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From Bloch to Wannier




Bravais Lattices

e |nfinite array of points with an arrangement and orientation that
appears exactly the same regardless of the point from which the
array is viewed.

R=/la +ma,+na, 1mandn integers

—_

a,, a, and &, primitive lattice vectors

e 14 Bravais lattices exist in 3 dimensions (1848)
e M. L. Frankenheimer in 1842 thought they were 15. So, so naive...



Crystal Structure = Lattice + Basis

o}

Lattice Crystal Structure = Lattice + basis

Basis



Bloch Theorem

T he one-particle effective Hamiltonian Hina periodic lattice commutes
with the lattice-translation operator Tgr, allowing us to choose the
common eigenstates according to the prescriptions of Bloch theorem:

[PAI, TR] = 0 = \Ilnk(r) s Unk(I') eik-r

e n, k are the qguantum numbers (band index and
crystal momentum), u is periodic

e From two requirements: a translation can’ t
change the charge density, and two translations

must be equivalent to one that is the sum of the
two



Bloch Theorem

Crystal 1n real space:
NZaNZaNZaNVZ

Brillouin zone in reciprocal space:




Bloch Theorem

Crystal 1n real space:
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Brillouin zone in reciprocal space:
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Orthogonal and unitary transformations
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Orthogonal and unitary transformations

L r/\‘ / [42)
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Orthogonal and unitary transformations

P =37 [ ) UX)

/ \

Rotated Bloch function Unitary matrix
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Generalized Wannier Functions for Composite Bands

Silico

e {|Rn)} span the same space as {|¥,x)}

e |Rn)

= wy,(r — R) (translational images)

® (Rn|R’m> — 5n,m 5R,R’

e “maximally” localized

n

NV L

4

_—

(Isolated group of bands)

Valence bands

N

A/

7

Wannier function




From Bloch Orbitals to Wannier Functions

Valence bands

:4

Periodic Vext = Wuk(r) = unk(r) e
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Gauge freedoms

e Arbitrary phase factor for every nk (Schrodinger)

Rn) = / [ew"(k)wnk(r)] e~ Rk
BZ



From Bloch Orbitals to Wannier Functions

Valence bands

04

Periodic Vext = Vpi(r) = uni(r) e™?”

A A

Rn)
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Gauge freedoms

e Arbitrary phase factor for every nk (Schrodinger)

e Arbitrary unitary rotations U\, for every k (DFT)

Rn) / Z UX b, (r) e %R gk
B2



Outline

e general algorithm to characterize the Wannier
functions (or localized orbitals) of any given
system

e applicable to periodic crystals, disordered
systems, isolated molecules, in the spirit of
supercell calculations

e post-processing of a conventional electronic-
structure calculation

e maximal localization in the orbitals obtained
In the Bloch-to-Wannier transformation



Long-Range Decay (Heuristic...

Isolated band, Wannier function around the origin

wo(r) = /B . Ty (r)dk = / u(r) e dk

BZ

Forr — oo, r = R;



The Localization Functional
(Foster-Boys)

€) = Z [(On\r2\0n> — (On\r\0n>2]

For a given set of Bloch orbitals, our goal is to minimize ()
with respect all the sets of unitary transformations U,,(rlf,)L

Rn) / US) @, (r) e * R gk
| BZ Z

N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)



Decomposition of the Localization
Functional

() = Z [(On|r?|on) — (On|r|On)?]

n

QI_Z{ ZRmrmn} ,

S‘ S‘ ‘ler\On ‘2

n Rm#0n

Q1 and Q are positive-definite and 21 is gauge-invariant !



(), is gauge invariant, positive definite

.

=3 (OnirarelOn)n — 3 [S‘ <0nm|Rm><Rm|m|0n>] =

n,x

=3 |-

n Rm

(Rm|r|0n)

5™ (Onlral - Pyrafon) — > trefra@ral = 3 [Prol

(with the projection operators P = ZRm IRm)(Rm|and Q =1—P)



Position operator is ill defined !

