# School on New Trends in Quantum Dynamics and Quantum Entanglement 

## Quantum Channels with Memory

## Nilanjana DATTA

DPMMS, Mathematical Sciences
Univ. of Cambridge
U.K.

## Memory Effects in Quantum Channels

Nilanjana Datta
University of Cambridge, U.K.

- One of the most common and essential tasks of everyday life:


## transmission of information

- Examples of classical communications channels: telephones/ mobile phones/ computers
- A quantum communications channel : one which
incorporates intrinsically quantum-mechanical effects
- Example of a quantum communications channel :
-- an optical fibre
- input to the channel :
a photon in some
quantum-mechanical state

- In Quantum Information Theory, information is carried by (or embodied in) physical states of quantum-mechanical systems:
- e.g. polarization states of a photon, spin states of electrons
- State space : Hilbert space $H$ associated with the system, (finite-dimensional Hilbert spaces)
e.g. $H \simeq C^{2} \quad$ Qubit space
$B(H)$ : algebra of linear operators acting on $H$
- States: density matrices, $\rho ; \rho \geq 0, \operatorname{Tr} \rho=1$
$D(H) \subset B(H):$ set of all density matrices,


## Quantum Channels

- Any allowed physical process that a quantum system can undergo is described by a :
linear completely-positive, trace preserving (CPTP) map
e.g. transmission through a quantum communications channel

Quantum channel : a linear CPTP map


$$
\Phi: D\left(H_{A}\right) \rightarrow D\left(H_{B}\right)
$$

$H_{A}, H_{B}:$ Hilbert spaces of the input and output systems


- Trace preserving (TP): $\operatorname{Tr} \rho^{\prime}=\operatorname{Tr} \rho=1$
- Positive:

$$
\rho^{\prime}=\Phi(\rho) \geq 0
$$

- Completely positive (CP):

$$
\Phi: D\left(H_{A}\right) \rightarrow D\left(H_{B}\right)
$$


$\left(\Phi \otimes i d_{E}\right)\left(\rho_{A E}\right) \quad \begin{gathered}\text { =an allowed state of } \\ \text { the composite system }\end{gathered} \in D\left(H_{B} \otimes H_{E}\right)$

$$
(\Phi \otimes i d)\left(\rho_{A E}\right) \geq 0
$$



- Stinespring's Dilation Theorem


## Kraus Representation Theorem:

## A quantum channel $\Phi: D\left(H_{A}\right) \rightarrow D\left(H_{B}\right)$

can be represented as follows:

$$
\Phi(\rho)=\sum_{i=1}^{M} A_{i} \rho A_{i}^{\dagger}
$$



- The biggest hurdle in the path of efficient transmission of information:
-- Presence of noise in communications channels.
- Noise distorts the information sent through the channel.

- To combat the effects of noise: use error-correcting codes

To overcome the effects of noise: instead of transmitting the original messages,
-- the sender encodes her messages into suitable codewords
-- these codewords are then sent through (multiple uses of) the channel


- Error-correcting code: $\mathrm{C}_{n}:=\left(\mathrm{E}_{n}, \mathrm{D}_{n}\right)$ :
- The idea behind the encoding:
- To introduce redundancy in the message so that upon decoding, Bob can retrieve the original message with a low probability of error:
- The amount of redundancy which needs to be added depends on the noise in the channel


## Example

- Memoryless binary symmetric channel (m.b.s.c.)

- it transmits single bits
- effect of the noise: to flip the bit with probability $p$

Repetition Code

- Encoding: $0 \longrightarrow 000$

$$
1 \longrightarrow 111
$$

codewords

- the 3 bits are sent through 3 successive uses of the m.b.s.c.
- Suppose

$$
\begin{array}{cc}
\mathrm{OOO} \\
\text { codeword } & \text { m.b.s.c. }
\end{array}
$$

- Decoding: (maj ority voting)
$\mathrm{O} 10 \longrightarrow 0$ (Bob infers)
- Probability of error for the m.b.s.c. :
- without encoding =p
- with encoding $=$ Prob ( 2 or more bits flipped) $:=\mathrm{q}$

