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Maxwell’s equations

To begin we go back to the late 1800s - the time of Maxwell. At this time

the phenomena of electricity and magnetism had been investigated by a large

number of great scientists and a series of important laws had been discovered,

for example Faraday’s Law of Induction. Other parallel developments were

occurring in optics, the wave theory of light had overcome major obstacles

to its acceptance - rectilinear propagation and polarization (calcite crystals)

- and significant efforts were made to determine the speed of light from ex-

periment, Fizeau (1849) estimated it to be c ≈ 315 000 km/s 1.

The achievement of Maxwell was to condense empirical knowledge related

to electricity and magnetism into a single set of mathematical equations now

referred to as Maxwell’s equations. He demonstrated that an electromagnetic

field could propagate through the aether as a transverse wave using purely

theoretical arguments. Solving for the speed of the resulting wave, led to an

expression in terms of the electric (ε0) and magnetic (μ0) constants related

to the properties of the medium. These constants were known electrical

measurements and yielded a value of c = 1/
√

ε0μ0. The conclusion was that

electricity, magnetism and light were no longer separate problems in physics

but rather were intimately interlinked and could be explained using this new

framework. At this point we introduce the four equations in derivate form:

Gauss’s Law

∇.B = 0 (1)

Faraday’s Law

∇× E = −∂B

∂t
(2)

1for further reading try [1, 2, 3]
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Columb’s Law (can be derived from this)

∇.D = ρ (3)

Ampere and Maxwell’s Law

∇×B = μ

(
J + ε

∂E

∂t

)
(4)

For completeness the set of laws governing EM fields we include the Lorentz

force law,

Lorentz force Law

F = qE + vq ×B. (5)

For an uncharged and non-conducting medium (free-space propagation) this

equations can be reduced to

∇2E = μ0ε0
∂2E

∂t2
. (6)

Note that this is a wave equation that has several solutions which we will

come to in due course. To highlight that light is vectorial in nature we note

that E actually has components (in a Cartesian coordinate system along the

x, y and z axes), hence E =
〈
Exî, Ey ĵ, Ezk̂

〉
. Each of these vectorial com-

ponents must separately satisfy Eq. (6).

Scalar theory

In this course we make a major simplifying assumption: we use scalar diffrac-

tion theory which allows us to write to express the actions of electromagnetic
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fields in terms of a scalar quantity, u(P, t):

∇2u(P, t) = μ0ε0
∂2u(P, t)

∂t2
. (7)

Our scalar quantity is a function of both time, t, and space where P is a

spatial coordinate (x, y, z). This transition to a scalar theory will greatly

simplify our analysis. It also provides a valid description of the behavior of

light for a large range of situations. When is it not valid2?

• Diffraction from apertures when the aperture size is comparable to the

wavelength,

• Propagation through in-homogenous media,

• Focusing by high numerical apertures,

• Anisotropic media including some crystals.

Eq. (7) is a wave equation and a particular solution for mono-chromatic light

(light of one color) is given by

U(P, t) = A(P ) cos [2πvt + φ(P )] (8)

where v is the optical frequency of the electromagnetic wave.

Because it will be helpful later we are going to take a little time now to

examine the expression in Eq. (8) in more detail. Setting A(P ) = 1, allowing

our space variable, P , to vary as a function of x only and introducing the

wavevector �k (k = |�k| = 2π/λ, the optical wavelength), Eq. (8) now becomes

U(P, t) = cos (2πvt + kx) . (9)

2The validity of this approximation has been looked at in great detail. For further
reading see: Chapter 3 of [4] and Chapter 8 of [2], and [5, 6]
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Exercise: Show that Eq. (9) is indeed a solution to Eq. (7)!

t=0-1.pdf

t = 063.pdf
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t =pi.pdf

t=0-1.pdf

Figures showing dependence on time and space
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We have just looked at how Eq. (9) varied as a function of time and space.

It may be expressed in more convenient notation which we now introduce

U(P, t) = �{U(P ) exp(−j2πvt)} , (10)

where � signifies the ‘real part of’ and U(P ) is a complex scalar func-

tion of position. Note that we have assumed a simple harmonic oscillator,

exp(j2πvt), and separated the space and the time variables. This will al-

low us to examine the spatial variation of our complex wavefield U(P ) in

isolation. We make several remarks about this step:

• Since we know how the phase will change as a function of time we

can include this effect at a later stage. However due to the extremely

rapid variation of this field normally only averaged intensity values are

considered.

