

2221-1

Hands-on Tutorial on Electronic Structure Computations

17 - 21 January 2011

Time-dependent density functional theory and how it is used

Ralph Gebauer ICTP Trieste Italy Hands-on tutorial on electronic structure computations ICTP, Trieste, 17-21 January 2011

Time-dependent density functional theory and how it is used

Ralph Gebauer

The Abdus Salam International Centre for Theoretical Physics

Thursday, January 20th, 2011

Overview

The basics

• From the ground-state to excited states: The Runge-Gross theorem

How TDDFT is used in practice

- A first look at TDDFT in practice: Real-time propagations & photochemistry
- TDDFT for optical spectra
 - real-time
 - Cassida equation
 - TDDFPT-Lanczos scheme

Framework: What is TDDFT all about?

1964: Hohenberg and Kohn: Density Functional Theory (DFT) work in terms of electron density (instead of many-particle wavefunctions) DFT is a **ground state** theory

1984: Runge and Gross: **Time-Dependent** Density Functional Theory (TDDFT)

Given $|\Psi(t=0)\rangle: V(\boldsymbol{r},t) \Leftrightarrow n(\boldsymbol{r},t)$

like DFT, TDDFT is formally exact

Recall: Basic ground-state DFT

For practical calculations: Kohn-Sham framework

$$n_{\sigma}(\boldsymbol{r}) = \sum_{i}^{N_{\sigma}} |\phi_{i\sigma}(\boldsymbol{r})|^2$$

The density is written in terms of Kohn-Sham orbitals which satisfy

$$\left[-\frac{\nabla^2}{2} + v_{\sigma}^{KS}\left[n_{\uparrow}, n_{\downarrow}\right](\boldsymbol{r})\right]\phi_{i\sigma}(\boldsymbol{r}) = \epsilon_{i\sigma}\phi_{i\sigma}(\boldsymbol{r})$$

$$F[n_{\uparrow}, n_{\downarrow}] = T_{s}[n_{\uparrow}, n_{\downarrow}] + E_{Hartree} + E_{xc}[n_{\uparrow}, n_{\downarrow}]$$

$$E_{Hartree} = \frac{1}{2} \int d^{3}r \int d^{3}r' \frac{n(\boldsymbol{r}) n(\boldsymbol{r}')}{|\boldsymbol{r} - \boldsymbol{r}'|}$$

$$E_{xc}^{LDA} = \int d^{3}r n(\boldsymbol{r}) \epsilon_{xc}^{unif}(n_{\uparrow}(\boldsymbol{r}), n_{\downarrow}(\boldsymbol{r}))$$

The Runge-Gross Theorem

Generalizing the HK theorem to time-dependent systems

There exists a one-to-one correspondence between the external v(r,t) and the electron density n(r,t), for systems evolving from a fixed many-body state.

Proof: $|\Psi(t_0)\rangle = |\Psi'(t_0)\rangle \equiv |\Psi_0\rangle$ $n(\boldsymbol{r}, t_0) = n'(\boldsymbol{r}, t_0) \equiv n^0(\boldsymbol{r})$ $\boldsymbol{j}(\boldsymbol{r}, t_0) = \boldsymbol{j}'(\boldsymbol{r}, t_0) \equiv \boldsymbol{j}^0(\boldsymbol{r})$

Step 1: Different potentials v and v' yield different current densities j and j'

Step 2: Different current densities j and j' yield different densities n and n'

$$v(\mathbf{r},t) \neq v'(\mathbf{r},t) + c(t) \qquad \Rightarrow \qquad n(\mathbf{r},t) \neq n'(\mathbf{r},t)$$

Using TDDFT in practice

Finding an equivalent of the Kohn-Sham formalism

$$i\frac{\partial}{\partial t}\varphi_{i\sigma}(\boldsymbol{r},t) = \hat{H}_{\sigma}^{\mathrm{KS}}(\boldsymbol{r},t)\varphi_{i\sigma}(\boldsymbol{r},t)$$

With a time-dependent Hamiltonian:

$$\hat{H}^{\mathrm{KS}}_{\sigma}(\boldsymbol{r},t) = -\frac{\nabla^2}{2} + v^{\mathrm{KS}}_{\sigma}[n_{\uparrow},n_{\downarrow}](\boldsymbol{r},t)$$

Density and potentials are now defined like:

$$n_{\sigma}(\boldsymbol{r},t) = \sum_{i}^{N_{\sigma}} |\varphi_{i\sigma}(\boldsymbol{r},t)|^2$$

$$v_{\sigma}^{\mathrm{KS}}[n_{\uparrow}, n_{\downarrow}](\boldsymbol{r}, t) = v_{\sigma}(\boldsymbol{r}, t) + \int \mathrm{d}^{3} r' \, \frac{n(\boldsymbol{r}', t)}{|\boldsymbol{r} - \boldsymbol{r}'|} + v_{\sigma}^{\mathrm{xc}}[n_{\uparrow}, n_{\downarrow}](\boldsymbol{r}, t)$$

Which functional to use ?