- Prove: $q<p$ if $p<1 / 2$
-- in this case encoding hel ps!
- (Encoding - Decoding) : Repetition Code.
- Information transmission is said to be reliable if:
-- the probability of error in decoding the output vanishes asymptotically in the number of uses of the channel
- Aim: to achieve reliable information transmission whilst optimizing the rate
- the maximum amount of information that can be sent per use of the channel
- The optimal rate of reliable info transmission: capacity

Transmission of info through a classical channel

$\mathrm{M}_{n}=$ a set of classical messages

$$
x \in J_{X}
$$

$$
p(y \mid x)
$$

$$
y \in J_{Y}
$$

$$
\begin{aligned}
& \text { Let : } \\
& J_{X}=J_{Y}=\{0,1\}^{n}
\end{aligned}
$$

- To overcome the effects of noise:
- Alice encodes: messages $\qquad$
codewords $\longrightarrow$ ( $n$ uses of) the channel

, codeword: $x^{(n)}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; x_{i} \in\{0,1\}^{n}$
- encoding: $\mathrm{E}_{\mathrm{n}}: \mathrm{M} \mapsto\{0,1\}^{n}$
- output: $y^{(n)}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) ; \mathrm{y}_{i} \in\{0,1\}^{n}$
- decoding: $\mathrm{D}_{n}:\{0,1\}^{n} \mapsto \mathrm{M}$
- Error-correcting code: $\mathrm{C}_{n}:=\left(\mathrm{E}_{n}, \mathrm{D}_{n}\right)$ :

$$
\begin{gathered}
\mathrm{N}^{(n)}: \\
p\left(y^{(n)} \mid x^{(n)}\right)
\end{gathered}
$$



- If $\quad m^{\prime} \neq m \quad$ then an error occurs!
- Information transmission is reliable:

Prob. of error $\rightarrow 0$ as $n \rightarrow \infty$

- Rate of info $=\begin{aligned} & \text { number of bits of } \\ & \text { transmission } \\ & \begin{array}{l}\text { message transmitted } \\ \text { per use of the channel }\end{array}\end{aligned}=\frac{\text { size of message (in bits) }}{\text { size of codeword (in bits) }}$
- Aim: achieve reliable transmission whilst optimizing the rate
- Capacity: optimal rate of reliable information transmission
- Shannon in his Noisy Channel Coding Theorem:
-- obtained an explicit expression for the capacity of a memoryless classical channel



## Memoryless (classical or quantum) channels

- action of each use of the channel is identical and it is independent for different uses
-- i.e., the noise affecting states transmitted through the channel on successive uses is assumed to be uncorrelated.
- Classical memoryless channel: a schematic representation

- channel: a set of conditional probs. $\{p(y \mid x)\}$
- Capacity

$$
C(\mathrm{~N})=\max I(X: Y)
$$

input distributions
mutual information

$$
I(X: Y)=H(X)+H(Y)-H(X, Y)
$$

Shannon Entropy

$$
H(X)=-\sum_{x} p(x) \log p(x)
$$



$$
\Phi(\rho) \neq \rho
$$

- A classical channel has a unique capacity


## BUT

a quantum channel has various different capacities
-- This is due to the greater flexibility in the use of a quantum channel

- The different capacities depend on:
- the nature of the transmitted information
(classical or quantum)
- the nature of the input states

> (entangled or product states)

- the nature of the measurements done on the outputs
(collective or individual)
- the presence or absence of any additional resource (e.g. prior shared entanglement between Alice \& Bob)
- whether Alice \& Bob are allowed to communicate classically with each other

Transmission of Classical Info through a quantum channel


- Probability(Bob infers $i \quad$ correctly) $=\operatorname{Tr}\left(E_{i}^{(n)} \sigma_{i}^{(n)}\right)$
- Average probability of error:

$$
p_{a v}^{(n)}=\frac{1}{\left|M_{n}\right|} \sum_{i \in M_{n}}\left[1-\operatorname{Tr}\left(E_{i}^{(n)} \sigma_{i}^{(n)}\right)\right]
$$