• We are concerned primarily with mono-chromatic light, however light

fields with more complicated spectral distributions can be accounted for

by noting that any waveform can be expressed by a linear combination

of sinusoidal components. The same is true of U(P )!

Hence from here we will consider only the scalar field that is a complex

function of position3. The function, U(P ), satisfies the Helmholtz equation:

(∇2 + k2
)
U = 0 (11)

For the special case of plane wave propagation the function, U(P ) takes the

form

U(x, y, z) = exp(j�k.P )

= exp

[
j
2π

λ
(αx + βy + γz)

]
(12)

3For further reading see Chapter 3 of [4] and [2]
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where the directional cosines α, β, and γ are related through

γ =
√

1− α2 + β2 (13)

Thus we see that a function exp [j2π(fxx + fyy)] can be interpreted as a

plane wave at z = 0, propagating at an angles (α = λfx, β = λfy). This

last observation will be important when we start employing Fourier optics

tools to examine how different and arbitrary wavefields propagate. We note

in advance that by using Fourier tools we can decompose any physically

realizable signal into a weighted superposition of sinusoidal terms, each of

which can then be considered as propagating plane waves.

Spherical waves

We saw from the previous sections that waves can add constructively or de-

structively giving rise to the effect known as interference. (It was not always

accepted that the addition of light could result in localized darkness). We

want to look at this again but this time for a different but equally important

function, the spherical wave,

U(P ) =
1

r
exp (jkr) . (14)

We see a plot of this figure below. There are several features to note,

‘wavefronts’ of constant amplitude and phase propagate out from the source

(located at r = 0) and that the amplitude drops off as a function of distance,

r. We proceed by writing Eq. (14) in terms of x, y, z to give

U(P ) =
1

z
√

1 + (x−x0)2

z2 + (y−y0)2

z2

exp

(
jkz

√
1 +

(x− x0)2

z2
+

(y − y0)2

z2

)
,

(15)
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where we have used the relation r =
√

z2 + (x− x0)2 + (y − y0)2 and as-

sumed that the point source is located at an origin given by P0 = (x0, y0, z0 =

0).

Diffraction by two pinholes

In this lecture i think it is most important to try and explain the underlying

reasoning that leads to the mathematical formulation of diffraction integrals.

To do this we are for the moment going to sacrifice some mathematical rigor

so that the fundamental underlying causes of diffraction can be described. I

want you to understand from an intuitive physical perspective the process of

diffraction and so we postpone a more rigorous mathematical treatment until

the end of lecture 2. We proceed by getting rid of the cumbersome square

root operation in Eq. (15) we shall use the binomial expansion

√
1 + b = 1 +

1

2
b− 1

8
b2 + . . .
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to approximate it. Ideally we wish to retain as few of the binomial expansion

terms as possible while still retaining a reasonable accuracy. Due to the large

value of k at optical wavelengths we must retain the second expansion term

[4, 6]

U(P ) = C exp

[
jk

2z

[
(x− x0)

2 + (y − y0)
2
)]

. (16)

Since the more interesting term in Eq. (15) is the exponential we are going

for now to ignore the scaling factor 1/r replacing it with a complex constant

C (note this is where we are being somewhat careless with our treatment,

although the form of the result is the same we are jumping over some funda-

mental considerations). Here again, and in preparation for a major step, we

will examine the interference between two spherical wave sources. Consider

the following situation depicted in Fig. 3 (for simplicity we shall ignore the

y-component). Two coherent point sources are located symmetrically about

the optical axis at a distance x = ±D. The resulting field at a distance
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z = zP can be calculated using Eq. (16) to give

U(D, zP ) + U(−D, zP ) = C exp

{
jk

2zP

[
(x−D)2

]}

+C exp

{
jk

2zP

[
(x + D)2

]}

= C exp

[
jk (D2 + x2)

2zP

]
cos

(
k

zP

Dx

)
(17)

Looking at Eq. (17) we note that the apart from a complex constant we

have both a quadratic phase factor and a cosine term. Optical detectors

are generally sensitive only to the intensity (magnitude squared) of optical

field and in practice what is observed is a set of fringes of a single spatial

frequency D/ (λz). Thus as we vary the distance between the contributing

point sources D we observe a different frequency, similarly for changes in both

λ and z. For an idea of what this looks like one is referred to B. J. Thompson

and E. Wolf - here the authors experimentally measure the spatial coherence

of 2 displaced point sources - which has a mathematical form similar to Eq.