The easiest and probably most widely used functional is the Adiabatic Local Density Approximation (ALDA)

$$v_{\sigma}^{\text{xc ALDA}}(\boldsymbol{r},t) = \frac{\partial}{\partial n_{\sigma}} \left[n \, \varepsilon_{\text{xc}}^{\text{unif}}(n_{\uparrow},n_{\downarrow}) \right] \Big|_{n_{\alpha}=n_{\alpha}(\boldsymbol{r},t)}$$

TDDFT in real time: (1996:Bertsch; 2001: Octopus code)

Consider a general time-dependent perturbation:

 $V_{pert}(\boldsymbol{r},t)$

• Obtain orbitals, charge density, and potentials by solving the Schrödinger equation explicitly in real time:

$$\psi_j(t+\Delta) = \exp\left(-iH(t+\frac{\Delta}{2})\Delta\right)\psi_j(t)$$

(Nonlinear TD Schrödinger equation)

• Can be used for *linear response* calculations, or for general TD *non-linear* problems.

A first application: Photochemistry

- Recent experimental progress made it possible to produce ultra-short intense laser pulses (few fs)
- This allows one to probe bond breaking/formation, charge transfer, etc. on the relevant time scales
- Nonlinear real-time TDDFT calculations can be a valuable tool to understand the physics of this kind of probe.
- Visualizing chemical bonds: Electron localization function

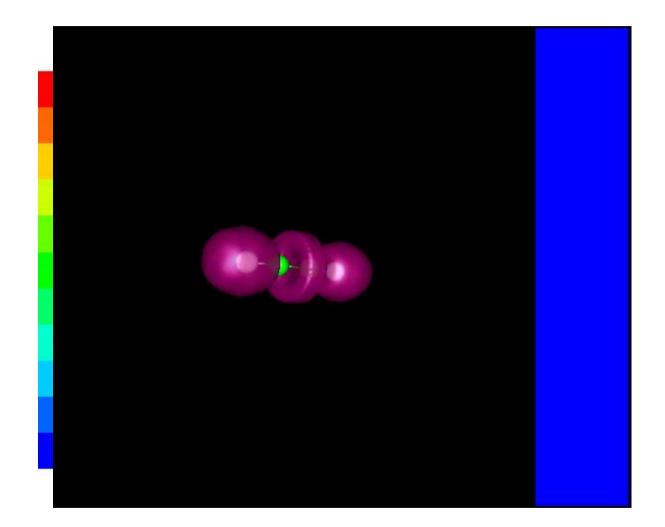
Nonlinear optical response

• Electron localization function:

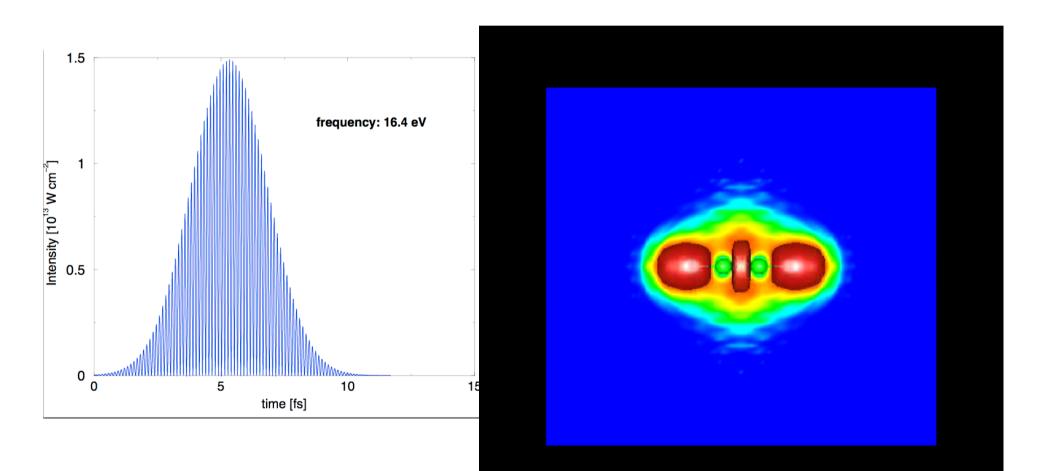
$$ELF(\boldsymbol{r},t) = \frac{1}{1 + \left[D_{\sigma}(\boldsymbol{r},t)/D_{\sigma}^{0}(\boldsymbol{r},t)\right]^{2}}$$

$$D_{\sigma}(\boldsymbol{r},t) = \tau_{\sigma}(\boldsymbol{r},t) - \frac{1}{4} \frac{[\nabla n_{\sigma}(\boldsymbol{r},t)]^2}{n_{\sigma}(\boldsymbol{r},t)} - \frac{j_{\sigma}^2(\boldsymbol{r},t)}{n_{\sigma}(\boldsymbol{r},t)}$$

Example: Ethyne C₂H₂



Example: Ethyne C₂H₂



Time (fs): 0.03628

How can we calculate optical spectra?

Consider a perturbation δV applied to the ground-state system:

$$\delta n(r,t) = \int d^3r' dt' \chi(r,r';t-t') \, \delta V(r',t')$$

The induced dipole is given by the induced charge density:

$$d(t) = \int d^3r \, \delta n(r,t) \hat{r}$$

Consider the perturbation due to an electric field:

$$\delta V(r,t) = -eE_{ext}(t) \cdot \hat{r}$$

How can we calculate optical spectra?