CAMBRIDGE

- If $p_{a v}^{(n)} \rightarrow 0$ as $n \rightarrow \infty$ : information transmission is reliable
- In this case, any

$$
\left|M_{n}\right|=\begin{gathered}
\text { number of } \\
\text { messages in } M_{n}
\end{gathered}
$$

is said to be an achievable rate

- $C(\Phi)$ : Classical capacity of $\Phi$
=the maximum amount of classical info (in bits) that can be reliably transmitted per use of

$$
C(\Phi)=\sup R
$$

--the supremum taken over all achievable rates

- If Alice restricts her codewords to product states, i.e., if

$$
i \rightarrow \rho_{i}^{(n)}=\rho_{i_{1}} \otimes \rho_{i_{2}} \otimes \ldots \otimes \rho_{i_{n}}
$$

- And Bob does a collective measurement (POVM) on

$$
\sigma_{i}^{(n)}:=\Phi^{(n)}\left(\rho_{i}^{(n)}\right): \text { the output of } n \text { uses of the channel }
$$

- Capacity : product state capacity $\quad C^{(1)}(\Phi)$

> Memoryless (classical and quantum ) channels

- action of each use of the channel is identical and it is independent for different uses
$\Phi$
-- i.e., the noise affecting states transmitted through the channel on successive uses is assumed to be uncorrelated.
- Let $\Phi^{(n)}$ : $n$ successive uses of a quantum channel
- For a memoryless channel:

$$
\Phi^{(n)}=\Phi^{\otimes n}
$$

- Consider a memoryless channel defined by

$$
\Phi(\rho)=\sum_{i=1}^{M} A_{i} \rho A_{i}^{\dagger} \quad \forall \rho \in D(H)
$$

- Then the output of $n$ uses of the channel is given by

$$
\Phi^{(n)}\left(\rho^{(n)}\right) \equiv \Phi^{\otimes n}\left(\rho^{(n)}\right), \quad \forall \rho^{(n)} \in D\left(H^{\otimes n}\right)
$$

- where

$$
\Phi^{(\otimes n)}\left(\rho^{(n)}\right)=\sum_{k_{1}, \ldots, k_{n}}^{M}\left(A_{k_{1}} \otimes \ldots \otimes A_{k_{n}}\right) \rho^{(n)}\left(A_{k_{1}}^{\dagger} \otimes \ldots \otimes A_{k_{n}}^{\dagger}\right)
$$

Transmission of classical info through a memoryless quantum channel

$$
\Phi^{(n)}=\Phi^{\otimes n}
$$

- For product state inputs: $\quad i \rightarrow \rho_{i}^{(n)}=\rho_{i_{1}} \otimes \rho_{i_{2}} \otimes \ldots . . \otimes \rho_{i_{n}}$
- Outputs = product states

$$
\sigma_{i}^{(n)}:=\Phi^{\otimes n}\left(\rho_{i}^{(n)}\right)=\Phi\left(\rho_{i_{1}}\right) \otimes \Phi\left(\rho_{i_{2}}\right) \otimes \ldots \ldots \otimes \Phi\left(\rho_{i_{n}}\right)
$$

- Product State Capacity $C^{(1)}(\Phi)$ given by the
- Holevo-Schumacher-Westmoreland (HSW) Theorem
- HSW Theorem

$$
C^{(1)}(\Phi)=\max _{\left\{p_{i}, \rho_{i}\right\}} \chi\left(\left\{p_{i,} \Phi\left(\rho_{i}\right)\right\}\right)=\chi^{*}(\Phi)
$$

- where

$$
\chi\left(\left\{p_{i} \Phi\left(\rho_{i}\right)\right\}\right)=s\left(\sum_{i} p_{i} \Phi\left(\rho_{i}\right)\right)-\sum_{i} p_{i} S\left(\Phi\left(\rho_{i}\right)\right)
$$

$$
S(\sigma)=-\operatorname{tr} \sigma \log \sigma \quad: \text { von Neumann entropy }
$$