(17) although the effect they are examining is quite different.

Diffraction

We are now nearly in a position to provide a qualitative description of how

light propagates and is diffracted by different apertures. We must first con-

sider another fundamental concept introduced Huygens circa 1678 [4]. Huy-

gens was one of the first scientists to suppose that the behavior of light could

be attributed to a wave nature. He expressed an intuitive conviction that if

each point on the surface of a wavefront could be considered as a ‘secondary’

spherical source (disturbance) then the wavefront at a later instant could be

found by constructing the envelope of the secondary wavelets, see Chapter 3

Ref. [4].
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Figure 1: Taken from Goodman

The Fresnel transform

In the previous sections we have looked at how the problem of diffraction

(was) could be attacked (under paraxial conditions) by making a series of

assumptions: read → {Interference, Huygens secondary sources, Fresnel and

Young}, using a combination of intuitive physical ideas and the resulting

mathematical formulation. Now that we understand the underlying operat-

ing principle of the Fresnel transform we will accept the formal definition:

uz (x, y) =
1

jλz

∫ ∞

∞
u (X, Y ) exp

{
jπ

λz

[
(x−X)2 + (y − Y )2]} dXdY,

(18)

and use it to examine the diffraction from several different types of apertures.

Lets quickly review the main features of Eq. (18):
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• it relates the field at a plane: (X,Y ) to the field at a different plane:

(x,y) located a distance z away,

• the integral limits extend ±∞,

• a definite scaling factor 1/ (jλz) has been introduced in place of C

To begin let us consider some examples starting with our old example of the

diffraction of two point sources. Previously we had cheated a little and simply

wrote the mathematical expression for a spherical wave (approximated with

the binominal expansion) a distance from the source location. However if

we look at Eq. (14) and allow r → 0 we see that the 1/r → ∞. In fact

the expression reduces (at r = 0) or is defined as a Dirac delta function or

impulse function:

δ(x) = 0, if x �= 0∫∞
∞ δ(x)dx = 1

(19)

I would recommend reading Chapter 5 of Ref. [7] for more detail on this

function. Indeed in the next lecture we will be looking more closely at different

functions that are important in Fourier analysis, and examine whether they

are well behaved functions. With the help of Eq. (19) we find that our input

wavefield (1-D) is

u(X) = δ(X −D) + δ(X + D),

which on substitution into Eq. (18) yields

uz(x) =
1√
jλz

exp

[
jk (D2 + x2)

2zP

]
cos

(
k

zP

Dx

)
. (20)

Note: that for 1-D analysis the 1/ (jλz) term becomes 1/
√

jλz.
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Square aperture: 1-D

We have already seen how to extend our 2 pinhole example to describe diffrac-

tion from a square aperture. Now we will look at the more rigorous math-

ematics for that effect. We begin by writing the expression for a square

aperture,

pL(X) = 1, if |X| < L

= 0, otherwise.
(21)

Inserting Eq. (21) into Eq. (18)

uz (x) =
1√
jλz

∫ ∞

∞
pL(X) exp

{
jπ

λz

[
(x−X)2]} dX,

=
1√
jλz

∫ L

−L

exp

[
jπ

λz
(x−X)2

]
dX,

= −1

2

{
erf

[
(−1)

3
4

√
π

λz
(L− x)

]
+ erf

[
(−1)

3
4

√
π

λz
(L + x)

]}
,

(22)

The erf functions in Eq. (22) may be calculated quickly using modern

computers and so we have an analytical solution to diffraction from a square

aperture.
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Figure 2: Calculation Example

Plane and Spherical waves

Last time we looked at two solutions to the Helmholtz equation in free space,

the plane and spherical wave. Specifically we looked at the diffraction pattern

formed a distance z away from a two pinhole screen. We now return to this

example to remind ourselves of last lecture’s discussion.
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Figure 3: Two pinhole experiment.

This figure highlights two of the characteristics of the wave types we en-

countered last week:

Plane wave: has a uniform phase along a plane that is perpendicular to

the direction of propagation.

