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• Lecture I: Mainly bipartite entanglement of Gaussian states

• Lecture II: Multipartite entanglement of Gaussian states, telepor-
tation with continuous variables, quantum information with non-
Gaussian states

• Lecture III: Entanglement at work in quantum spin systems. Long-
distance entanglement and teleportation, ground-state factoriza-
tion, hierarchical entanglement and collective phenomena, role of
entanglement in the understanding of frustrated complex quantum
many-body systems
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Entanglement in Continuous Variable Systems
(mainly Gaussian States of Light)



Introduction to continuous variable systems

A continuous variable (CV) system of N canonical bosonic modes is described by a

Hilbert space H =
⊗N

k=1Hk, the tensor product of infinite dimensional Fock spaces

Hk’s, each of them associated to a single mode. Free Hamiltonian of an arbitrary

number N of harmonic oscillators of different frequencies (modes of the field):

Ĥ =

N∑

k=1

~ωk

(
â†kâk +

1

2

)
. (1)



5

Bosonic commutation relations:

[
âk, â

†
k′

]
= δkk′ , [â,

kâk′] =
[
â†k, â

†
k′

]
= 0 . (2)

(natural units with ~ = 2.) The corresponding quadrature phase operators (position

and momentum) for each mode are:

q̂k = (âk + â†k) , (3)

p̂k = (âk − â†k)/i . (4)
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Vector form of the canonical operators:

R̂ = (q̂1, p̂1, . . . , q̂N , p̂N)T , (5)

enables the compact-form commutation relations:

[R̂k, R̂l] = 2iΩkl . (6)

Here Ω is the symplectic form:

Ω =

N⊕

k=1

ω , ω =


 0 1

−1 0


 . (7)
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The space Hk is spanned by the Fock basis {|n〉k}: Eigenstates of the number

operator n̂k = â†kâk.

For each mode k there exists a different vacuum state |0〉k ∈ Hk such that âk|0〉k = 0.

The vacuum state of the global Hilbert space will be denoted by |0〉 =
⊗

k |0〉k.
In the single-mode Hilbert space Hk, the eigenstates of âk constitute the important

set of coherent states, which is over-complete in Hk.
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Coherent States

Defined by applying the Weyl displacement operator D̂k to the vacuum |0〉k, |α〉k =

D̂k(α)|0〉k, where

D̂k(α) = eαâ
†
k−α∗âk , (8)

and for α ∈ C it satisfies âk|α〉k = α|α〉k. In the Fock basis of mode k it reads

|α〉k = e−
1
2 |α|2

∞∑
n=1

αn

√
n!
|n〉k . (9)

Tensor products of coherent states for N modes are obtained by applying the N -mode

Weyl operators D̂ξ to the global vacuum |0〉, where

D̂ξ = eiR̂TΩξ , with ξ ∈ R2N . (10)

One then has |ξ〉 = D̂ξ|0〉.
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Quantum phase-space picture - Characteristic functions

Quantum states: positive trace-class operators {%} [i.e. compact (bounded and

continuous) and with a trace that is always defined and finite] on the Hilbert space

H =
⊗N

k=1Hk. Alternative and fully equivalent description: s-ordered characteristic

functions

χs(ξ) = Tr [%D̂ξ] e
s‖ξ‖2/2 , (11)

with ξ ∈ R2N , ‖ ¦ ‖ standing for the Euclidean norm of R2N . The vector ξ belongs to

the real 2N -dimensional space Γ = (R2N , Ω), which is called phase space, in analogy

with classical Hamiltonian dynamics.
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Phase space: Quasi-probability distributions

In phase space the tensor product structure is replaced by a direct sum structure, so

that the N -mode phase space Γ =
⊕

k Γk, where Γk = (R2, ω) is the local phase space

associated with mode k.

The family of characteristic functions is in turn related, via complex Fourier trans-

form, to the quasi-probability distributions Ws, which constitute another set of com-

plete descriptions of the quantum states

Ws(ξ) =
1

π2

∫

R2N
κχs(κ) eiκTΩξ d2N . (12)
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Phase space: Quasi-probability distributions (continued)

The value s = −1 corresponds to the Husimi ‘Q-function’: Q ≡ W−1(ξ) = 〈ξ|%|ξ〉/π,

i.e. the regular probability distribution for state % to be found in the coherent state |ξ〉.
The case s = 0 corresponds to the Wigner function W : W ≡ W0. Likewise, for the

sake of simplicity, χ will stand for the symmetrically ordered characteristic function χ0.