- Holevo $\chi$-quantity: Let $\sigma_{i}:=\Phi\left(\rho_{i}\right)$

$$
\chi\left(\left\{p_{i}, \sigma_{i}\right\}\right)=S\left(\sum_{i} p_{i} \sigma_{i}\right)-\sum_{i} p_{i} S\left(\sigma_{i}\right)
$$

- Holevo $\chi$-quantity of an ensemble of states $\left\{p_{i}, \sigma_{i}\right\}$

$$
\chi\left(\left\{p_{i,} \sigma_{i}\right\}\right):=S\left(\sum_{i} p_{i} \sigma_{i}\right)-\sum_{i} p_{i} S\left(\sigma_{i}\right)
$$

- Holevo Bound

The maximum amount of classical info that Alice can send to Bob using $\left\{p_{i}, \sigma_{i}\right\}$ is $\leq \chi\left(\left\{p_{i,} \sigma_{i}\right\}\right)$

$$
\chi\left(\left\{p_{i}, \sigma_{i}\right\}\right) \rightarrow S(\sigma) \quad \text { where } \quad \sigma:=\sum_{i} p_{i} \sigma_{i}
$$

if the $\sigma_{i}$ are pure $\because S\left(\sigma_{i}\right)=0$

- HSW Theorem

$$
C^{(1)}(\Phi)=\max _{\left\{p_{i,}, \rho_{i}\right\}} \chi\left(\left\{p_{i} \Phi\left(\rho_{i}\right)\right\}\right)=\chi^{*}(\Phi) \quad \begin{aligned}
& \text { Hol evo } \\
& \text { Capacity }
\end{aligned}
$$

- tells us that the Holevo bound can be achieved --

> IF Alice uses product state inputs
> \& Bob does a collective measurement

- Optimal signal ensemble

$$
\begin{array}{cccc}
p_{a v}^{(n)} \rightarrow 0 & & p_{a v}^{(n)} \nrightarrow 0 \\
\hline \text { as } n \rightarrow \infty & \chi^{*}(\Phi) & \text { as } n \rightarrow \infty & R \text { (rate) }
\end{array}
$$

- Classical capacity of a memoryless channel $\Phi$ :
(without the restriction of inputs being product states):

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi^{*}\left(\Phi^{\otimes n}\right)
$$

regularised Holevo capacity

$$
\chi^{*}\left(\Phi^{\otimes n}\right)
$$

Holevo Capacity of the block $\Phi^{\otimes n}$ of $n$ channels

- This generalization is obtained by considering inputs which are product states over blocks of $n$ channels but which may be entangled within each block
- Classical capacity of a memoryless channel

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi^{*}\left(\Phi^{\otimes n}\right)
$$

(Q) Can the classical capacity of a memoryless quantum channel be increased by using entangled states as inputs?

- This is related to the additivity conjecture of the Holevo capacity:

$$
\begin{aligned}
& \chi^{*}\left(\Phi_{1} \otimes \Phi_{2}\right)=\chi^{*}\left(\Phi_{1}\right)+\chi^{*}\left(\Phi_{2}\right) \Rightarrow \chi^{*}\left(\Phi^{\otimes n}\right)=n \chi^{*}(\Phi) \\
& \Rightarrow C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi^{*}\left(\Phi^{\otimes n}\right)=\lim _{n \rightarrow \infty} \frac{1}{\eta} \not y^{*} \chi^{*}(\Phi)=\chi^{*}(\Phi)
\end{aligned}
$$

- IF the Holevo capacity is additive for a memoryless quantum channel then using entangled inputs would not increase its classical capacity
- An interesting question:

Could entangled inputs increase the classical capacity of quantum channels with memory?

- For real-world communications channels, the assumption : noise is uncorrelated between successive uses of a channel cannot be justified!

