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Fourier transform

In this section we would like to introduce the Fourier transform before moving

onto to its use in describing optical systems. To use Fourier theory to analyze

optical systems, we will need to make use of lenses and the by-now familiar

Fresnel transform. Fourier theory also provides a very elegant and compact

means for understanding (quantifying) the effect of sampling a signal and

the resulting loss of information present in the digitized signal. Many text

books cover this topic, see for example [1, 2], in far more detail than we can

in this lecture course. So we here restrict ourselves to the important aspects

of Fourier theory that are relevant to our discussion. Let’s begin with the

1-D definition of the Fourier transform and its inverse, which we define as

U (v) = FT {u(x)} (v),
=

∫ ∞

−∞
u(x) exp (−j2πxv) dx. (1)

u (x) = IFT {U(v)} (x),
=

∫ ∞

−∞
U(v) exp (j2πxv) dv. (2)
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There are a series of conditions on whether the Fourier transform of a sig-

nal actually exists. I have taken the following more or less verbatim from

Bracewell [1]

1. The integral of |u(x)| from −∞ to∞ exists - this is equivalent to saying

that the function u(x) should have a finite amount of power or energy.

2. The discontinuities in |u(x)| are finite,

Other important functions such as the Dirac delta function δ(x) or the

unitstep(x) function strictly speaking do not have well-defined Fourier trans-

forms. Similarly with periodic functions since they violate condition 1 above.

However since these are so useful for analysis and can be related to physical

processes, we bend rules slightly defining special transforms for these im-

portant functions. Again we will not examine these interesting fundamental

issues referring the reader to Chap 1 and 5 Ref. [1] as well as [3] for a more

thorough discussion of these points.

Some examples

Here we wish to provide some examples of Fourier transforms to provide the

reader with some insight into the characteristics of the transform. We start

be considering the aperture function

pD(x) =

{
1, when |x| < �L

0, otherwise,
(3)

Setting u(x) = pD(x), and subbing into Eq. (1), we arrive at

P (v) =

∫ ∞

−∞
pD(x) exp (−j2πxv) dx,

=

∫ L

−L

1 exp (−j2πxv) dx,
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=
sin(2πLv)

πv
. (4)

Often this last relationship is written as

P (v) = 2Lsinc(2Lv) (5)

where the function sinc(x) = sin(πx)/x. Lets look at another example, this

time setting u(x) = cos(2πfxx). Making the appropriate substitution we

arrive at

U (v) =

∫ ∞

−∞
cos(2πfxx) exp (−j2πxv) dx,

=

∫ ∞

−∞

[
exp(j2πfxx) + exp(−j2πfxx))

2

]
exp (−j2πxv) dx,

=
1

2
[δ(v − fx) + δ(v + fx)] , (6)

One may note that to get the result in Eq. (6), I made use of the a funda-

mental Fourier transform pair - FT {exp(j2πfxx} (v) = δ(v−fx). In the Ap-

pendix to this lecture I have attached a list of some useful Fourier transform

pairs and important Fourier transform properties. I would like to look at spe-

cific property in more detail namely one of the shifting property relationships

for Fourier transforms. We know from Eq. (1) that U(v) = FT {u(x)} (v),
let us now calculate

FT {u(x) exp(j2παx)} (v) =

∫ ∞

−∞
u(x) exp (j2παx) exp (−j2πxv) dx,

=

∫ ∞

−∞
u(x) exp [−j2πx (v − α)] dx.

(7)
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Making the following substitution , i.e. v′ → v − α means that Eq. (7) can

be re-written as

FT {u(x)} (v′) =

∫ ∞

−∞
u(x) exp [−j2πx (v′)] dx,

(8)

hence we have the following result

FT {u(x) exp(j2παx)} (v) = U(v − α). (9)

Therefore the FT of some function multiplied by a linear phase term, exp(j2παx)

results in an identical, albeit shifted, Fourier transform. We will make use of

this result later when we discuss sampling theory in more detail.