Finally, the case s = 1 yields the singular P-representation introduced, independently,

by Glauber and Sudarshan.
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Phase-space distributions (continued)

The quasi-probability distributions of integer order W−1, W0 and W1 are respec-

tively associated the anti-normally ordered, symmetrically ordered and normally or-

dered expressions of operators. More precisely, if the operator Ô can be expressed as

Ô = f (âk, â
†
k) for k = 1, . . . , N , where f is, say, symmetrically ordered function of

the field operators, then one has

Tr[%Ô] =

∫

R2N
W0(κ)f̄ (κ) d2Nκ ,

where f̄ (κ) = f (κk + iκk+1, κk − iκk+1) and f takes the same form as the operator

function previously introduced.
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Quantum phase-space vs. Hilbert-space picture - Synopsis

Hilbert space H Phase space Γ

dimension ∞ 2N

structure
⊗ ⊕

description % χs, Ws

Schematic comparison between Hilbert-space and phase-space pictures for N -mode

continuous variable systems.
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Mathematical description of Gaussian states.

The set of Gaussian states is, by definition, the set of states with Gaussian charac-

teristic functions and quasi-probability distributions on the multimode quantum phase

space. Gaussian states include, among others, coherent, squeezed, and thermal states.

Therefore they are of central importance in quantum optics and in quantum informa-

tion and quantum communication with CV systems. Their entanglement properties

will thus be one of the main subjects of this set of lectures.
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Covariance matrix formalism.

From the definition it follows that a Gaussian state % is completely character-

ized by the first and second statistical moments of the quadrature field opera-

tors, which will be denoted, respectively, by the vector of first moments R̄ =(
〈R̂1〉, 〈R̂1〉, . . . , 〈R̂N〉, 〈R̂n〉

)
and by the covariance matrix (CM) σ of elements

σij =
1

2
〈R̂iR̂j + R̂jR̂i〉 − 〈R̂i〉〈R̂j〉 . (13)

First moments can be arbitrarily adjusted by local unitary operations.
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Covariance matrix formalism - the fundamental physical constraints.

The CM σ contains the complete, locally-invariant, information on a Gaussian state:

therefore the requirements that the associated % must be positive and that the canonical

commutation relations hold translate on the following constraint on the CM:

σ + iΩ ≥ 0 , (14)

Ineq. (14) is the necessary and sufficient relation that the matrix σ has to fulfill to

be the CM corresponding of a physical Gaussian state. Moreover, Ineq. (14) is the

necessary condition for the CM of all CV states (characterized in principle by the

moments of any order). The constraint implies σ ≥ 0. Ineq. (14) is also the expression

of the uncertainty principle.
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The two-mode squeezed state and the EPR state.

The acclaimed representative of two-mode Gaussian states: the

two-mode squeezed state |ψsq〉i,j = Ûi,j(r) (|0〉i⊗ |0〉j) with squeezing factor r ∈ R,

where the (phase-free) two-mode squeezing operator is

Ûi,j(r) = exp
[
−r

2
(â†i â

†
j − âiâj)

]
, (15)

In the limit of infinite squeezing (r → ∞), the state approaches the ideal Einstein-

Podolsky-Rosen (EPR) state, simultaneous eigenstate of total momentum and relative

position of the two subsystems, which thus share infinite entanglement.
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Squeezing and teleportation.

Quantum teleportation of an unknown coherent state in the Braunstein-Kimble-

Vaidman protocol using the EPR state as infinitely entangled resource is realized with

absolute, i.e. unit fidelity. But: The EPR state is un-normalizable and unphysical.

However, in principle, an EPR state can be approximated with an arbitrarily high

degree of accuracy by two-mode squeezed states with sufficiently large squeezing.

Therefore, two-mode squeezed states are of key importance as entangled resources for

practical implementations of CV quantum information protocols. They play a central

role in the study of the entanglement properties of Gaussian states.
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Symplectic operations.

Unitary operations which preserve the Gaussian character of the states on which

they act. They are all those generated by Hamiltonian terms at most quadratic in

the field operators. As a consequence of the Stone-Von Neumann theorem, the so-

called metaplectic representation entails that any such unitary operation at the Hilbert

space level corresponds, in phase space, to a symplectic transformation, i.e. to a linear

transformation S which preserves the symplectic form Ω:

STΩS = Ω . (16)

Important examples in quantum optics and quantum information with CV systems:

Ideal beam splitters, phase shifters, and squeezers.
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Example: the beam splitter.