(Vk|z|thr) = /OO z |ug(x)|? d

WAL




Blount identities

Centers of Wannier functions:

Vv
08) = G, 10

vV tk-r

y (;)3 /B ke (Vi) )

vV
(23

r|wo) =

(wo |1 | wp) = i

/ dk <uk| Vk |uk>
BZ




The Reciprocal Space Representation

a) we need to be able to calculate derivatives on regular meshes in
k-space; i f cubic symmetry is assumed, with each of the NN k-points
having Z = 6, 8 or 12 first-neighbors k 4+ b, then:

Vi) = 253 blilk+b) — £()]

b) we need to express the positions of the Wannier functions and their
spread as a function of the phase relations between the Bloch orbitals.

| 0

r, — <wn0|r|wn0> :szk: (Unk|7:ﬁ|unk> =



The Reciprocal Space Representation

M) = (Ui | Un tetb )

mmn

1
T, = NE wy bIm In M P
k,b

1 2
SIS (e P ——
k,b



The Localization Procedure

We consider an infinitesimal rotation of the Bloch orbitals

Unk) = |unk) + z degﬂl:% | Umi)

The Gradient
43wy, (A[R®D)] - S[T )
b

provides an equation of motion (e.g. conjugate-gradient)
for the evolution of the Uéi‘,{ towards the minimum of ().

aQ
dw &)

Q& —

_ @t i
AB=2=E s =Et5
21

and defining qflk’b) = Imd)q(lk,b) L ber, , TEM — ROb)  (b)

mn mn qn



The Localization Procedure

At the minimum, the Wannier functions are real

Unique global minimum when I sampling is used
(at least with 6 b-vectors)



Real-Space Projectors

We can choose a real-space target function ®; (e.g. a Gaussian centered
on bond %) to pick up a consistent phase that does not depend on the
arbitrary ¢, (k) in W (r). Let AN = (W, | D),

(w)) = Y W) (T | B = > AN | T)
k k

Az(.:? is not unitary, and so we use its unitary projection UZ.(,:):

A— AA" 5 U =(AANY2A = A(AT A2

(the last equality can be proved using the Singular Value Decomposition
for A = Uy (diag) Us;itis U = Uy el Us).

diag)



Silicon, GaAs, Amorphous Silicon, Benzene

Valence bands

M. Fornari, N. Marzari, M. Peressi, and A. Baldereschi, Comp. Mater. Science 20, 337 (2001)



a(r)

Wannier functions

Wannier functions
in a-Si in I-H,O
(b)
NI \ 2

Silvestrelli et al.



Some conclusions

Modern theory of polarization: the polarization is given
by the sum of the centers of charge for the Wannier

functions .

P = ) d (On|r|0On)

Quantum dielectric properties are mapped onto a
classical picture (e.g. the Born effective charges)

Chemical intuition: the nature of hybridization and
bonding in going from the atoms to the solid

Linear-scaling algorithms: orthogonality needs to be
imposed only with the overlapping neighbors



Disentanglement of Attached Bands

— Maximally-localized Wannier-like functions for conduction subspace

— Extract differentiable manifold with optimal smoothness

Copper

/

k/

’

%k

>

(Non—isolated group of bands)

d—bands

\V.

Wannier function




Disentanglement

® Step l: “Disentangle the N bands of interest” from the rest

Cut out an energy window, so that at each k Nx > NV, where Ny is the
number of bands that fall inside the window; this defines an
Nx-dimensional space.

If Ny > N, find the N-dimensional subspace S(k) that minimizes Qr

-------------- N 7\/\ A

Energy window

® Step 2: Obtain maximally-localized WFs

Within the subspaces S(k) determined in Step 1 (which have a fixed 1)
minimize Q, using the algorithm of Marzari & Vanderbilt




Z_E wb(J E a7 0eh) )

e ()1 measures the change of character across the Brillouin zone of

the states in the spaces S(k): Large | (unk|tm k+ox) | = small Oy

e ()1 measures the degree of mismatch, or “spillage”, between the

nearby spaces S(k).

—> In the case of copper, when choosing N = 5 the minimization
of (21 will extract a 5-dimensional subspace containing the d-like
states at each k — which have a similar character — while excluding
the s band, which has a very different character.