The dipole susceptibility is then given by:

$$d(t) = \int dt' \,\alpha(t - t') \, E_{ext}(t')$$

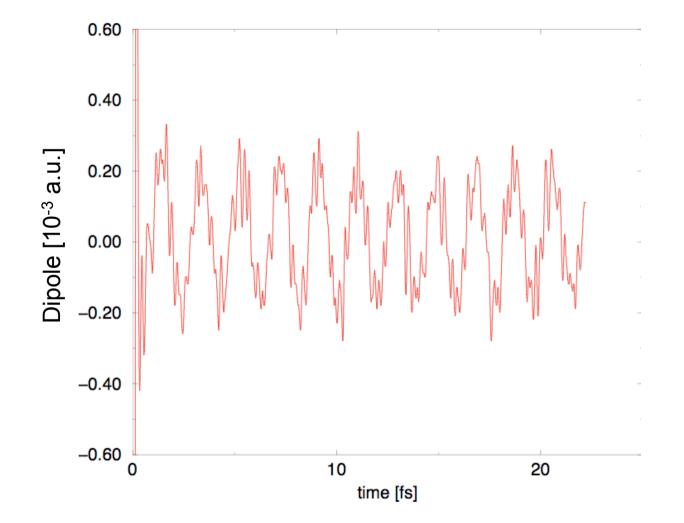
The experimentally measured strength function S is related to the Fourier transform of α :

$$S(\omega) = \frac{2m}{\pi e^2 \hbar} \omega \operatorname{Im} \alpha(\omega)$$

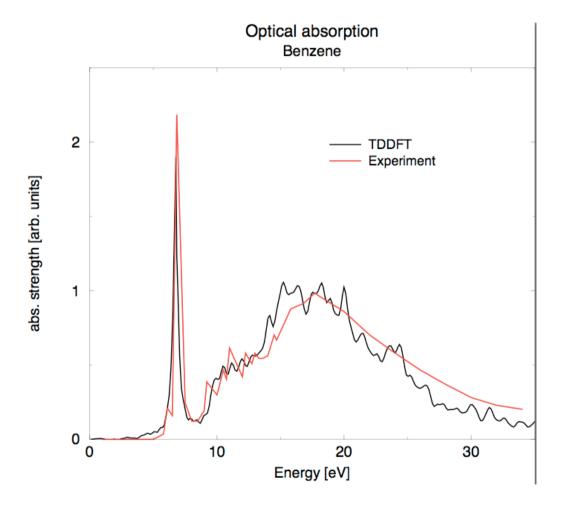
In practice: We take an E-field pulse $E_{ext} = E_0 \delta(t)$, calculate d(t), and obtain the spectrum $S(\omega)$ by calculating

$$d(\omega) = \int_0^{\infty} dt \, e^{i\omega t - \delta t} \, d(t)$$

A typical dipole-function d(t) ...



... and the resulting spectrum



Linear response formalism in TDDFT:

- Calculate the system's ground state using DFT
- Consider a monochromatic perturbation: $V_{pert}(\boldsymbol{r},t) = V_0(\boldsymbol{r}) \left(\exp(i\omega t) + \exp(-i\omega t) \right)$
- Linear response: assume the time-dependent response:

$$\psi_j(t) = e^{-i\epsilon_j t} \left(\psi_j^0 + \delta \psi_j^+ e^{i\omega t} + \delta \psi_j^- e^{-i\omega t} \right)$$
$$\delta n(\mathbf{r}, t) = \delta n^+(\mathbf{r}) e^{i\omega t} + \delta n^-(\mathbf{r}) e^{-i\omega t}$$

$$\delta V(\boldsymbol{r},t) = V_{pert}(\boldsymbol{r},t) + \delta V_{SCF}^{+}(\boldsymbol{r})e^{i\omega t} + \delta V_{SCF}^{-}(\boldsymbol{r})e^{-i\omega t}$$

• Put these expressions into the TD Schrödinger equation

Linear response formalism in TDDFT:

$$\begin{split} &\omega \delta \psi_v^+(\boldsymbol{r}) \;=\; \left(H_{KS}^0 - \epsilon_v^0\right) \delta \psi_v^+ + \hat{P}_{\mathbf{c}} \left(\delta V_{SCF}^+(\boldsymbol{r}) + V_{pert}(\boldsymbol{r})\right) \psi_v^0(\boldsymbol{r}) \\ &-\omega \delta \psi_v^-(\boldsymbol{r}) \;=\; \left(H_{KS}^0 - \epsilon_v^0\right) \delta \psi_v^- + \hat{P}_{\mathbf{c}} \left(\delta V_{SCF}^-(\boldsymbol{r}) + V_{pert}(\boldsymbol{r})\right) \psi_v^0(\boldsymbol{r}) \end{split}$$

Now define the following linear combinations:

$$x_v(\mathbf{r}) = \frac{1}{2} \left(\delta \psi_v^+(\mathbf{r}) + \delta \psi_v^-(\mathbf{r}) \right)$$

$$y_v(\mathbf{r}) = \frac{1}{2} \left(\delta \psi_v^+(\mathbf{r}) - \delta \psi_v^-(\mathbf{r}) \right)$$

$$(\omega - \mathcal{L}) | \boldsymbol{x}, \boldsymbol{y} \rangle = | \boldsymbol{0}, \boldsymbol{v} \rangle$$
 $\mathcal{L} = \begin{pmatrix} 0 & D \\ K & 0 \end{pmatrix}$