A common unitary operation is the ideal (phase-free) beam splitter, whose action

B̂i,j on a pair of modes i and j is defined as

B̂i,j(θ) :





âi → âi cos θ + âj sin θ

âj → âi sin θ − âj cos θ
, (17)

with âl being the annihilation operator of mode k. A beam splitter with transmittivity

τ corresponds to a rotation of θ = arccos
√

τ in phase space (θ = π/4 corresponds to

a balanced 50:50 beam splitter, τ = 1/2).
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Symplectics of beam splitters (continued).

Beam splitter operations are described by the symplectic transformation

Bi,j(τ ) =




√
τ 0

√
1− τ 0

0
√

τ 0
√

1− τ
√

1− τ 0 −√τ 0

0
√

1− τ 0 −√τ




. (18)

Single-mode symplectic operations are easily introduced as linear combinations of

planar (orthogonal) rotations and of single-mode squeezings of the form

Sj(r) = diag ( er, e−r) , (19)

acting on mode j, for r > 0.
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Active and passive operations.

The beam splitters Bij(τ ), Eq. (18), preserve the value of Tr σ. Since Tr σ gives

the contribution of the second moments to the average of the Hamiltonian
⊕

k â†kâk,

these transformations are said to be passive (they belong to the compact subgroup

of Sp(2N,R)). Instead, the squeezers Ui,j(r), Eq. (15), do not preserve Tr σ (they be-

long to the non compact subgroup of Sp(2N,R)). This mathematical difference between

squeezers and phase-space rotations accounts, in a quite elegant way, for the differ-

ence between active (energy non preserving) and passive (energy preserving) optical

transformations.
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Diagonalization and symplectic eigenvalues.

Diagonalization of a Gaussian state in the basis of normal modes: symplectic trans-

formation. the CM of a N -mode Gaussian state can always be written in the diagonal

form

σ = STνS , (20)

where S ∈ Sp(2N,R) and ν is the CM

ν =

N⊕

k=1


νk 0

0 νk


 , (21)

corresponding to a tensor product state with a diagonal density matrix

%⊗ =
⊗

k

2

νk + 1

∞∑
n=0

(
νk − 1

νk + 1

)
|n〉kk〈n| . (22)
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Symplectic invariants.

The N quantities νk’s form the symplectic spectrum of the CM σ, and are invariant

under the action of global symplectic transformations on the CM σ. The symplectic

eigenvalues can be computed as the orthogonal eigenvalues of the matrix |iΩσ| and

are thus determined by N invariants of the characteristic polynomial of such a matrix.

First global symplectic invariant: The determinant of the CM (whose invariance is a

consequence of the fact that Det S = 1 ∀S ∈ Sp(2N,R)). Computed in the diagonal

form, it reads

Det σ =

N∏

k=1

ν2
k . (23)
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Symplectic invariants (continued).

Another important invariant under global symplectic operations is the sum of the

determinants of all 2× 2 sub-matrices of a CM σ, which can be readily computed in

terms of its symplectic eigenvalues as

∆(σ) =

N∑

k=1

ν2
k . (24)

The invariance of ∆(σ) in the multimode case follows from its invariance in the case

of two-mode states and from the fact that any symplectic transformation can be de-

composed as the product of two-mode transformations.
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Synopsis.

Hilbert space H Phase space Γ

dimension ∞ 2N

structure
⊗ ⊕

description % σ

bona fide % ≥ 0 σ + iΩ ≥ 0

operations U : U †U = I
% 7→U%U†

S : STΩS = Ω
σ 7→SσST

spectra U%U † = diag{λk}
0≤λk≤1

SσST = diag{νk}
1≤νk<∞

pure states λi = 1, λj 6=i = 0 νj = 1, ∀j = 1 . . . N

purity Tr %2 =
∑

k λ2
k 1/

√
Det σ =

∏
k ν−1

k

Comparison between Hilbert-space and phase-space representations for N -mode CV

states. The first two rows apply to general states. The remaining ones are special to

Gaussian states (CM description and symplectic group).
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Degree of information contained in a Gaussian state - Measures of

information.

The degree of information contained in a quantum state corresponds to the amount

of knowledge that we possess a priori on predicting the outcome of any test performed

on the state.

The simplest measure of such information is the purity of a quantum state %:

µ(%) = Tr %2 . (25)

For states belonging to a given Hilbert space H with dimH = D, the purity varies in

the range
1

D
≤ µ ≤ 1 .
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Measures of information (continued).