U(x, y, z) = exp(j�k.P )

= exp

[
j
2π

λ
(αx + βy + γz)

]
(23)

In Fig. 1, the plane wave is propagating along the z axis and therefore α and

β can be set to zero to give

U(z) = ?? (24)
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U(z) = exp

(
j
2π

λ
z

)
(25)

What does the pinhole screen do? It selects two specific parts of the

plane wave, which propagate further as spherical waves!

Spherical waves: originate a specific spatial location; the phase is constant

over a spherical surface. How can we represent that graphically? How do we

write that mathematically? And in its approximate form?

U(x, z) =
1

z
√

1 + (x−x0)2

z2

exp

(
jkz

√
1 +

(x− x0)2

z2

)
,

(26)

where we have used the relation r =
√

z2 + (x− x0)2 and assumed that the

point source is located at an origin given by P0 = (x0, z0 = 0), which we

approximated as

U(x, z) = C exp

[
jk(x− x0)

2

2z

]
. (27)

What is the expression for the field a distance

z = zP from the pinhole screen? Calculate!
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Two coherent point sources are located symmetrically about the optical

axis at a distance x = ±D. The resulting field at a distance z = zP is given

by

U(D, zP ) + U(−D, zP ) = C exp

{
jk

2zP

[
(x−D)2

]}

+C exp

{
jk

2zP

[
(x + D)2

]}

= C exp

[
jk (D2 + x2)

2zP

]
cos

(
k

zP

Dx

)
(28)

The means whereby we have analyzed this classical optics problem has as-

sumed we have perfect plane and spherical waves - an idealization - and

therefore the results predicted by Eq. (28) differ from the experimental ob-

servation. However the main characteristics are broadly captured.

Thought experiment

What happens if we introduce a piece of glass before one of the pinholes as

depicted in Fig. 2 ?
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piece of glass
thickness (delta)
piece of glass
thickness (delta)

11

22

Figure 4: Two pinhole experiment with a piece of glass over one of the
pinholes.

Glass has a different refractive index than free space and so a piece of

glass will introduce a phase delay, φ, by an amount determined by both the

thickness and refractive index of the glass section. We depict this graphically

in Fig. 3. This phase change is expressed mathematically with the following

equation:

φ = knΔ(x) (29)

where k is still the wavenumber k = 2π/λ, n is the refractive index approx

1.5 for glass, and Δ is the thickness of the glass segment (the dependence on

x, indicates that this thickness could vary as a function of spatial location -

like a lens!) Hence the spherical wave emerging from Location 2, see Fig. 2,

has an additional phase term φ. How does this change things? Well we can
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deltadelta

phase delayphase delay

zz z+deltaz+delta
z'z'

maps tomaps to

plane waveplane wave

thin phase screen
exp[i phi(x)]
thin phase screen
exp[i phi(x)]

Figure 5: Two pinhole experiment with a piece of glass over one of the
pinholes.

re-write our expression given in Eq. (28), to give

U(D, zP ) + U(−D, zP ) = C exp

{
jk

2zP

[
(x−D)2

]}

+C exp(jφ) exp

{
jk

2zP

[
(x + D)2

]}
(30)

Lets see what happens, and turn to Mathematica!
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More spherical sources

piece of glass
thickness (delta)
piece of glass
thickness (delta)

11

22

33

Figure 6: Three pinholes with a piece of glass over one of the pinholes.

An example calculation is shown in the following plot:

21



Figure 7: Example calculation in Mathematica
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The main points that I want to emphasis in this section are the following:

1. Using a mathematical expression for a spherical wave we can describe

the diffraction pattern a distance zP away from our double pinhole

grating.

2. By introducing a piece of glass over a particular pinhole, its phase

contribution can be changed relative to the other pinholes.

3. If the refractive index and thickness of the glass are known, so is the

phase shift that has been introduced.

4. By increasing the number of point sources we can increase the com-

plexity of our diffraction pattern.

In a further generalization we could allow the amplitudes of the different

contributing spherical waves to change, i.e. replace C with C1, C2 ....

A Conclusion: IF WE KNOW THE PHASE AND AMPLITUDE OF

A COLLECTION POINT SOURCES IN A PARTICULAR PLANE WE

CAN CALCULATE WHAT THE DIFFRACTION PATTERN WILL LOOK

LIKE AT ANOTHER PLANE BY ADDING TOGETHER EACH CON-

TRIBUTING POINT SOURCE.