With the following definitions:

$$D |\mathbf{x}\rangle = \left\{ \left(H_{KS}^0 - \epsilon_i \right) \mathbf{x}_i(\mathbf{r}) \right\}$$

$$K |\mathbf{x}\rangle = \left\{ \left(H_{KS}^0 - \epsilon_i \right) \mathbf{x}_i(\mathbf{r}) + \psi_i^0(\mathbf{r}) \sum_j \int d\mathbf{r}' \ f_{Hxc}(\mathbf{r}, \mathbf{r}') \psi_{i'}^0(\mathbf{r}') \mathbf{x}_{i'}(\mathbf{r}') \right\}$$

$$\left(\begin{array}{cc} 0 & D \\ K & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \omega \left(\begin{array}{c} x \\ y \end{array}\right)$$

Linear response TD-DFT essentially means solving a non-hermitean eigenvalue equation of dimension $2 N_v \times N_c$.

Standard way to proceed (Casida's equations):

• Solve the time-independent problem to completely diagonalize the ground-state Hamiltonian.

[Some computer time can be saved by limiting the diagonalization to the lower part of the spectrum]

• Obtain as many eigenstates/frequencies of the TD-DFT problem as needed (or as possible).

[Some computer time can be saved by transforming the non-hermitean problem to a hermitean one (e.g. Tamm-Dancoff approx.)]

Advantages:

One obtains not only the frequency (and oscillator strength), but the full eigenvector of each elementary excitation.

[Info can be used for spectroscopic assignments, to calculate forces, etc]

Disadvantages:

One obtains not only the frequency (and oscillator strength), but the full eigenvector of each elementary excitation.

[Info is often not needed, all the information is immediately destroyed after computation]

Computationally extremely demanding (large matrices to be diagonalized)

Time-dependent density functional perturbation theory (TDDFPT)

Remember: The photoabsorption is linked to the dipole polarizability $\alpha(\omega)$

$$d(t) = \int dt' \alpha(t - t') \mathcal{E}(t')$$

If we choose $\mathcal{E}(t') = \mathcal{E}_0 \delta(t')$, then knowing d(t) gives us $\alpha(t)$ and thus $\alpha(\omega)$.

Therefore, we need a way to calculate the observable d(t), given the electric field perturbation $\mathcal{E}_0 \delta(t)$.

Consider an observable A:

$$A(t) = \sum_{i} \left(\left\langle \delta \psi_{i}(t) \left| \hat{A} \right| \psi_{i}^{0} \right\rangle + \left\langle \psi_{i}^{0} \left| \hat{A} \right| \left| \delta \psi_{i}(t) \right\rangle \right)$$

Its Fourier transform is:

$$\tilde{A}(\omega) = \sum_{i} \left(\left\langle \psi_{i}^{0} \left| \hat{A} \right| \delta \psi_{i}^{-}(\omega) \right\rangle + \left\langle \psi_{i}^{0} \left| \hat{A} \right| \delta \psi_{i}^{+}(\omega) \right\rangle \right) \\ = 2 \sum_{i} \left\langle \psi_{i}^{0} \left| \hat{A} \right| \boldsymbol{x}_{i}(\omega) \right\rangle \\ = 2 \left\langle \boldsymbol{a}, \mathbf{0} \left| \boldsymbol{x}, \boldsymbol{y} \right\rangle$$

$$\tilde{A}(\omega) = \sum_{i} \left(\left\langle \psi_{i}^{0} \left| \hat{A} \right| \delta \psi_{i}^{-}(\omega) \right\rangle + \left\langle \psi_{i}^{0} \left| \hat{A} \right| \delta \psi_{i}^{+}(\omega) \right\rangle \right) \\ = 2 \sum_{i} \left\langle \psi_{i}^{0} \left| \hat{A} \right| x_{i}(\omega) \right\rangle \\ = 2 \left\langle a, 0 \left| x, y \right\rangle \right.$$

Recall:
$$(\omega - \mathcal{L}) | \boldsymbol{x}, \boldsymbol{y} \rangle = | \boldsymbol{0}, \boldsymbol{v} \rangle$$

Therefore:

$$\tilde{A}(\omega) = 2 \left\langle \boldsymbol{a}, \boldsymbol{0} \left| (\omega - \mathcal{L})^{-1} \right| \boldsymbol{0}, \boldsymbol{v} \right\rangle$$

Thus in order to calculate the spectrum, we need to calculate one given matrix element of $(\omega - \mathcal{L})^{-1}$.

In order to understand the method, look at the hermitean problem:

$$\langle v | (\omega - H)^{-1} | v \rangle$$

Build a Lanczos recursion chain:

$$\phi_{-1} = 0$$

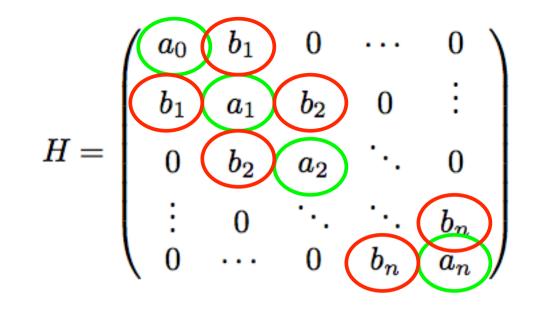
$$\phi_{0} = |v\rangle$$

$$b_{n+1}\phi_{n+1} = (H - (a_{n}))\phi_{n} + b_{n}\phi_{n-1}$$

$$\langle \phi_{n+1} | \phi_{n+1} \rangle = 1$$

$$a_{n} = \langle \phi_{n} | H | \phi_{n} \rangle$$

$$H = \begin{pmatrix} a_{0} & b_{1} & 0 & \cdots & 0 \\ b_{1} & a_{1} & b_{2} & 0 & \vdots \\ 0 & b_{2} & a_{2} & \ddots & 0 \\ \vdots & 0 & \ddots & \ddots & b_{n} \\ 0 & \cdots & 0 & b_{n} & a_{n} \end{pmatrix}$$