The minimum is reached by the totally random mixture; the upper bound is sat-

urated by pure states. In the limit of CV systems (D → ∞), the minimum purity

tends asymptotically to zero. Accordingly, the “impurity” or degree of mixedness of

a quantum state %, which characterizes our ignorance before performing any quantum

test on %, can be quantified by the functional

SL(%) =
D

D − 1
(1− µ) =

D

D − 1

(
1− Tr %2

)
. (26)

The linear entropy SL (ranging between 0 and 1) defined by Eq. (26) is a very useful

measure of mixedness in quantum mechanics and quantum information theory due to

its direct connection with the purity and its computational simplicity.
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Purity and von Neumann entropy.

The von Neumann entropy

SV (%) = −Tr % log % (27)

is subadditive. Bipartite system S (Hilbert space H = H1⊗H2) in the state %. Then

SV (%) ≤ SV (%1) + SV (%2) , (28)

where %1,2 are the reduced density matrices %1,2 = Tr2,1 % associated to subsystems

S1,2. The von Neumann entropy is additive on tensor product states:

SV (%1 ⊗ %2) = SV (%1) + SV (%2) . (29)

The purity, Eq. (25), is instead multiplicative on product states, as the trace of a

product equates the product of the traces:

µ(%1 ⊗ %2) = µ(%1) · µ(%2) . (30)
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Classical and quantum information.

Considering a joint classical probability distribution over the variables X and Y , one

has for the Shannon entropy,

S(X,Y ) ≥ S(X), S(Y ) . (31)

The Shannon entropy of a joint probability distribution is always greater than the

Shannon entropy of each marginal probability distribution, meaning that there is less

information in a global classical system than in any of its parts.
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Classical and quantum information (continued).

Bipartite quantum system in a pure state: % = |ψ〉〈ψ| . We have then for the

von Neumann entropies: SV (%) = 0, SV (%1) = SV (%2) ≥ 0. It is impossible to

reconstruct the complete information about how the global system was prepared in

the state % (apart from the trivial instance of % being a product state % = %1 ⊗
%2), by looking separately at the two subsystems. Information is rather encoded in

nonlocal and non-factorizable quantum correlations – entanglement – between the

two subsystems. This clearly highlights the fundamental difference between classical

and quantum distributions of information.
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Entropic measures for Gaussian states.

Purity of a Gaussian state:

µ(%) =
1∏
i νi

=
1√

Det σ
. (32)

It depends only on the global symplectic invariant Det σ Eq. (23). The purity is related

to the linear entropy SL via Eq. (26), which in CV systems simply becomes SL = 1−µ.

The von Neumann entropy of a Gaussian state:

SV (%) =

N∑
i=1

f (νi) , (33)

where

f (x) ≡ x + 1

2
log

(
x + 1

2

)
− x− 1

2
log

(
x− 1

2

)
. (34)

Notice that SV diverges on maximally mixed CV states, while SL is normalized to 1.
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Entanglement of pure states.

It is by now well understood that entanglement in a

pure bipartite quantum state % = |ψ〉〈ψ| is equivalent to the degree of mixed-

ness of each subsystem. Accordingly, it is properly quantified by the

entropy of entanglement EV (|ψ〉), defined as the von Neumann entropy, Eq. (27), of

the reduced density matrices,

EV (|ψ〉) = SV (%1) = SV (%2) = −
d∑

k=1

λ2
k log λ2

k . (35)

The entropy of entanglement is by definition invariant under local unitary operations

EV

(
(Û1 ⊗ Û2)|ψ〉

)
= EV

(
|ψ〉

)
. (36)
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Local Operations and Classical Communication (LOCC).

It can be shown that EV (|ψ〉) cannot increase under LOCC (Local operations and

classical communication) performed on the state |ψ〉: Suppose one starts with a state

|ψ〉 of the global system S , to perform local measurements on S1 and S2, and to

obtain, after the measurement, the state |ϕ1〉 with probability p1, the state |ϕ2〉 with

probability p2, and so on. Then

EV (|ψ〉) ≥
∑

k

pkEV (|ϕk〉) . (37)

Note that entanglement cannot increase on average, that is nothing prevents, for a

given k, that EV (|ϕk〉) > EV (|ψ〉). The concept of entanglement distillation is based

on this fact: with a probability pk, it is possible to increase entanglement via LOCC

manipulations.
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Entanglement of mixed states

A mixed state % can be decomposed as a convex combination of pure states,

% =
∑

k

pk|ψk〉〈ψk| . (38)

Eq. (38) tells us how to create the state described by the density matrix %: we have

to prepare the state |ψ1〉 with probability p1, the state |ψ2〉 with probability p2, etc.