Convolution

Lets look at another important operation: convolution. The convolution of

two functions f(x) and g(x) is defined as

conv(x) = f(x) ∗ g(x)
=

∫ ∞

−∞
f(u)g(x− u)du. (10)

Examining Eq. (10) we see that to calculate a particular value of conv(x′),

we set x = x′ in Eq. (10) and integrate (sum) the product of f(u)g(x′ −
u). As we vary x′ we see that we are sliding g relative f , multiplying and

integrating. Again I refer the interested reader to Chap 3 of Ref [1] for a

thorough discussion of this topic together with helpful graphical depictions

of the convolution process. However to provide some insight into the process

we now examine what happens when we convolve the following two functions:

f(x) = cos(2πfx1x) + cos(2πfx2x),
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g(x) = sinc(2Lf1x), (11)

using the Mathematica Reader file entitled: ‘convolution example.nbp’. Ex-

amining this distribution we see that we can change the output by varying

the different parameters: fx2, L, alpha. For certain combinations of these

variables, e.g. when L = 1, fx2 = 2, we see that the presence of the fx2 com-

ponent has been removed. How can we explain this? At this point it is handy

to make use of the following property of the Fourier transform (property is

taken from the Appendix)

FT {f(x) ∗ g(x)} (v) = F (v)G(v),

f(x) ∗ g(x) = IFT {F (v)G(v)} (x) (12)

Making use of the Fourier transform pairs in the Appendix, we note that f(x)

maps to 1
2
[δ(v − fx1) + δ(v + fx1 + δ(v − fx2) + δ(v + fx2)], while g(x) maps

to pfx1L(v). Anything outside this aperture will be set to zero and hence the

convolution operation can be viewed as a filtering operation. We shall return

to this later in this lecture when we consider optical systems that perform

such a filtering operation.

Sampling

Here we examine the effect of sampling a signal. What does sampling ac-

tually do? The first thing to note is that a continuos signal, f(x) returns a

value for every input value of x. If we wish to represent this signal digitally,

we must represent the signal with a finite number of values, usually we take

a finite number of samples of the signal at uniformly spaced distances. We

also wish to ensure that we still have a reasonably accurate representation of

our signal, how can we be sure that we have done so?

To represent the effect of the sampling operation we introduce the comb
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function,

δT (x) =
∞∑

n=−∞
δ(x− nT ) (13)

where T is the space between adjacent samples. To sample the function f(x),

we perform the following operation

f(nT ) = δT (x)f(x). (14)

Another important relationship is that δT (x) can also be expressed as

δT (x) =
∞∑

n=−∞
exp

(
j2π

n

T
x
)
. (15)

Using Eq. (14) and (15) and subbing into Eq. (1) we calculate the Fourier

transform of our sampled distribution

FS(v) =

∫ ∞

−∞

[ ∞∑
n=−∞

exp
(
j2π

n

T
x
)
f(x)

]
exp (−j2πxv) dx. (16)

where we have included a subscript S to indicate that we are calculated the

continuos distribution FS(v) from a set of discretely sampled points. Taking

the sum outside the integral in Eq. (17) and using the shifting theory that

we saw earlier, i.e. Eq. (9), we can rewrite Eq. (FFS.16) as

FS(v) =
∞∑

n=−∞
F
(
v − n

T

)
, (17)

where F (v) = FT {f(x)} (v) and so we see that the Fourier transform of

our sampled function consists of an infinite number of shifted copies of the

original Fourier distribution. We now explore some of this implications using

the file entitled: ‘Sampling+Example.nbp’.
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Fresnel transform and sampling

The following paragraph is taken from Ref. [4]. We now turn our attention

to the sampling of a diffracted Fresnel field. Let our original field be called

u(X) and the field in the Fresnel domain uz(x).

us(X) =
1

T
√−jλz

∫
uz(x)δT (x) exp[

−jπ
λz

(X − x)2]dx

=
1

T
√−jλz

∞∑
n=−∞

∫
uz(x) exp(j2πnx/T ) exp[

−jπ
λz

(X − x)2]dx

(18)

We also note the shifting property [5, 4] of the Fresnel transform (for an

arbitrary linear phase ξ), for some analytical signal f(X),

χz {f(X) exp(j2πξX)} (x) = exp

(−jπξ2
λz

)
exp (j2πxξ)χz {f(X)} (x− ξλz)

(19)

Combining the results from Eq. (18) and Eq. (19) we arrive at

us(X) =
1

T
√−jλz

∞∑
n=−∞

∫
uz(x) exp(j2πnx/T ) exp[

−jπ
λz

(X − x)2]dx

us(X) =
1

T

∞∑
n=−∞

χ−z

{
uz(x) exp

[
j2π

(n
T

)
x
]}

(X)

us(X) =
1

T

∞∑
n=−∞

exp

[
−jπ (n/T )2

λz

]
exp (j2πXn/T )χ−z {uz(x)}

(
X − nλz

T

)
.