$$(\omega - H) = egin{pmatrix} \omega - a_0 & b_1 & 0 & \cdots & 0 \ b_1 & \omega - a_1 & b_2 & 0 & \vdots \ 0 & b_2 & \omega - a_2 & \ddots & 0 \ \vdots & 0 & \ddots & \ddots & b_n \ 0 & \cdots & 0 & b_n & \omega - a_n \end{pmatrix}$$

$$(\omega - H) = egin{pmatrix} \omega - a_0 & b_1 & 0 & \cdots & 0 \ b_1 & \omega - a_1 & b_2 & 0 & \vdots \ 0 & b_2 & \omega - a_2 & \ddots & 0 \ \vdots & 0 & \ddots & \ddots & b_n \ 0 & \cdots & 0 & b_n & \omega - a_n \end{pmatrix}$$

$$(\omega - H)^{-1} = \frac{1}{\omega + a_0} + \frac{b_1^2}{\omega + a_1} + \frac{b_2^2}{\omega + a_2} + \cdots$$

Back to the calculation of spectra:

Recall:
$$(\omega - \mathcal{L}) | \boldsymbol{x}, \boldsymbol{y} \rangle = | \boldsymbol{0}, \boldsymbol{v} \rangle$$

Therefore:

$$\tilde{A}(\omega) = 2 \left\langle \boldsymbol{a}, \boldsymbol{0} \left| (\omega - \mathcal{L})^{-1} \right| \boldsymbol{0}, \boldsymbol{v} \right\rangle$$

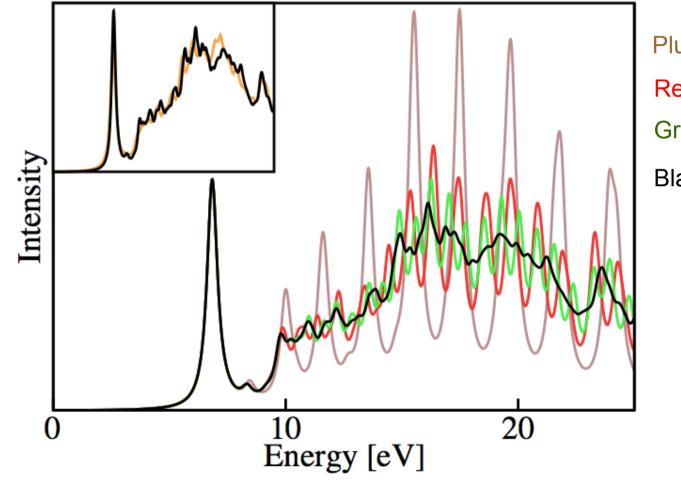
Use a recursion to represent L as a tridiagonal matrix:

$$\mathcal{L} = \begin{pmatrix} a_1 & b_1 & 0 & & & \\ c_1 & a_2 & b_2 & & & \\ 0 & c_2 & a_3 & b_3 & & & \\ & & \ddots & \ddots & \ddots & b_{N-1} \\ & & & & c_{N-1} & a_N \end{pmatrix}$$

And the response can be written as a continued fraction!

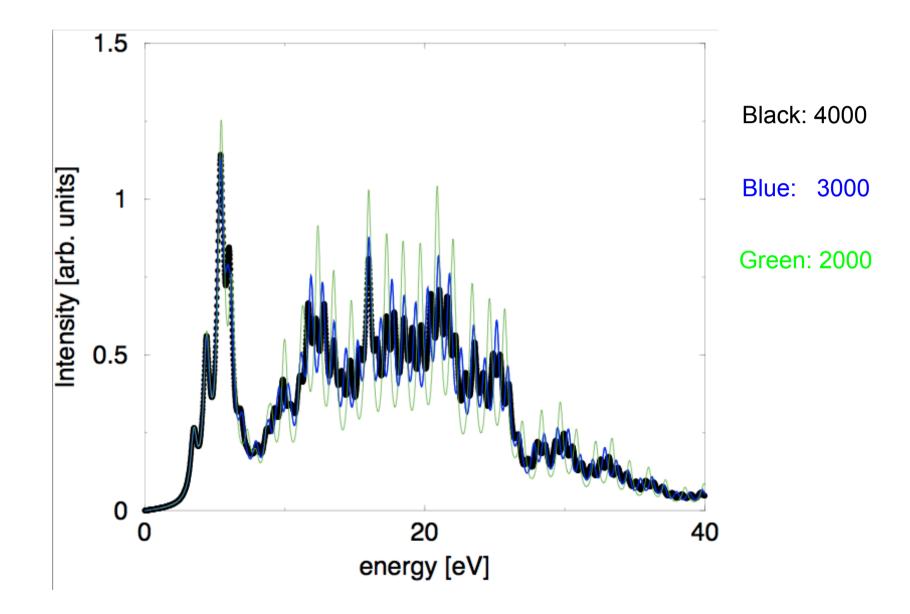
$$\tilde{A}(\omega) = 2 \left\langle \boldsymbol{a}, \boldsymbol{0} \middle| (\omega - \mathcal{L})^{-1} \middle| \boldsymbol{0}, \boldsymbol{v} \right\rangle$$
$$= \frac{1}{\omega - a_1 + b_2 \frac{1}{\omega - a_2 + \dots} c_2}$$