For instance, we could collect N copies (N À 1) of the system, prepare nk ' Npk of

them in the state |ψk〉, and pick a copy at random.

A mixed state is separable (unentangled) if there exists at least one decomposition

that is a convex combination of product states:

% =
∑

k

pk%
(1)
k ⊗ %

(2)
k . (39)
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Separability criteria

The difficulty in checking whether a mixed state is entangled or separable lies in

the fact that the decomposition of Eq. (38) is not unique: There exist infinitely many

decompositions of a generic %, meaning that mixed states can be prepared in infinitely

many different ways. Deciding separability according to the above definition would

imply checking all the infinitely many decompositions of a state % and looking for the

existence of at least one, expressed as a convex combination of product states, Eq. (39),

to conclude that the state is not entangled. This is clearly impractical. For this reason,

several operational criteria have been developed in order to detect entanglement in

mixed quantum states. Some of them, of special relevance to Gaussian states of CV

systems, are discussed in the following.
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Separability and distillability: The PPT criterion.

It can be shown that if a state %s is separable, then its partial transpose %T1
s (with re-

spect e.g. to subsystem S1) is a valid density matrix, in particular positive semidefinite,

%T1
s ≥ 0. Obviously, the same holds for %T2

s . Positivity of the partial transpose (PPT)

is therefore a necessary condition for separability. The converse (i.e. %T1 ≥ 0 ⇒ %

separable) is in general false: PPT entangled states (with %T1 ≥ 0) have been shown to

exist. These states are known as bound entangled, because their entanglement cannot

be distilled to obtain maximally entangled states. The existence of bound entangled

(undistillable) states with negative partial transposition has been conjectured, but at

present there is not yet evidence of this property.
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The PPT criterion for Gaussian states.

The PPT criterion is necessary and sufficient for the separability of all (1×N)-mode

Gaussian states and all M ×N bisymmetric Gaussian states.

The PPT criterion yields that a Gaussian state σA|B (with NA = 1 and NB arbitrary)

is separable if and only if the partially transposed σ̃A|B is a bona fide CM, that is it

satisfies the uncertainty principle Eq. (14),

σ̃A|B + iΩ ≥ 0 . (40)

This property in turn reflects the positivity of the partially transposed density matrix

%TA associated to the state %.
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The PPT criterion: Symplectic representation.

The PPT criterion has a powerful symplectic representation. The partially trans-

posed matrix σ̃ of any N -mode Gaussian CM is still a positive and symmetric matrix.

As such, it admits a diagonal normal-mode decomposition, Eq. (20), of the form

σ̃ = STν̃S , (41)

where S ∈ Sp(2N,R) and ν̃ is the CM

ν̃ =

N⊕

k=1


 ν̃k 0

0 ν̃k


 , (42)

The ν̃k’s are the N symplectic eigenvalues of the partially transposed CM σ̃.
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Symplectic spectra and entanglement.

The symplectic spectrum {νk} of σ encodes the structural and informational prop-

erties of a Gaussian state. The partially transposed spectrum {ν̃k} encodes the char-

acterization of entanglement in the state. In terms of the latter, the PPT condition

(40) can be equivalently recast in the form

ν̃k ≥ 1 . (43)

We can rearrange the modes of a N -mode state such that the corresponding sym-

plectic eigenvalues of the partial transpose σ̃ are sorted in ascending order

ν̃− ≡ ν̃1 ≤ ν̃2 ≤ . . . ≤ ν̃N−1 ≤ ν̃N ≡ ν̃+ .

Then the PPT criterion across an arbitrary bipartition becomes ν̃1 ≥ 1 for all separable

Gaussian states. If ν̃1 < 1, the corresponding Gaussian state σ is entangled.
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Synopsis.

Physical Separable

density matrix % ≥ 0 %TA ≥ 0

covariance matrix σ + iΩ ≥ 0 σ̃ + iΩ ≥ 0

symplectic spectrum νk ≥ 1 ν̃k ≥ 1

Conditions of existence and conditions of separability for Gaussian states in different

representations. The second column qualifies the PPT condition.