Mathematically for N spherical waves, located at spatial locations Xn and

with amplitudes and phases Cn, φn:

Us(x) = |Us(x)| exp [jφs(x)] ,

=
n=N∑
n=1

Cn exp (jφn) exp

[
jk

2z
(x−Xn)2

]
. (31)

where φs(x) is the phase of the output optical field.
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Course Exercise

Consider the distribution formed a distance z = 0.5m, (let λ = 1) from a 3

pinhole diffracting screen such as that depicted in Fig. 4. Source 1 (S1) is

located at x0 = D, with φS1 = 0, S2 is at x0 = −D and phase lag φS2 = π,

S3 located at x0 = −0.2 (φS3 = 0), where D = 0.4, assume Cn = 1 for all

point sources. Write a short report that addresses the following:

1. Outline how the calculation is performed,

2. Derive a mathematical expression in terms of z, λ, D, φS1, φS2, φS3 that

describes the distribution

3. Calculate and plot the distribution using the values for z, λ... etc above

over the range −3 < x < 3.

4. Show how this distribution changes when (φS3 = 0.63).

5. Comment on the significance of your results.

Reports should be submitted within 2 weeks (Nov 22) and should

include Matlab or Mathematica code in an Appendix. Timely com-

pletion of this report will be considered when assessing your final

mark!
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Intensity of an optical field.

Recording media, in general, are sensitive only to the intensity of the light

field incident upon them see Chap 4 in Ref [4] for more detail. That implies

that the measurable quantity of the optical field Us(x) is Is(x) given by

Is(x) = Us(x)U∗s (x)

= |Us(x)||Us(x)| exp [jφs(x)] exp [−jφs(x)] ,

= |Us(x)|2 (32)

and so we see that by recording the intensity of the optical field we loose the

important phase information. There are several techniques for recovering

this information and we now look at one in more detail.

Digital holography.

The previous two screen grabs were taken from Ref. [8]
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Figure 8: Digital holography setup, pic taken from Ref. [8]

Back to the digital hologram ...

We remember from last week that the Fresnel transform is used to relate

an optical wavefield in one plane to the optical distribution (wavefield) in a

another plane located a distance z from the first. Again the formal definition

is given by:

uz (x, y) =
1

jλz

∫ ∞

∞
u(X, Y ) exp

{
jπ

λz

[
(x−X)2 + (y − Y )2]} dXdY,

(33)

If our input field consists of an array (matrix) of different point sources

(spherical waves) then we replace the integral with a sum

uD
z (x, y) =

1

jλz

m=Ny−1∑
m=0

n=Nx−1∑
n=0

unm exp

{
jk

2z

[
(x−Xn)2 + (y − Ym)2

]}
,(34)
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Figure 9: Digital holography setup.

unm = Cnm exp(jφnm) (35)

is a 2-D matrix of complex numbers and where X and Y are vectors, i.e.

X = [X1, X2, .....XNx ] ,

Y =
[
Y1, Y2, .....YNy

]
. (36)
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We may consider Eq. (34) - (36) as being equivalent to a large number

piece of glass
thickness (delta)
piece of glass
thickness (delta)

11

22

33

Figure 10: Three pinholes with a piece of glass over one of the pinholes.

(Nx×Ny) of different spherical waves - i.e. just a straight-forward extension

of the theoretical analysis we looked at last week. The next step is to have a

look at how we can perform this mathematical operation. Lets expand out

Eq. (34),

uD
z (x, y) =

1√
jλz

e
jπ
λz

(x2+y2)

m=Ny−1∑
m=0

n=Nx−1∑
n=0

{
unme

jπ
λz

(X2
n+Y 2

m)
}

exp

[−j2π

λz
(xXn + yYm)

]
.

(37)

We now make several comments about Eq. (37):

1. Although the distribution is calculated from a discrete number (Nx ×
Ny) of values, the output is a continuous function of x and y,

2. To calculate the distribution at any point (x1, y1) requires Nx × Ny

which can be very time-consuming,
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3. This underlines the need for fast numerical algorithms to calculate Fres-

nel diffraction integrals,

4. The term in curly brackets may be conveniently expressed and stored

in Matlab as a 2-D matrix.