How does it work? Benzene spectrum

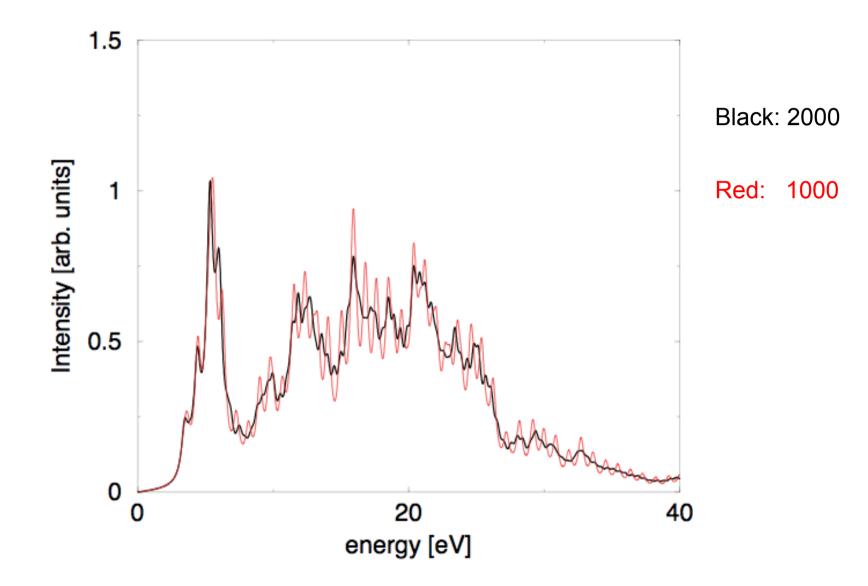


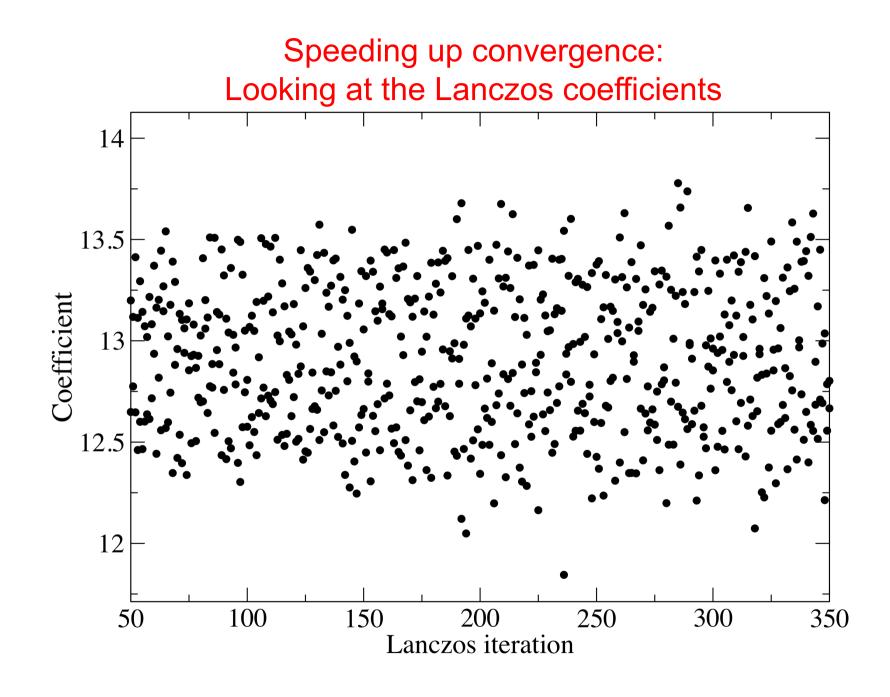
Plum: 1000 Red: 2000 Green: 3000 Black: 6000