The distillability problem for Gaussian states: the entanglement of any non-PPT

bipartite Gaussian state is distillable by LOCC. However, this entanglement can be

distilled only by non Gaussian LOCC: Distilling Gaussian states with Gaussian oper-

ations is impossible.
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Quantification of bipartite entanglement in Gaussian states.

For pure states the ”unique” measure of bipartite entanglement is the entropy of en-

tanglement (von Neumann entropy of the reduced state). Other entanglement mono-

tones, such as the geometric entanglement, are however very important, conceptually

and operationally. We will come back on this when discussing spin systems.

For general, mixed, states there is no ”unique” measure, as each acceptable measure,

i.e. satisfying a minimal set of conditions, has a different operational motivation and

meaning, accounting for different, and in some cases inequivalent, operational charac-

terizations and orderings of entangled states.

The situation is even more intricate and interesting in the case of multipartite entan-

glement, both for pure and for mixed states.
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Entanglement of formation.

An immediate generalization to mixed states is certainly the entanglement of for-

mation EF (%), defined as the convex-roof extension of the entropy of entanglement

Eq. (35), i.e. the weighted average of pure-state entanglement,

EF (%) = min
{pk, |ψk〉}

∑

k

pk EV (|ψk〉) , (44)

minimized over all decompositions of the mixed state % =
∑

k pk|ψk〉〈ψk|. This is

clearly an optimization problem of formidable difficulty, and an explicit solution is

known only for the mixed states of two qubits, and for highly symmetric states like

Werner states and isotropic states in arbitrary dimension. In CV systems, an explicit

expression for the entanglement of formation is available only for symmetric, two-mode

Gaussian states. The entanglement of formation is not additive (very recent result).
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PPT-derived measures of entanglement for Gaussian states.

An important class of entanglement monotones, and very useful in the study of

Gaussian states, is defined by the negativities, which quantify the violation of the

PPT criterion for separability, i.e. how much the partial transposition of % fails to be

positive. The negativity N (%) is defined as

N (%) =

∥∥%Ti
∥∥

1
− 1

2
, (45)

where

‖Ô‖1 = Tr
√

Ô†Ô (46)

is the trace norm of the operator Ô.
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Negativities.

The negativity has the advantage of being a computable measure of entanglement:

N (%) = max

{
0,−

∑

k

λ−k

}
, (47)

where the
{
λ−k

}
’s are the negative eigenvalues of the partial transpose.

The negativity can be defined for CV systems as well even though a related measure

is more often used, the logarithmic negativity EN (%),

EN (%) = log ‖%Ti‖1 = log [1 + 2N (%)] . (48)

The logarithmic negativity is additive and, despite not being convex, is an entanglement

monotone under LOCC; it is an upper bound for the distillable entanglement, EN (%) ≥
ED(%), and coincides with the entanglement cost under PPT-preserving operations.
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Negativities (continued).

Both the negativity and the logarithmic negativity fail to be continuous in trace norm

on infinite-dimensional Hilbert spaces; however, this problem can be circumvented by

restricting to physical states of finite mean energy.

The great advantage of the negativities is that they are easily computable for all

Gaussian states and provide a proper quantification of entanglement at least for arbi-

trary 1×N and bisymmetric M ×N Gaussian states, directly quantifying the degree

of violation of the necessary and sufficient PPT criterion for separability, Eq. (43).
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Negativities: explicit symplectic expressions.

The negativity of a Gaussian state with CM σ is

N (σ) =





1
2

(∏
k ν̃−1

k − 1
)
, for k : ν̃k < 1 .

0 if ν̃i ≥ 1 ∀ i .

(49)

The set {ν̃k} is constituted by the symplectic eigenvalues of the partially transposed

CM σ̃. Accordingly, the logarithmic negativity reads

EN (σ) =





−∑
k log ν̃k, for k : ν̃k < 1 .

0 if ν̃i ≥ 1 ∀ i .

(50)
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The largest role of the smallest symplectic eigenvalue.

It can be shown that in a (NA + NB)-mode Gaussian state with CM σA|B, at most

Nmin ≡ min{NA, NB} (51)

symplectic eigenvalues ν̃k of the partial transpose σ̃A|B can violate the PPT inequal-

ity (43) with respect to a NA × NB bipartition. Therefore, in all 1 × N and all

bisymmetric M × N Gaussian states the negativities are quantified only in terms of

the smallest symplectic eigenvalue ν̃− of the partially transposed CM. For ν̃− ≥ 1 the

state is separable, otherwise it is entangled; the smaller ν̃−, the more entangled is the

state. In the limit of a vanishing partially transposed symplectic eigenvalue, ν̃− → 0,

the negativities grow unboundedly.
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Symplectic invariants, purities, and the bipartite entanglement of

Gaussian states.