(20)

Thus from Eq. (20) we can relate us(X) to the actual field u(X). The sam-

pling process however causes differences between the actual signal and our

approximation to it. We note several points in relation to this: (i) the sam-

7



pling process creates an infinite number of replicas in the object plane, (ii)

the centers of adjacent replicas are separated by a distance λz/T , (iii) each

of the replicas is also multiplied by a different linear phase as well as some

unimportant constant phase factor.

If we impose the constraint that our object (field) has a finite support Δ in the

object plane then this field can be imaged without overlapping replicas pro-

vided that T ≤ (λz)/Δ. This important result is known [?, 6, ?, 7, 8, 9, 10, 11]

and means that under certain conditions it is possible to sample the diffracted

field at rates below the Nyquist limit and to recover through a generalized

interpolation formula super-Nyquist frequencies. In Ref. [12] some impli-

cations of this result are explored in more detail using a simple analytical

example. As we shall see however the effect of the finite pixel size and camera

extent impose resolutions limits in addition to this constraint.

Optical Fourier Transform

The analysis presented in this section is taken from Goodman [2]. Consider

the optical system depicted in Fig. 1(a). A normally incident unit amplitude

plane wave is incident on a transparency, t(x), that is placed directly in front

of a converging lens. The field immediately before the lens can be described

as

Ul (x) = t(x). (21)

We can account for the effect of the thin lens using our earlier representation,

i.e. we describe the effect of the lens with the following expression:

e
−jπ
λf

x2

, (22)
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Figure 1: Three OFT systems taken from Ref. [2]

and write the field after the lens as

U ′
l (x) = t (x) p(x)e

−jπ
λf

x2

,

(23)

where we account for the finite extent of the thin lens using the aperture

function p(x), such that

p(x) =

{
1, inside the aperture

0, otherwise.
(24)

We now calculate the distribution a distance z away from the lens using the

Fresnel transform

Uf (u) =
1√
jλz

∫ ∞

∞
U ′
l (x) exp

[
jπ

λz
(u− x)2

]
dx. (25)
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Substituting Eq. (23) into 25 and expanding out the exp (•) term gives

Uf (u) =
exp

(
jπu2

λz

)
√
jλz

∫ ∞

∞
p(x)t(x) exp

(−2jπxu
λz

)
exp

[
jπx2

λ

(
1

z
− 1

f

)]
dx.

(26)

Assuming an aperture of infinite extent, we note that in the back focal plane

of the lens, i.e. when z = f then Eq. (26) reduces to

Uf (u) =
exp

(
jπu2

λf

)
√
jλf

∫ ∞

∞
t(x) exp

(−2jπxu
λf

)
dx, (27)

which apart from a leading quadratic phase is a scaled Fourier transform of

t(x) where fx = u/(λf). The leading quadratic phase factor means that Eq.

(27) is not a true Fourier transform of the function t(x) however since it is

usually the intensity that is measured in this instance the phase distribution

does not effect the observable result.

Before we turn our attention to the scene depicted in Fig. 1(b), let us

first consider the Fresnel transform from another point of view. From Ref.

[1] we note that the convolution of two functions f(x) and g(x) is defined as

f(x) ∗u g(x) =

∫ ∞

∞
f(x)g(u− x)dx. (28)

Comparing with Eq. (25) we see that the Fresnel transform can be described

as a convolution, i.e.

Uf (u) =
1√
jλz

U ′
l (x) ∗u exp

(
jπx2

λz

)
. (29)

One more trick, we note that the Fourier transform of exp
(

jπx2

λz

)
is

exp (−jπλzu2). Hence we can interpret the Fresnel transform in the Fourier
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domain. Let us make use of this new information to analyze the situation

depicted in Fig. 1(b). Again a normally incident unit amplitude plane wave

is incident on a transparency, t(x), located a distance d from our converging

focal lens. Let us define

F0(fx) = FT {t(x)} (fx), (30)

where FT is the Fourier transform operator (i.e.