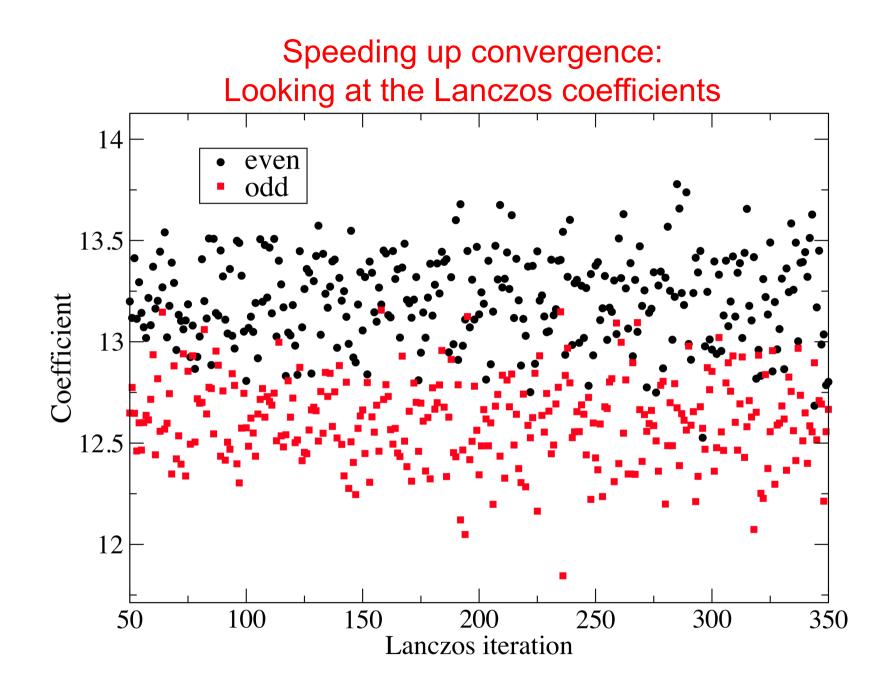
Spectrum of C₆₀

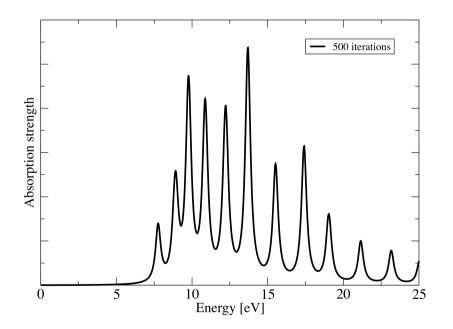


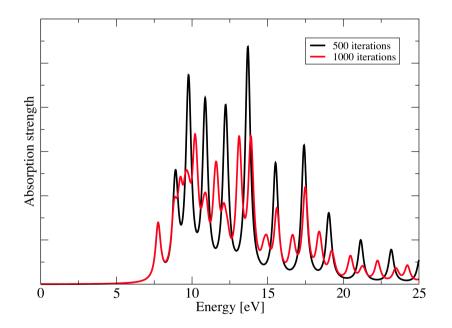
Spectrum of C₆₀: Ultrasoft pseudopotenitals