To study entanglement and informational properties (like global and marginal en-

tropies) of two-mode Gaussian states, we can consider without loss of generality states

whose CM σ is in the Sp(2,R)⊕ Sp(2,R)-invariant form (standard form in the technical

jargon):

σ =


 α γ

γT β


 =




a 0 c+ 0

0 a 0 c−

c+ 0 b 0

0 c− 0 b




. (52)
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Characterizing the bipartite entanglement of Gaussian states via local

and global entropies.

For two-mode states, the uncertainty principle Ineq. (14) can be recast as a constraint

on the Sp(4,R) invariants (invariants under global, two-mode symplectic operations)

Detσ and ∆(σ) = Detα + Detβ + 2 Detγ,

∆(σ) ≤ 1 + Detσ . (53)

The symplectic eigenvalues of a two-mode Gaussian state will be denoted as ν− and

ν+, with ν− ≤ ν+, with the uncertainty principle reducing to

ν− ≥ 1 . (54)

A simple expression for the ν∓ can be found in terms of the two Sp(4,R) invariants

2ν2
∓ = ∆(σ)∓

√
∆2(σ)− 4 Det σ . (55)
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Local and global entropies, and the bipartite entanglement of Gaus-

sian states (continued).

According to Eq. (52), two-mode Gaussian states can be classified in terms of their

four standard form covariances a, b, c+, and c−. These standard covariances of the

CM can be recast in terms of symplectic invariants which admit a direct physical

interpretation for generic Gaussian states. This is extremely useful and illuminating.
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Covariances, symplectic invariants, and purities.

Namely, the parameters of Eq. (52) can be determined in terms of the two local

symplectic invariants

µ1 = (Det α)−1/2 = 1/a , µ2 = (Det β)−1/2 = 1/b , (56)

i.e. the purities of the reduced single-mode states, and of the two global symplectic

invariants

µ = (Det σ)−1/2 = [(ab− c2
+)(ab− c2

−)]−1/2 , ∆ = a2 + b2 + 2c+c− , (57)

which are, respectively, the global purity Eq. (32) and the seralian Eq. (24). Eqs. (56–

57) can be inverted to give a physical parametrization of two-mode states in terms of the

four independent parameters µ1, µ2, µ, and ∆. This parametrization is particularly

useful for the evaluation of entanglement.
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Partial transposition, symplectic invariants, and purity.

The PPT condition for separability, Eq. (40) takes a very simple form for two-mode

Gaussian states. In terms of symplectic invariants, partial transposition corresponds

to flipping the sign of Det γ,

σ =


 α γ

γT β


 %→ %Ti−−−−→ σ̃ =


 α γ̃

γ̃T β


 , (58)

with Det γ̃ = −Det γ. For a standard form CM Eq. (52), this simply means c+ → c+,

c− → −c−. Accordingly, the seralian ∆ = Det α + Det β + 2 Det γ, Eq. (24), is

mapped, under partial transposition, into

∆̃ = Det α + Det β + 2 Det γ̃ = Det α + Det β − 2 Det γ

= ∆− 4 Det γ = −∆ + 2/µ2
1 + 2/µ2

2 . (59)



54

Partial transposition, symplectic invariants, and purity - II.

From Eq. (55), the symplectic eigenvalues of the partial transpose σ̃ of a two-mode

CM σ are promptly determined in terms of symplectic invariants,

2ν̃2
∓ = ∆̃∓

√
∆̃2 − 4

µ2
. (60)

The PPT criterion is then reexpressed by the following inequality

∆̃ ≤ 1 + 1/µ2 , (61)

equivalent to separability.
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Partial transposition, symplectic invariants, and purity - III.

The state σ is separable if and only if ν̃− ≥ 1. Accordingly, the logarithmic negativity

Eq. (50) is a decreasing function of ν̃− alone,

EN = max{0,− log ν̃−} , (62)

as for the largest symplectic eigenvalue of the partial transpose one has ν̃+ > 1 for all

two-mode Gaussian states.

Note that from Eqs. (52,53,59,61) the following necessary condition for two-mode

entanglement follows,

σ entangled ⇒ Det γ < 0 . (63)
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Entanglement versus information.