FT {r(x)} (fx) =
∫∞

−∞ r(x) exp(−j2πfxx)dx). Making use of the convolution

property of the FT we note that the FT of the field incident on the lens,

Fl(fx) may be written as

Fl(fx) = F0(fx) exp(−jπλdf 2
x), (31)

where d is the distance between the transparency and the lens surface. To

ease analysis we assume that the lens is effectively infinite in extent and thus

write the field in the back focal plane as

Uf (u) =
exp

(
jπ
λf
u2
)

√
jλf

Fl

(
u

λf

)
. (32)

Subbing Eq. (31) into Eq. (32)

Uf (u) =
exp

[
jπ
λf

(
1− d

f

)
u2
]

√
jλf

F0

(
u

λf

)
, (33)

which can be rewritten as

Uf (u) =
exp

[
jπ
λf

(
1− d

f

)
u2
]

√
jλf

∫ ∞

∞
t(x) exp

(−j2π
λf

xu

)
dx (34)

So we can see that at the back focal plane of the lens again we have a scaled

FT relationship between the input transparency, t(x) and Uf (u). Again we
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note the presence of a leading quadratic phase factor. For the special case

when d = f we see that this factor disappears yielding a true FT relationship

between input and output planes.

4-f imaging system

We are now in a position to analyze a commonly used optical system, called

the 4-f imaging system, as depicted in Fig. 2. For simplicity we assume this

system is a unit-magnificaiton system where both lenses have focal length f .

From the previous section, see Eq. (34), we note that for the special case

when d = f we have a Fourier transform relation. Suppose that our input

field is

u(X) = pDI
[cos(2πfx1x) + cos(2πfx2x)] . (35)

We note that the input function consists of two spatial frequency components

whose spatial extent in the input plane is limited by an aperture function

of size ±DI . From the theoretical results discussed thus far we are now in

a position to have a go at analyzing the behavior of this system. Lets look

at the Fourier plane first. Each cosine functions (associated with frequencies

fx1 and fx2) will map to two Dirac delta functions located at u = ±fx1/(λf)
and u = ±fx2/(λf) respectively. What is the effect of the aperture function?

From Eq. (3), we expect it will be mapped to a sinc function and remember-

ing to scale our output variable, since we are analyzing an optical system,

we expect the following result: PDI
(u) = Ksinc(2DIu/(λf)), where K is a

complex scaling constant. We also remember that a multiplication operation

in one domain is a convolution operation in its Fourier domain and hence we

expect that each of the Dirac delta functions will be broadened, leading to 4

spatially separated sinc functions in the Fourier plane.

12



X

v

X’

Fourier Lens Fourier Lens

Aperture

pinhole array

plane X’plane X’

plane v

Figure 2: 4-f imaging system, with a limiting aperture in the Fourier plane.
In Fourier plane distribution red lines indicate location of aperture, the green
distributions represent the replicas that arise when a pinhole array is placed
over the input function. The spatial separation is given by λf/T . Finally the
distriubution in output/image plane only contains the lower spatial frequency
component.

U(u) = PDI
(u− fx2) + PDI

(u− fx1) + PDI
(u+ fx1) + PDI

(u+ fx2)

(36)

This distribution is now incident on the Fourier plane aperture, see Fig. 2,

and its extent is limited to the range −DFP < u < DFP . In the particular

situation depicted in Fig. 2 we see that the Fourier plane filtering operation

acts to largely remove the contribution of the fx2 frequency component. This

truncated FP distribution is then subject to a second scaled FT operation to

yield the output image. We would expect from Fig. 2 that the output image
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will not contain contributions from the fx2 frequency component. We have

seen this type of filtering operation earlier in our section on Convolution and

explored some results with the Mathematica file: ‘convolution example.nbp’.

We now wish to consider the effect of sampling. In order to model this

effect we introduce a regularly spaced pinhole grating (see Fig. 2), where the

spacing between the holes is again given by T . Thus our input function is

modified according to the following expression:

uS(nT ) = u(X)δT (X)

=
∞∑

n=−∞
u(X) exp

(
j2π

n

T
X
)
. (37)

Again invoking the shift operator we see the resulting distribution in the

Fourier plane is given by

US(u) =
∞∑

n=−∞
U(u− n

T
) (38)

When fx2 > 1/(2T ) the sinc function associated with this frequency moves

outside the sampling bandwidth, while at the same time higher order replicas

move into the central sampling order, masquerading as lower frequencies.