Iterative Minimization of Q

ky A
(-1

S (k+b,)
® ® °

Minimize degree of mismatch be-

@

Siby Sk Saib)  tween SW(k) and S Y(k + b), ie,

@ L @ e N
ky o (1)
maximize overlap > (A
(i-1) -t lod =

S(ktb,) b m=1

]
o—
®

(i-1) \|?
Uy k+b

e 1°" iteration: Choose trial subspace at each k (e.g. projected orbitals)

-th

e ;" iteration: At each k pick the N highest eigenvectors of

5011, O\ _ @
[Zpk-{-b ]|unk> = Ak
b

e Repeat until self-consistency (when spaces S(k) stabilize)

uffl){> Plii_bl) : Projector onto S~V (k + b)



d Bands of Copper

Two possible choices of energy window

T (@ / / )
‘ X | The e, d WF's of panel (b)

Energy (eV)
=

|
n
T

_ spread(e,)=1.700 bohr?
---- = | spread(ey)=1.718 bohr?

Energy (eV)




s Band of Copper

s-like Wannier function

13.03 bohr?

spread

(A9) AB1duyg



Exact Constraints on the Inner Energy

Suppose we want WFE's to describe the original bands exactly in a

prescribed energy range (“inner window”).

= Minimize {1 w/ constraint that states inside inner window are
included in the optimal subspaces S(k)
! \ Hybrid s-d character:

AN
Outer window

A
N L y,
.\\
/f A ’I




Silicon: Bonding and Antibonding
Orbitals

Bonding | | Antibonding

>

Window

(bonding)  (antibonding)

Window

IV 753 bohr? 24.37 bohr?

Outer window
(sp?)

\

spread=10.68 bohr?



Electronic Structure of Large Nanostructures

Electronic Ground State Optimal Unitary Real Space

From Static or Dynamical Transformation of the Maximally-Localized
Large-Scale Simulations Bloch Orbitals Wannier Functions

Minimization of the spread
functional

Q=) [(")n — ()3]

N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)



Electronic Structure of Large Nanostructures

Sparse Green’ s Function Ballistic Conductance
Hamiltonian Matrix Transmission Function Density of States
2¢?
G(E)= TT (E)

Hyy , Hy = GL(E) N(E)=~(1/7)Im[TrG(E)]

T(E)=Tr(I',GeT'rGe)

Conductance
supercell
= ( )
74 <
— Hg Hyy Hy O
2 1 O 2 H - Hgy Hy Ho
- Hy Hyy Ho Density of S
' 0
\\ J

No interaction

M. B. Nardelli, Phys. Rev. B 60, 7828 (1999)
A. Calzolari, N. Marzari, I. Souza, M. B. Nardelli, Phys. Reb. B 69, 035108 (2004)



Band Structure of (8,0) and (5,5 SWNT

(5,5) metallic

(8,0) semiconducting
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Disentanglement: Conduction Bands in (5,5) SWNT

6 —6
4+ — 4
2 2
§ _
N
Mk 0 —0
2 — -2
4 — -4




MLWEFs from the Disentangled Subspace

(5,5) CNT

Localization after disentanglement

N
Wn = Z Umnl)”m
m=1

(5,5) CNT + Nitrophenyl

MLWEFs from the disentangled subspace
e s bond orbitals + p orbitals




Max-loc WFs €< “Exact” Tight-Binding

Compact mapping of Bloch states into local orbitals

H

<‘//ik

‘//jk> — HZ.JO.O +e"k'R[17i]0.1 +e_"k'RI{Z.]O.T = Diagonalize H Matrix



Band Structure and Conductance of a (5,5) SWCNT

Gamma-point :
~2eV pseudo gap

Two eigenchannels
at E; = perfect
recovery of
metallic character !

E (eV)

[N
INEVAN "4 VAN |

DN

1
o

S

2. (AN VAN

VL).AN

_‘ Band Structure

Conductance

DOS

%

k

i

f
—

G (2¢’/h)

DOS

Solid: Gamma-sampling, 100 atoms, five-folded Brillouin zone

Dotted: Full SCF calculation (5 k-points, 20 atoms supercell)



Exact Mapping onto a Tight-Binding Hamiltonian

(5,5) SWCNT (8,0) SWCNT




Band Structure of (5,5) and (8,0) SWCNT's

(p8) ABisug

s Yy ©
(n2) ABiaug



Band Structure of (5,5) and (8,0) SWCNT's

(5,5) SWCNT (8,0) SWCNT

Occupied states only, no disentanglement !