As discussed in the previous sections, the concepts of entanglement and information

encoded in a quantum state are closely related. Specifically, for pure states bipartite

entanglement is equivalent to the lack of information (mixedness) of the reduced state

of each subsystem. For mixed states, each subsystem has its own level of impurity,

and moreover the global state is itself characterized by a nonzero mixedness. Each of

these properties can be interpreted as information on the preparation of the respective

(marginal and global) states. Therefore, by properly accessing these degrees of infor-

mation it should be possible to deduce the status of the quantum correlations between

the subsystems.



57

Entanglement versus information (continued).

Indeed, the negativities of arbitrary (mixed) two-mode Gaussian states are an-

alytically constrained by rigorous upper and lower bounds. This follows by re-

parameterizing, as already anticipated, the standard form CM Eq. (52) in terms of

the invariants µ1, µ2, µ, ∆ and by observing that, at fixed purities, the negativities

are monotonically decreasing function of ∆. Further constraints imposed on ∆ by the

uncertainty principle and by the existence condition of the radicals involved in the

reparametrization,

2

µ
+

(µ1 − µ2)
2

µ2
1µ

2
2

≤ ∆ ≤ min

{
(µ1 + µ2)

2

µ2
1µ

2
2

− 2

µ
, 1 +

1

µ2

}
, (64)

immediately lead to the definition of extremally – maximally and minimally – entangled

Gaussian states at fixed global and local purities.
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Extremally entangled Gaussian states.

These maximally and minimally entangled Gaussian states are known, respectively, as

“GMEMS” (saturating the leftmost inequality in Eq. (64)), alias nonsymmetric thermal

squeezed states, and “GLEMS” (saturating the rightmost inequality in Eq. (64)), alias

mixed states of partial minimum uncertainty. Nonsymmetric thermal squeezed states

have also been proven to be maximally entangled Gaussian mixed states at fixed global

purity and mean energy.

Summarizing, the entanglement, quantified by the negativities, of two-mode

(mixed) Gaussian states is strictly bound from above and from below by the

amounts of global and marginal purities, with only one remaining degree of free-

dom related to the symplectic invariant ∆.
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Extremally entangled Gaussian states (continued).

The existence of GMEMS and GLEMS has two consequences. First, it allows for a

classification of the properties of separability of all two-mode Gaussian states according

to their degree of global and marginal purities (See following Table). Namely, from the

separability properties of the extremally entangled states, necessary and/or sufficient

conditions for entanglement — which constitute the strongest entropic criteria for

separability to date in the case of Gaussian states — are straightforwardly derived,

which allow one to decide whether a two-mode Gaussian state is entangled by looking

at its degree of global and local purity. There is only a narrow region where, for given

purities, both separable and entangled states can coexist (see Figure).
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Entanglement on the average.

The second consequence is of a quantitative nature. The difference between the

entanglement of maximally and minimally entangled Gaussian states narrows expo-

nentially with increasing entanglement. One can then define the average logarithmic

negativity (mean value of the entanglements of the GMEMS and the GLEMS corre-

sponding to a given triplet of purities) as a reliable estimator of bipartite entanglement

in two-mode Gaussian states and its accurate quantification by knowledge of the global

and marginal purities alone. The average logarithmic negativity is exact in the two

important instances of nonsymmetric thermal squeezed states and mixed states of par-

tial minimum uncertainty, whose logarithmic negativity is completely determined as a

function of the three purities alone.
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The landscape.

Entanglement of two-mode Gaussian states in the space of marginal purities µ1,2 and

global purity µ. Separable states (red zone) and entangled states (green to magenta

zone, according to the average entanglement) are well separated except for a narrow

region of coexistence (yellow zone). The mathematical relations defining the boundaries

between the three regions are collected in the synopsis.
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Synopsis.

Degrees of purity Entanglement properties

µ < µ1µ2 unphysical region

µ1µ2 ≤ µ ≤ µ1µ2

µ1+µ2−µ1µ2
separable states

µ1µ2

µ1+µ2−µ1µ2
< µ ≤ µ1µ2√

µ2
1+µ2

2−µ2
1µ

2
2

coexistence region

µ1µ2√
µ2

1+µ2
2−µ2

1µ
2
2

< µ ≤ µ1µ2

µ1µ2+|µ1−µ2| entangled states

µ > µ1µ2

µ1µ2+|µ1−µ2| unphysical region

Classification of two-mode Gaussian states and of their properties of separability

according to their degrees of global purity µ and of marginal purities µ1 and µ2.




