)
- C. J. Pickard and F. Mauri, Phys. Rev. Lett. **91**, 106401 (2003)
- M. d'Avezac, N. Marzari and F. Mauri, Phys. Rev. B 76, 165122 (2007)
- J. R. Yates, C. J. Pickard and F. Mauri, Phys. Rev. B 76, 024401 (2007)
- M. S. Barhamy, M. H. F. Sluiter and Y. Kawazoe, Phys. Rev. B **76**, 035124 (2007)

Converse approach

- D. Ceresoli, U. Gerstmann, A. P. Seitsonen and F. Mauri, *First-principles theory* of the orbital magnetization, PRB **81**, 060409 (2010)
- T. Thonhauser, D. Ceresoli, A. A. Mostofi, N. Marzari, R. Resta and D. Vanderbilt, *A converse approach to the calculation of NMR shielding tensors*, JCP **131**, 101101 (2009)
- D. Ceresoli, N. Marzari, M. G. Lopez and T. Thonhauser, *Ab-initio converse NMR for pseudopotentials*, PRB **81**, 184424 (2010).

Modern Theory of the Orbital Magnetization

- T. Thonhauser, D. Ceresoli, D. Vanderbilt and R. Resta, *Orbital magnetization in periodic insulators*, Phys. Rev. Lett. **95**, 137205 (2005)
- D. Ceresoli, T. Thonhauser, D. Vanderbilt and R. Resta, *Orbital magnetization in crystalline solids: multi-band insulators, Chern insulators, and metals*, Phys. Rev. B **74**, 024408 (2006)
- I. Souza and D. Vanderbilt, *Dichroic f-sum rule and the orbital magnetization of crystals*, Phys. Rev. B **77**, 054438 (2008)

Online resources: blogs, codes, lectures

- NMR Wiki: http://nmrwiki.org
- Software: http://edunmrsoft.blogsome.com
- NMR periodic table: http://www.bruker-nmr.de/guide/eNMR/chem/NMRnuclei.html
- Solid state NMR literature blog: http://ssnmr.blogspot.com
- Other blogs: http://nmr-software.blogspot.com http://u-of-o-nmr-facility.blogspot.com http://scienceblogs.com/scientificactivist/2006/11/nmr_blogs.php

... and of course: www.quantum-espresso.org www.gipaw.net http://qe-forge.org/projects/qe-gipaw