Hence, memory effects need to be taken into account
quantum channels with memory

- There are various examples of quantum channels with memory :
e.g. (1) one-atom maser or micromaser
(2) spin-chain
- (1) One-atom maser or mi cromaser

- A stream of two-level atoms inj ected into an optical cavity.
- States of these input two-level atoms: signal states
- The atoms interact with the photons in the cavity
- If these photons have sufficiently long lifetimes, then the atoms entering the cavity feel the effect of the preceding atoms
- This introduces correlations between consecutive signal states
- (2) State transfer across a spin chain

- a spin chain : governed by a suitable Hamiltonian
- Spins at one end of the chain are prepared (by Alice) in the state which is required to be transmitted
- The spin chain is allowed to evolve for a specific amount of time under the action of the Hamiltonian; causing state to propagate
- The state is then retrieved from a set of spins at the other end of the spin chain - thus state transfer is achieved!
- (2) State transfer across a spin chain

- When considered as a model for quantum communication:
assume : a reset of the spin chain occurs after the transmission of each signal . e.g. by applying an external

- A continuous operation without reset might lead to higher transmission rates quantum channel with memory


## Exercises

(1) Use the HSW theorem to prove that any quantum channel can be used to transmit classical information, as long as it is not a constant.
(2) Use the HSW theorem to evaluate the product state capacity of a qubit depolarizing channel.

$$
\Phi_{d e p}(\rho)=(1-p) \rho+\frac{p}{3}\left[\sigma_{x} \rho \sigma_{x}+\sigma_{y} \rho \sigma_{y}+\sigma_{z} \rho \sigma_{z}\right]
$$

# Memory Effects in Quantum Channels 



Forgetful Channels

- IF Alice sends classical info through a quantum channel $\Phi$
- using product state inputs
- \& Bob does a collective measurement
- Then capacity : Product-state capacity


- Optimal signal ensemble
$\xrightarrow[\text { as } n \rightarrow \infty]{p_{a v}^{(n)} \rightarrow 0} \quad \chi^{*}(\Phi) \quad$ as $n \rightarrow \infty \quad R($ rate $)$
- Classical capacity of a memoryless channel

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi^{*}\left(\Phi^{\otimes n}\right)
$$

Regularised Holevo capacity

Quantum channels with memory = quantum memory channels

- Strategy : (i) start with a simple example of a memoryless quantum channel
(ii) using it, construct a quantum memory channel

Qubit depolarizing channel $\Phi_{\text {dep }}: B(H) \rightarrow B(H) ; \quad H \simeq C^{2}$

$$
\begin{aligned}
\Phi_{\text {dep }}(\rho) & =(1-p) \rho+\frac{p}{3}\left[\sigma_{x} \rho \sigma_{x}+\sigma_{y} \rho \sigma_{y}+\sigma_{z} \rho \sigma_{z}\right] \quad \forall \rho \in D(H) \\
& =\sum_{i=1}^{4} p_{i} \sigma_{i} \rho \sigma_{i} \quad p_{1}=(1-p) ; \quad p_{2}=p_{3}=p_{4}=\frac{p}{3}
\end{aligned}
$$

$$
\sigma_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) ; \sigma_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) ; \sigma_{3}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) ; \sigma_{4}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

$$
\sigma_{x}
$$

$\sigma_{y}$
$\sigma_{z}$

- Consider $n$ successive uses of

$$
\Phi_{d e p}(\rho)=\sum_{i=1}^{4} p_{i} \sigma_{i} \rho \sigma_{i}
$$

- since the channel is memoryless $\Phi_{d e p}^{(n)}=\Phi_{d e p}^{\otimes n}$
- input : $\quad \rho^{(n)} \in D\left(H^{\otimes n}\right) \quad ; \quad$ the output is given by

$$
\Phi_{d e p}^{\otimes n}\left(\rho^{(n)}\right)=\sum_{i=1}^{4} p_{i_{1}} p_{i_{2}} \ldots p_{i_{n}}\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \ldots \otimes \sigma_{i_{n}}\right)\left(\rho^{(n)}\right)\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \ldots \otimes \sigma_{i_{n}}\right)
$$

- Let $P_{i_{1} i_{2} \ldots . i_{n}}=j$ oint prob. of the $n$ successive qubits being acted on by $\sigma_{i_{1}}, \sigma_{i_{2}}, \ldots, \sigma_{i_{n}}$ resply.