Energy (eV)

Energy (eV)
N
T ® I T

A
3




Silicon Nanowires

4 % x N\ % 4 3 % % &N 4 N W % ._‘,:'- 4
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MLWFs for the
Occupied Manifold




Accurate interpolation
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Accurate interpolation
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Accurate interpolation

Energy (eV)




Accurate interpolation

Energy (eV)
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Exponential Decay

10°F l 7
"\% ala 12 layer | 1
T W 5 layey
100 E - et fragmpnt [
E Al | i i i
A 10 E fmmmmeed |
S N
Tl ‘9\ )
go 10 E _ \ ‘/)\
o
10°F
-4
atomic layer

Even in a metal, we have smoothly connected manifolds — no
relation with the physical decay of the density matrix

(e, | H
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&
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Energy (eV)

(a) two (b) three (c) four (d) five
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Large Scale Calculations

e Parameterization

* Charge density convergence

+ principal layer « Same MLWFs and Hamiltonian matrix elements in
overlapping region
» Electronic structure of long 1-D structure with a little

Ccost



MLWFs Extraction From a Saturated Cluster

0.02

-0.02

infinite

-20!

Energy (eV)
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B-DNA Configuration

Dry, no backbone, 36° twist

Isolated fragments

« 105 atoms

« 330 electrons
- 18 A cubic cell
- 186 WFs

Energy (eV)

Equivalent to 350 atom calculation
0 05 1 15 . 2

EEI

] [ami—

N

% —

1=‘ . =

W
|

N
|

p—
|

X  GQeln DoS

LUMO bandwidth = 37 meV
HOMO bandwidth = 60 meV

Arash A. Mostofi (MIT), Electronic Structure Workshop, 13-15 June 2007, NSCU




Green s Function

e Green’s function of the whole system, leads
+ conductor:

(E—H)G=1

e For real-space Hamiltonians the above Green'’s
function can be partitioned into matrices that
correspond to the individual subsystems:

Gr Gre Grcr (B — Hr) hrc 0 =
Gecr Gc Gcer = hTLc (E — Hg) hcr

Grrc Grc Gr 0 Al (E — Hgp)
(E — Hp) = finite isolated conductor
(E — Hyp 1y) = infinite leads

hcr and hro = coupling matrices between the
conductor and the leads



Green s Function (II)

e Solving for G- we obtain:

Go=(E—-Hg—->;—-%p) !
where

ZL — hECGLhLC and ZR = hRCGRh}r%C

e > — self-energy = non-local effective Hamil-
tonians from the coupling of the conductor and
the leads.

e replace an infinite open system with a finite
one.

e provide a compact form for the transmission
function:

T(E) =Tr(F',Gel rGE)

Where I_{L,R} == I[Z?{L,R} = Z%L,R}]



Transfer Matrices

e Solid as an infinite stack of principal layers

with 1St nn interaction:

HOO HOI

Z——N
b —d

e If leads and conductor are of the same material
and introducing the transfer matrices for the
electronic system, we can write

GC’ — (E — Hog — Ho1T — Hng)_l

and we identify the self-energies

>, = H), T, > p = Hop1T.



Iterative Transfer Matrices

(e—Hy)Goo=1+Hy G,

(e—Hyo)G1o=H{Goo+ Hy G,

.« sy

(E_HOO)GnO:HglGn—l,O+H01Gn+l,O9

T:[0+;0Z1+;0?1f2+ w v +?0?1?2‘ . 'tn,

T=Tto+tot ttotitat ... Hitgtity - 1,,
where ¢; and 7, are defined via the recursion formulas:

_ ~ ~ 1,2
L=t gt —tiqti—1) 1y,

= % % —-i52
L=t gt — L t—) 1
and

o 17t
to=(e=Hoo)  Hoy, See M. B. Nardelli PRB (1999) for

- 1 a comprensive formulation
to=(e—Hy) Hy . P



First-Principles Study of Functionalizations

e Currently available covalent functionalizations

V. RO B K

NaNH, or

H, Plasma
(C4H,)HgCCl,Br
() NaBH4 m: —OH

— OO

Br-CH(COOR),

gﬂ

Li/R-1 or
NH"-CH"C()()
P B j RCOO-OOCR
R(C,H N,
58 coor * s-OR %R
gmxcoon “N-R 1906 SN ‘
1908 10 e nll DO R

K. Balasubramanian and M. Burghard, Small, 1, 180 (2005)



Aryl / Hydrogen

Energy (eV)