Turn to Mathematica! One calculation on a 1024 × 1392 takes about 11 secs

- way too slow, since to produce a similar size output would take days and

days!

The importance of fast algorithms can also be shown by considering this

simple example, what is the sum of all the numbers between 1 and 100?

How can we speed up our calculation of Eq. (37)? We proceed with a

1-D analysis for notational simplicity and make the following substitution:

Xn = nδX so that Eq. (37) may be re-written as

uD
z (x) =

1√
jλz

e
jπ
λz

(x2)

n=Nx−1∑
n=0

{
une

jπ
λz

(nδX)2
}

exp
[
−j2π

( x

λz

)
(nδX)

]
.

(38)

What is δX? It is the step size between neighbouring samples, or in practical

digital holographic terms, it is the distance between neighbouring camera

pixels, typical values for this distance are ≈ 6μm. We now look at our

output spatial variable x. We wish to calculate the output distribution for a

finite number of points K in the output plane and it remains to choose how

we define the output step size δx. In order to make use of the Fast Fourier

Transform algorithm the following choice is imposed: Kδx = λz/δX and

furthermore that K = N or that the number of samples in out input domain

and output domain are equal. Making these substitutions, i.e. x = kδx, Eq.
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(38) becomes

uk
z =

1√
jλz

e
jπ
λz

(kδx)2
n=Nx−1∑

n=0

{
une

jπ
λz

(nδX)2
}

exp

[
−j2π

(
kδx

λz

)
(nδX)

]
,

=
1√
jλz

e
jπ
λz

(kδx)2
n=Nx−1∑

n=0

{
une

jπ
λz

(nδX)2
}

exp

[
−j2π

(
nk

N

)]
,

(39)

where uk
z = [u0

z, u
1
z, ....u

K−1
z ]. With this representation we may use the Fast

Fourier Transform to calculate the sum in Eq. (39) which reduces the number

of calculations from N2 to N log2(N). Hence Eq. (39) can be expressed as

uk
z =

1√
jλz

e
jπ
λz

(kδx)2FFT
{

une
jπ
λz

(nδX)2
}

,

(40)
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Figure 11: Fresnel propagation code.
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FFT algorithm4

The DFT of an N-point sequence is defined as

Fm =
N−1∑

0

fn exp
(
− j2πnm

N

)
(41)

=
N−1∑

0

fnω
nm
N (42)

For, e.g. N = 4, this expression constitutes the following matrix multi-

plication, ⎛
⎜⎜⎜⎜⎝

F0

F1

F2

F3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ω0
N ω0

N ω0
N ω0

N

ω0
N ω1

N ω2
N ω3

N

ω0
N ω2

N ω4
N ω6

N

ω0
N ω3

N ω6
N ω9

N

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

f0

f1

f2

f3

⎞
⎟⎟⎟⎟⎠ (43)

Noting that ωk+pN
N = ωk

N ,

⎛
⎜⎜⎜⎜⎝

F0

F1

F2

F3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ω0
N ω0

N ω0
N ω0

N

ω0
N ω1

N ω2
N ω3

N

ω0
N ω2

N ω0
N ω2

N

ω0
N ω3

N ω2
N ω1

N

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

f0

f1

f2

f3

⎞
⎟⎟⎟⎟⎠ (44)

Clearly this takes N×N multiplications. As N grows, this becomes quite

slow to compute.

Cooley-Tukey FFT

Recall Eq. (41),

Fm =
N−1∑

0

fnω
nm
N (45)

4I am grateful to John Healy for his contribution to this section.
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We can split this into two parts, the even and odd points of the input.

(Actually, we can split it into any number of parts providing that number

divides N . That number is called the radix of the algorithm.)

Fm =

(N/2)−1∑
0

f2nω
(2n)m
N +

(N/2)−1∑
0

f2n+1ω
(2n+1)m
N (46)

The two sums are very similar. We can emphasis this by bringing the differing

part (which we call the twiddle factor) outside the sum,

Fm =

(N/2)−1∑
0

f2nω
2nm
N + ωm

N

(N/2)−1∑
0

f2n+1ω
2nm
N (47)

Next, we note the identity ω2nm
N = ωnm

N/2, giving,

Fm =

(N/2)−1∑
0

f2nω
nm
N/2 + ωm

N

(N/2)−1∑
0

f2n+1ω
nm
N/2 (48)

Compare these two sums with Eq. (41), and it is evident that we now have

the sum of two N/2-point DFTs. One more trick,

ω
m+N/2
N = −ωm

N (49)

and we can rewrite Eq. (44) as the following pair of equations,

(
F0

F1

)
=

(
ω0

N ω0
N

ω0
N ω1

N

)(
f0

f2

)
+

(
ω0

N

ω1
N

)
.