$$
p_{i_{1} i_{2} \ldots . . i_{n}}=p_{i_{1}} p_{i_{2}} \ldots . . p_{i_{n}}
$$

- this is in keeping with the notion that the noise acts independently on each successive use
- Next:
- we consider an interesting generalization of this model
- which yields a model of a quantum memory channel
- This generalization involves a :
discrete-time Markov Chain


## MARKOV CHANNS

- simplest mathematical models for random phenomena evolving in time
- It is a random process with the characteristic property that it retains no memory of where it has been in the past
- so only the current state of the process can influence where it goes next.

Discrete-time Markov Chain:

- time is discrete
- the instants of time are labelled by $n \in Z^{+}=\{0,1,2, \ldots\}$


## An Example

- Consider a fly hopping on the vertices of a triangle


$$
I=\{1,2,3\}=\text { state space of the MC }
$$

- Suppose the fly hops
- clockwise with prob. $\frac{1}{3}$
- anticlockwise with prob. $\frac{2}{3}$
- So where it hops next depends only on where it is now
$q_{12}=\operatorname{Prob}\left(\right.$ hops to 2 in next step $\mid$ it is at 1 ) $=\frac{2}{3}$
$q_{13}=\operatorname{Prob}($ hops to 3 in next step $\mid$ it is at 1$)=\frac{1}{3}$

$$
q_{i j}=P(\text { next state is } \mathrm{j} \mid \text { current state is } \mathrm{i}) \quad ; \text { transition probability }
$$

$q_{i j}, i, j=1,2,3$ are the elements of a matrix $Q$
$Q$ : Transition matrix $\quad q_{i j}=Q_{i j}$
It is a stochastic matrix $\quad \sum_{j} q_{i j}=1$
n-step transition probability
$q_{i j}^{(n)}=P($ state after $n$ steps is $j \mid$ current state is $i)=\left(Q^{n}\right)_{i j}$
A distribution on the state space $I$ is given by

$$
\lambda=\left\{\lambda_{i}\right\}_{i \in I} ; \quad \lambda_{i} \geq 0, \sum_{i \in I} \lambda_{i}=1 \quad \text { (probabilities) }
$$

- Invariant distribution

$$
\lambda=\left\{\lambda_{i}\right\}_{i \in I} ; \quad \lambda=\lambda Q ; \quad \lambda_{j}=\sum_{j} \lambda_{i} q_{i j}
$$

- many of the long-term properties of a MC depend on its invariant distribution
- A Markov Chain is defined by a sequence of random variables $X_{0}, X_{1}, \ldots X_{n} ;\left(X_{n}\right)_{n \geq 0} \quad$; each $\quad X_{i}$ takes values in $I$

$$
P\left(X_{n+1}=i_{n+1} \mid X_{0}=i_{0}, X_{1}=i, \ldots X_{n}=i_{n}\right)=P\left(X_{n+1}=i_{n+1} \mid X_{n}=i_{n}\right)
$$

Markov Property
$P\left(X_{n+1}=j \mid X_{n}=i\right)=q_{i j} \quad=$ transition probability

## Some properties of a Markov Chain

- Irreducibility:
-- a Markov Chain is said to be irreducible if it is possible to go from any state to
 any other state in the chain
- Aperiodicity :
-- a Markov Chain is said to be aperiodic if the return time to any state in the chain is not periodic (or if it has a period $=1$ )
i.e., return can occur at irregular times


O

- n uses of a memoryless depolarising channel :

$$
\begin{gathered}
\Phi_{d e p}^{\otimes n}\left(\rho^{(n)}\right)=\sum_{i=1}^{4} p_{i_{1} i_{2} \ldots i_{n}}\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \ldots \otimes \sigma_{i_{n}}\right)\left(\rho^{(n)}\right)\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \ldots \otimes \sigma_{i_{n}}\right) \\
p_{i_{1} i_{2} \ldots . i_{n}}=p_{i_{1}} p_{i_{2}} \ldots . p_{i_{n}}
\end{gathered}
$$