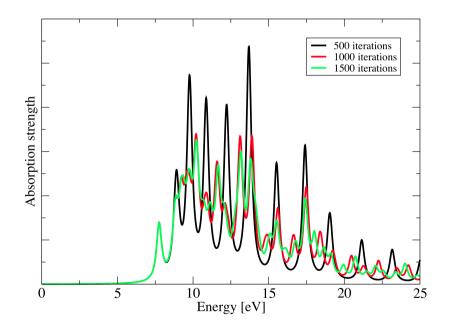


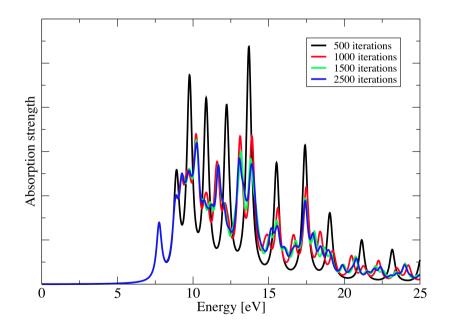


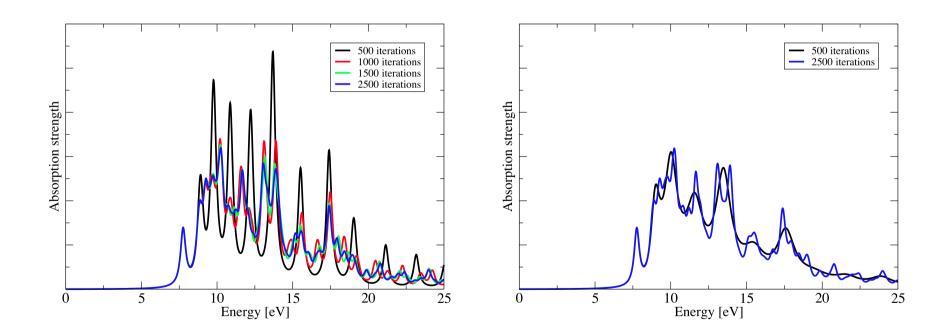


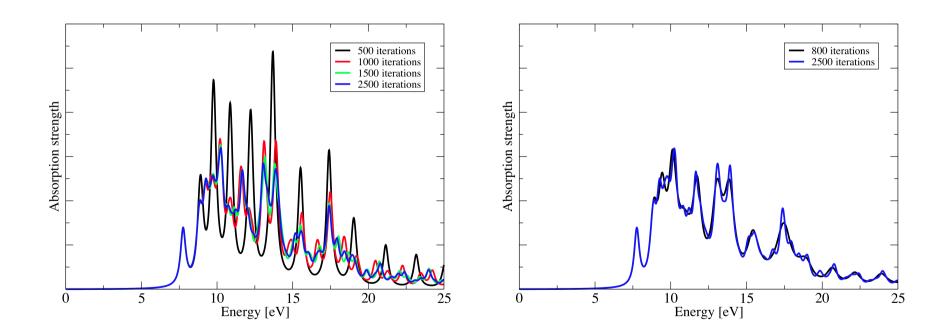




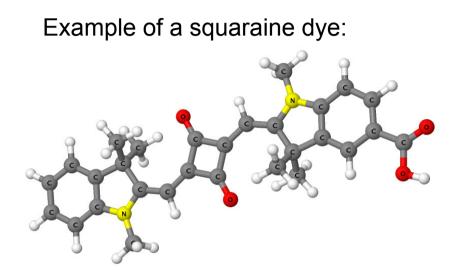








Analyzing the spectrum



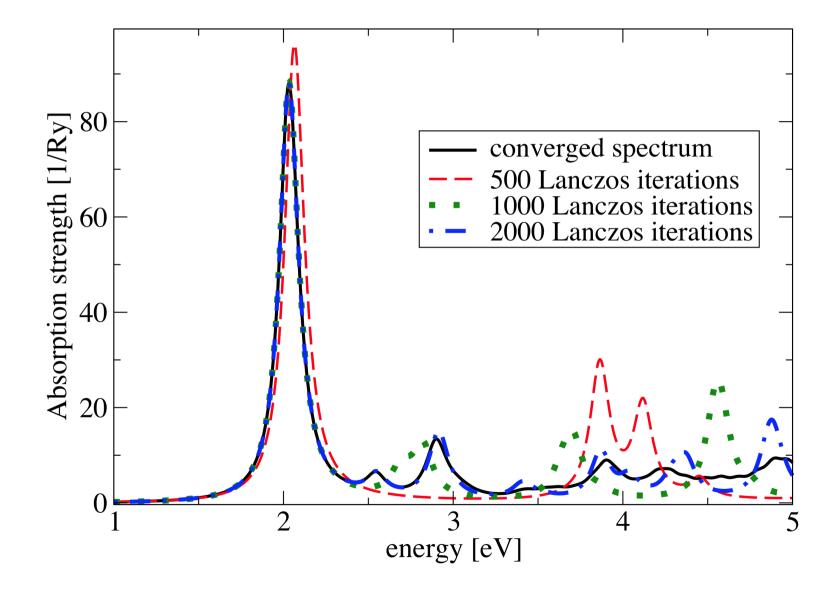
Can we analyze given features of the spectrum in terms of the electronic structure?

YES!

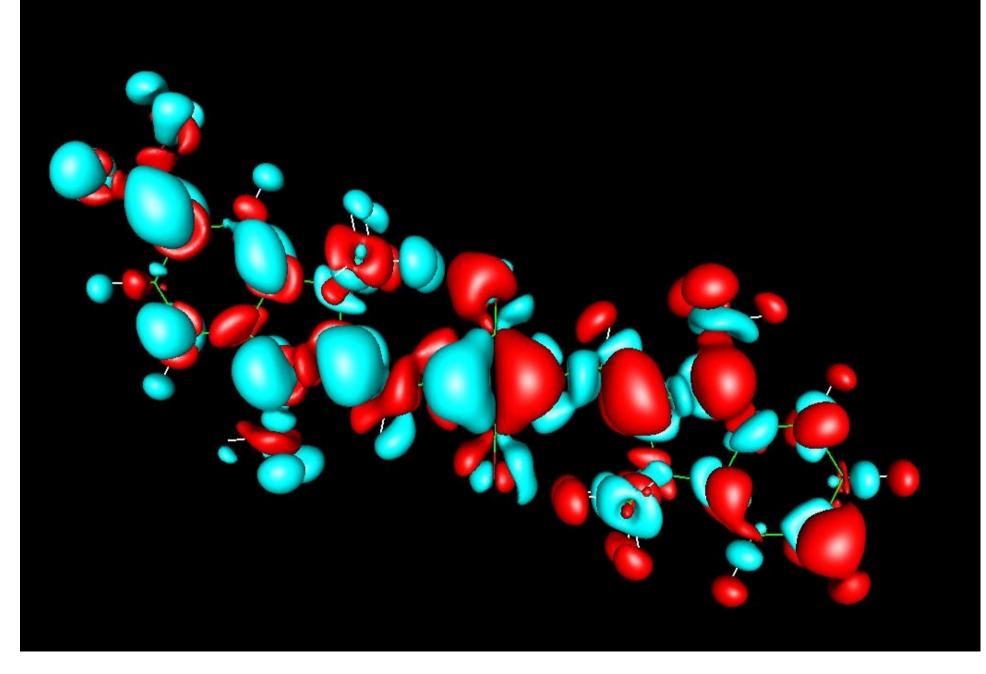
It is possible to compute the response charge density for any given frequency using a second recursion chain.

Convergence of the TDDFPT spectrum

Isolated squaraine molecule



Charge response at main absorption peak:



Conclusions

- TDDFT as a formally exact extension of ground-state DFT for electronic excitations
- Allows to follow the electronic dynamics in real time
- Using TDDFT in linear response allows one to calculate spectra

Thanks to:

- Stefano Baroni (SISSA & DEMOCRITOS, Trieste)
- Brent Walker (University College, London)
- Dario Rocca (UC Davis)
- Filippo De Angelis (Perugia)
- O. Baris Malcioglu (Liège)

To know more:

- Phys. Rev. Lett. 96, 113001 (2006)
- J. Chem. Phys. 127, 164106 (2007)
- J. Chem. Phys. 128, 154105 (2008)
- Chem. Phys. Lett. 475, 49 (2009)