(
ω0

N ω0
N

ω0
N ω1

N

)(
f1

f3

)
(50)

(
F2

F3

)
=

(
ω0

N ω0
N

ω0
N ω1

N

)(
f0

f2

)
−
(

ω0
N

ω1
N

)
.

(
ω0

N ω0
N

ω0
N ω1

N

)(
f1

f3

)
(51)

The dots above are Hadamard products. We need only perform these matrix
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multiplications once (e.g. in Eq. (50) and then reuse the results in evaluating

Eq. (51)), so instead of N2 multiplications as before, we only need 2(N
2
)2+N .

The extra N comes from the twiddle factors.

The above is a single iteration of the algorithm. We can use it again on

each of the N/2-point DFTs it has given us. If N = 2q for some integer

q, we can do this q times. Then, the only multiplications we need are the

twiddle factors, of which there are N at each iteration. Thus we have Nq or

N log2 N multiplications. Including additions, we say we need O(N log2 N)

operations to calculate an N -point DFT using the FFT algorithm iteratively.

As N grows, this rapidly becomes much less than N2.

The Fourier Transform

We now turn our attention to the formal definition for the Fourier transform,

i.e.

U(k) =

∫ ∞

−∞
u(x) exp(−j2πxk)dx (52)

We mention first that not every function has a Fourier transform. For ex-

ample since the integration is over the limits ±∞, generally we require the

power associated with |u(x)|2 be finite over this range. All signals that are

physically realizable satisfy this requirement. Surprisingly there are several

functions which are so useful mathematically but that nevertheless do not

meet this requirement:

1. sin(x): sine, and cosine functions

2. H(x): the Heaviside step function

3. δ(x): the Dirac delta impulse function

None of these functions strictly speaking have a Fourier transform. Indeed

none are physically possible signals, see Chapter 2 of Ref. [7] for a more
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detailed discussion. Nevertheless Fourier transforms for these functions can

be defined using limiting arguments. Let us consider the Fourier transforms

of some important functions starting with a Gaussian function defined:

g(x) =
1√
a

exp

(
−x2

a2

)
. (53)

Lets say we want to perform a Fourier transform on Eq. (53) what are the

steps? Well, set g(x) in Eq. (53) equal to u(x) in Eq. (52) to give

G(k) =

∫ ∞

−∞
exp

(
−x2

a2

)
exp(−j2πxk)dx,

=

∫ ∞

−∞
exp

(
−x2

a2
− j2πxk

)
dx,

=

∫ ∞

−∞
exp

[
−
(

x2

a2
− j2πxk − π2k2a2 + π2k2a2

)]
dx,

=

∫ ∞

−∞
exp

[
−
(x

a
− jπka

)2

+ π2k2a2

]
dx,

=
√

πa exp
(−a2k2π

)
(54)

For the final step in solving Eq. (54) we note the following relationship∫
exp(−πx2)dx = 1.

Exercise: Plot the results of Eq. (53) and compare with the results of Eq.

(54) for different values of a, show in Mathematica!

How do we find the FT when g(x) = rect(x), where I define

rect(x) =

{
1, when |x| < L

0, otherwise.
(55)
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Well same as before, we sub Eq. (57) into Eq. (52) to yield

G(k) =

∫ L

−L

exp(−j2πxk)dx,

and noting that
∫

exp (Θx) dx = (1/Θ) exp (Θx), G(k) becomes

G(k) =
−1

j2πk
exp (−j2πxk)

∥∥∥L

−L

=
−1

j2πk
{exp (−j2πLk)− exp (−j2πLk)}

=
1

πk
sin (2πLk) . (56)

Exercise: Find the Fourier transform of tri(x) where

tri(x) =

{
L + x, when − L < x < 0

L− x, when 0 < x < L.
(57)
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