Y

r n/lL T L I n/lL [ n/L

Band structure does not depend on the chemical nature of the functional
groups

p, turnoff H-H nitrophenyl-H aminophenyl-H  pristine

AL




Aryl / Hydrogen - Quantum Conductance

Functionalized region in an infinite (5,5) tube
1 pair of functional groups

30 pairs / 3000 atoms / 37 nm
Rapid decay of the quantum conductance

G (2¢e/h)

CNT axis

Y.-S. Lee, M. Buongiorno Nardelli, and N. Marzari, Phys. Rev. Lett. 95, 076804 (2005)



Electrical Transport Measurements

IBM/Avouris: conductance decreases 5 orders of magnitude

after aryl functionalization Metallic, pristine
l Al ]\‘ ' L] ' Al ' Al l L] '
Nanotube 10° 00O A OEO0C UL DI SOOI
10° ®  Semiconducting NT: Functionalized
H H H H ®  Semiconducting NT: Annealed
10”7 O Metallic NT: Functionalized
\"\\ © Metallic NT: Annealed
-8 o
H H H H 10 "
WD A i e
o i} Sesesdny o A -’Z_Q_Q\:'):')Q'.F'f_’;::_‘._l'i:(:(;{:\_Q_Zi_Z]_{I-tl'!3—}_“1'_'1;):1:1:::;:'L"Z:Q_r_ﬁ-’.’:r
(CHy) (Cha) 107 e
" 11 '...._

10™ . i PRI

HN™ S0 HN" S0 Y . ~_:;=.'=:g- ek
OH 6 | 10 Metallic, functionalized.**
; l 10" u T, -
E i 1 M 1 M 1 .. 1 M 1 M 1 M 1
-20 -15 -10 -5 0 5 10
Al,O,
Vg [V]

C. Klinke et al., Nano Lett. 6, 906 (2006)



Electrical Transport Measurements
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Suppression of Metallic Conductivity
of Single-Walled Carbon Nanotubes
by Cycloaddition Reactions

Mandakini Kanungo, Helen Lu,? George G. Malliaras,* Graciela B. Blanchet®*

The high carrier mobility of films of semiconducting single-walled carbon nanotubes (SWNTs) i:
attractive for electronics applications, but the presence of metallic SWNTs leads to high off-currer
in transistor applications. The method presented here, cycloaddition of fluorinated olefins,
represents an effective approach toward converting the “as grown” commercial SWNT mats intc
high-mobility semiconducting tubes with high yield and without further need for carbon nanotu
separation. Thin-film transistors, fabricated from percolating arrays of functionalized carbon
nanotubes, exhibit mobilities >100 square centimeters per volt-second and on-off ratios of
100,000. This method should allow for the use of semiconducting carbon nanotubes in commercd
electronic devices and provide a low-cost route to the fabrication of electronic inks.
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www.sciencema:
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Dr. Arden L. Bement Jr., Director, National Science Foundation
FY 2008 Budget Presentation http://www.nsf.gov/news/speeches/bement/07/alb070205 budget.jsp
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(), is Positive Definite and Gauge
Invariant

We introduce the projection operators on the occupied
and unoccupied subspaces

P=> |Rm)(Rm| ; Q=I-P



(), Is Gauge Invariant

QI B Z Wy (Nbands Z ‘M(k L )
= Fk > wy Y (1 = Z(Umkunk+b><unk+b|umk>)
k,b m

mn

!
S
k,b

where P& = 3" ) (unk|, Q) =T — p)

()1 is a measure of the band dispersion in the
BZ (and dI? = tr [P®Q&)] defines its metric)



We consider an infinitesimal rotation of the Bloch orbitals

Unk) = |unk) + Z dW,r(;{% | Umi)

G(k) — W — 4211}(9 ( (k’b)] — S[T(k’b)])

provides an equation of motion (e.g. conjugate-gradient)

for the evolution of the U#;l towards the minimum of ).

since dQ is anti-hermitian, M®P) = (AMETP=PNT " and having
defined RP) — prlkb) o prlkbix 5ng RB) — pplkb) /pplkb)
Introducing the super-operators:

B — B B + Bt

AlBl==222, SiBl=2—,

and defining qflk’b) = Imqbf,bk’b) +ber, , TEPM — REb) kb

mmn mn an, b



In a general 3-dimensional case, the matrix elements for the position
operator r and its powers are, in the Wannier representation,

(wn0|rl|wm0) = (22)3/(unk|(z'%)l|umk)dk .