Fresnel based DH systems

Our optical system here is depicted in Fig. 3. Again we assume that a func-

tion similar to Eq. (35), is input to our system. This field propagates to the

camera plane where its extent is limited by the finite support of the camera

aperture, and the field is sampled (we ignore the filtering effect of the finite

size pixels [4]). The reconstruction is now performed numerically by a com-

puter. We can represent these two operations graphically, (i) introduction of

a pinhole array, and (ii) numerical propagation of the complex amplitude.
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X X’

pinhole array

plane X’

x

analytical propagation: z numerical propagation: -z 

aperture 

plane X’

Figure 3: A Fresnel based digital holographic system. The input field prop-
agates to the camera plane where the higher spatial frequency component is
again filtered out by the finite camera aperture. The second half of the opti-
cal system consists of numerical back-propagation of the complex wavefield.
The sampling operation is accounted for with the pinhole array and generates
an infinte series of replicas spaced a distance λz/T . Finally the distriubution
in output/image plane only contains the lower spatial frequency component.

References

[1] R.N. Bracewell. The Fourier Transform and its Applications. McGraw-

Hill, New York, 1965.

[2] J.W. Goodman. Introduction to Fourier Optics, 2nd ed. McGraw-Hill,

New York, 1966.

[3] D. Slepian. On bandwidth. Proceedings of the IEEE, 64(3):292–300,

1976.

15



[4] Damien P. Kelly, Bryan M. Hennelly, Nitesh Pandey, Thomas J.

Naughton, and William T. Rhodes. Resolution limits in practical digital

holographic systems. Optical Engineering, 48(9):095801, 2009.

[5] B. M. Hennelly and J. T. Sheridan. Fast algorithm for the linear canon-

ical transform. J. Opt. Soc. Am. A, 22:928–937, 2005.

[6] Levent Onural. Exact analysis of the effects of sampling of the scalar

diffraction field. J. Opt. Soc. Am. A, 24(2):359–367, 2007.

[7] Levent Onural. Some mathematical properties of the uniformly sam-

pled quadratic phase function and associated issues in digital fresnel

diffraction simulations. Optical Engineering, 43(11):2557–2563, 2004.

[8] Adrian Stern and Bahram Javidi. Sampling in the light of wigner dis-

tribution. J. Opt. Soc. Am. A, 21(3):360–366, 2004.

[9] Adrian Stern and Bahram Javidi. Space-bandwidth conditions for effi-

cient phase-shifting digital holographic microscopy. J. Opt. Soc. Am. A,

25(3):736–741, 2008.

[10] Adrian Stern. Sampling of linear canonical transformed signals. Signal

Processing, 86(7):1421 – 1425, 2006.

[11] A. Stern and B. Javidi. Analysis of practical sampling and reconstruction

from fresnel fields. Opt. Eng., 43:239–250, 2004.

[12] D. P. Kelly, B. M. Hennelly, C. McElhinney, and T. J. Naughton. A

practical guide to digital holography and generalized sampling. volume

7072, page 707215. SPIE, 2008.

Fourier transform pairs and properties1

1I am grateful to John Sheridan for providing this Appendix
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Functions 

 

 

 

 

 

 

Q : Sketch these functions. 

 

Table of 2-D Functions and their FTs 

Function 

Name 

 

separable form 
 

separable form 
rectangular  

= rect(x)rect(y) 

 

= sinc(u)sinc(v) 

triangular  

= tri(x)tri(y) 

 

= sinc
2
(u)sinc

2
(v) 

printing
Typewritten Text

printing
Typewritten Text

printing
Typewritten Text
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printing
Typewritten Text



sinc   

Gaussian   

unity 1  

shifted  

delta 

 

= δδ(x-a)δ(y-b) 

 

expon- 

-ential 

  

cosine  
 

sine  
 

comb  

=comb(x)comb (y) 

 

flip   

invert   

conjugate   

invert and 

conjugate 
  

printing
Typewritten Text

printing
Typewritten Text
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Properties of the 2-D FT 

1. Linearity :  

2. Similarity (Scaling) :  

3. Shift :  

4. Modulation :  
 

5. Convolution :  

6. (Cross-)Correlation :  

 

7. Autocorrelation :  

8. Duality :  

IF     THEN    

9. Conservation :   

NOTE : Separable Functions :  

If   

Then . 

printing
Typewritten Text
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