If we define v, = (Unk | i% | Uk ) we obtain

1 k
(2n)? / tn dk

p 9 p
{Wno |7 | Wno ) = PPSE /(t Yo dk .

In non-pathological cases the following equivalence holds (Blount 1962):

(Wno |T|Wpo) =

min (<wnoyr21wno> . <wnoyr\wno>2) 5 Vet = D,

For an isolated band in 1 dimension, the most localized set of Wannier
functions is thus obtained from wu’s that satisfy the condition:
.0 0 (PBerry)

z%<uk\z%|uk):0 = (uk\ukerk):const:T.



The Reciprocal Space Representation...

Position operator = Gradient

(On|x'|0m) = (2‘;)3/<unk|(z'§k)l|umk>dk

Example: 1 band in 1 dimension

The minimum 2 is found (Blount 1962) when the phases
are such that

0 0 err
uk|i—|uk>:O = <uk|uk+dk>:const:(¢B Y).

iag (kg N




The Definition of Wannier Functions

The one-particle effective Hamiltonian Hina periodic lattice commutes
with the lattice-translation operator Tg, allowing us to choose the
common eigenstates according to the prescriptions of Bloch theorem:

[ﬁv TR] =0 = \Ijnk(r) — ei¢n(k) unk(r) ez’k'r ’

where the arbitrary phase ¢, (k) that is not assigned by the
Schrodinger equation is written explicitly. We obtain a (non-unique)

Wannier representation with any unitary transformation of the form
(nR|nk) = e¥nk) kR .

gy, = T (r) e~ R g

BZ
Since that the Schrodinger equation is also invariant for a unitary
transformation of the occupied Bloch orbitals (in the presence of a
gap), the most general transformation is

WaRr — / Z Ufm)z )e_ik'de .

wyr is a "localized” function: for a R; distant from R, w,(R; —R) is
a combination of terms like fBZ umk(O)eZk'(Ri_R) dk, which are small
due to the rapidly varying character of the exponential factor.



e Modern theory of polarization: the spontaneous polarization of an
insulating crystalline solid is an invariant Berry phase of the occupied
Bloch manifold, and can be written as the sum of the centers of
charge of the Wannier functions of the occupied bands:

P = 2% [ (wlelu

e Linear-scaling methods: orbital-based electronic-strucure methods
whose computational cost scales linearly with size rely on the
assumption that the system studied allows for “localization” regions
that are (much) smaller than the system itself

e Non-periodic perturbations: the study of non-lattice periodic
perturbations (namely the response to a non-zero electric field)
requires a careful handling of the singular terms in rather complex
perturbative expansions; real-space methods based on localized
orbitals provide a much simpler and more straightforward approach
to the problem



Q=) ({r2) —ra-ra)

T

From the previous identities, and with wy, = 3/(Zb*), we have:

82

ok | ) =

1

2 2

(rh) = (w0l 7" Jwao ) = 2= 37 (k| —
k

Z <8unk 8unk _ Niz {—ZRe gbff’m + (Im <z>f,bk’b) )2} ;
k,b

1 0
n — {Wn Wn, " Un t— | Un =
rn = (Wno | T | Wno ) MZ( K | 8k| k)
—li— wbem[(unk|unk+b) 1 ———Z wbemgbkb
Ni k,b kkb

The logarithmic form for {r2) and r, guarantees that the functional
is invariant under a lattice translation for wyo, where upk(r) —
e_Zk'Runk(r) (ie. vy, — rp, + R, (ri) — (ri) 4+ 2r, - R + RQ).



Q, and Qg in the k-space Representation

The diagonal and off-diagonal terms in the localization
functional are those that can be minimized with an
appropriate choice of unitary transformations 79,{7)7, for the
Bloch orbitals. Their k-representation provides also a more
intuitive picture:

1
Qop = szb > IMED?
k k.b e

1 =
Op = ME wy Y (Im In MED — Imln Mé‘;’b))
k,b n

Qop derives from the “misalignment” of the
Bloch orbitals across the BZ, and Qp from the
“non-uniformity of phase twists”



The functional €2 is minimized with steepest descents: we calculate df2
corresponding to a set of infinitesimal unitary rotations dQ'*) among
the Bloch orbitals (i.e. | unk ) — | Unk) + > ,, dQS;)J Umk )). Now:

dM(k,b) — _[dQ(k) M(k,b) ]nn . [dQ(k+b) M(k+b,—b)]* ,

since d@ is anti-hermitian, MUP) = (M(ker’_b))Jr, and having
defined Ry5Y = MyuP « MiEP* and RESY = MEs? /MY,
Introducing the super-operators:

_ B-B'
2

B+ B

B 21

,  S[B]

)

and defining ¢*P) = Im ¢7(%k,b) L By Té}fﬁb) — j:éﬁrlj;%b) glkb)

T T

we finally obtain the functional derivative as

i, 4) wy (A[R(k’b)] — S[T(k’b)])
b




Q)

It is convenient to decompose €2 in two different contributions, coming

from band-diagonal and band-off-diagonal terms:

Q=01+ OQp + Qop

=) [(TQ)n—Z (Rm/|r|On)
W= ),

n  RA0

Qop =Y Y

m#n R

2
] =Y ||Pr.Q||?

2
(Rn|r|0n)

2

(Rm|r|0On)




The Localization Functional Q

0 = Z [(On\r2|0n> — (On\r]0n>2]

For a given set of Bloch orbitals, our goal is to minimize {2
with respect all the sets of unitary transformations U( )

The functional €2 can be decomposed in two terms:

Or= %

n

- Z <Rm|r|0n>2] :
Rm
Y Y ‘Rm\r|0n ‘2

n Rm#0n

Q7 and  are positive-definite and 21 is gauge-invariant !



Decomposing Q (tilde)

Q is decomposed in two different contributions, coming
from band-diagonal and band-off-diagonal terms:

2

Qp = > > |(Rn|r|on)
n  R+#0
Qop = » Y |(Rm|r|on)

m#n R



Minimization Strategy
Qg o -3 V) Qop=y % w3, MDY

1
QOp=—2 Wy, (—Im ImMED —p.F,)2.
Nk,b n

We consider an infinitesimal rotation of the Bloch orbitals

[Unk) — |Unik) ZdW(k) | Uk

ds?

dW (k)
provides an equation of motion (e.g. conjugate-gradient)
for the evolution of the U#f,l towards the minimum of 2.

G(k) _

— function of M)



The functional 2 is minimized with steepest descents: we calculate ds?
corresponding to a set of infinitesimal unitary rotations dQ among
the Bloch orbitals (i.e. | Unk ) — | Unk ) + 3, dQU) | )) Now:

dM(k’b) — _[dQ(k) M(k,b)] [dQ(k—l-b) M(k—l-b b)] ’

since d@ is anti-hermitian, M®P) = (A7&FP=PNT 3nd having
defined RIP) = prleb) o prloble 5ng R(kb) = M&P) /prlob)
Introducing the super-operators:

B — B B+ B

AlBl==Z— ., S[B]=="—.

and defining ¢ = Im ¢*® 4 b.r, , TKD = Rbb) 4b)

?’L
we finally obtain the functional derivative as

dQ(k) B 42‘” ( A[RUP)] — 3[T<k,b>])




The Reciprocal Space Representation

Position operator = Gradient

(On|r'|om) = (2‘;)3 /<unk|<i£{>l|umk>dk

Example: 1 band in 1 dimension

The minimum 2 is found (Blount 1962) when the phases
are such that

a a Eerr
akmk'z@kluw =0 = <uk|uk+dk>:COnst: ((bBN Y).




Blount identities

Position operator = Gradient

(On|r'|Oom) = (2‘;)3 /(Unk|<i§{>l|umk>dk

We can then express positions and spreads as a function of
the phase relations between neighboring Bloch orbitals

MEP) = (e | U xerb )

mn



Green’ s Function in a localized basis

H01 H1C HC2 I-|12
H00 HCC |'|11
lead conductor lead
2¢° 2¢e°
G=—T=—-TrT,G.I,G: ,
h h (1.GeliGe) @ G -- Green s function of the conductor
B Q -- coupling functions between the
Ge=(e-H. -2, -2;) 1 o b e
conductor and the leads.

o . @ H = Hamiltonian
F{L,R} :l[Z{L,R} _Z{L,R}

@ Self-energies are computed using surface Green’ s function matching theory and
the concept of layer orbitals:

ZL = (g_HLC)+ (8_H0Lo +(8_HOL])+]}, )_I(E_HLC)

Xp=(—Hpo) (6—Hy+(—Hy) T,) (- Hep)'