- Now consider the case in which: $p_{i_{1} i_{2} \ldots . . i_{n}}=\gamma_{i_{1}} q_{i_{1} i_{2}} \ldots . q_{i_{n-1} i_{n}}$
$q_{i j}, i, j=1,2,3,4$ : the elements of the transition matrix $Q$ of a discrete-time Markov Chain with state space $I=\{1,2,3,4\}$
- Note : the states $1,2,3,4$, label the matrices

$$
\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4} \text { of the depolarizing channel }
$$

- In this case : the output after n uses

$$
\Phi_{d e p}^{(n)}\left(\rho^{(n)}\right)=\sum_{i_{1}, . ., i_{n}} \gamma_{i_{1}} q_{i_{1} i_{2}} . . q_{i_{n-1} i_{n}}\left(\sigma_{i_{1}} \otimes . . \otimes \sigma_{i_{n}}\right)\left(\rho^{(n)}\right)\left(\sigma_{i_{1}} \otimes . . \otimes \sigma_{i_{n}}\right)
$$

$$
q_{i_{k-1} i_{k}}=P\left(k^{t h} \text { qubit acted on by } \sigma_{i_{k}} \mid(k-1)^{t h} \text { qubit acted on by } \sigma_{i_{k-1}}\right)
$$

$$
\gamma_{i_{1}}=P\left(\text { the } 1^{\text {st }} \text { qubit acted on by } \sigma_{i_{k}}\right)
$$

- the noise acting on the $k^{\text {th }}$ qubit depends on the noise acting on the $(k-1)^{\text {th }}$ qubit
- Note : the noise acting on successive qubits is correlated model of a quantum memory channel - with Markovian correlated noise

Macchiavello \& Palma : -- introduced this model
-- studied the transmission of classical information through
2 successive uses of this quantum memory channel with

$$
q_{i j}=(1-\mu) \gamma_{j}+\mu \delta_{i j} ; 0 \leq \mu \leq 1
$$

$$
i, j=1,2,3,4:
$$

- with prob. $\mu$ the 2 qubits are acted on identically
- with prob. $(1-\mu)$ the action of the channel on the 2 qubits is uncorrelated
$\mu$ : the degree of memory of the channel
$\mu=0 \quad$ : uncorrelated noise
$\mu=1$ : fully correlated noise (successive actions identical)

Macchiavello \& Palma : -- showed that above a certain threshold value of the parameter $\mu$
entangled inputs increase the Holevo $\chi$ - quantity for 2 successive uses of the channel

- This suggests that above this value of $\mu$ :

One might be able to transmit a higher amount of classical information through this channel by using entangled input states

- They did not, however, compute the capacity of the channel
- Next:
- we consider a more general quantum memory channel with Markovian correlated noise (of which the above model is a special case)
- and study its capacities
- The model is constructed from
---- a finite set of memoryless quantum channels:

$$
\begin{gathered}
\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{M}\right\} \quad \text { qubit channels } \\
\forall i=1,2, . ., M, \quad \phi_{i}: B(H) \rightarrow B(H) ; \quad H \simeq \mathrm{C}^{2}
\end{gathered}
$$

Quantum Channel with Markovian Correlated Noise

- $n$ uses of the channel

$$
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i_{1}, \ldots, i_{n}=1}^{M} \gamma_{i_{1}} q_{i_{1} i_{2}} \ldots . q_{i_{n-1} i_{n}}\left(\phi_{i_{1}} \otimes \ldots \otimes \phi_{i_{n}}\right)\left(\rho^{(n)}\right)
$$

$q_{i j} \quad$ elements of the transition matrix of a discrete-time Markov chain with finite state space $\mathrm{I}=\{1,2, \ldots, M\}$
$\left\{\gamma_{i}\right\} \quad=$ invariant distribution

- For each $i \in \mathrm{I}, \quad \phi_{i}$ CPT map on $B(H)$ :
- On each use of the channel, one of the given set of CPTP maps $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{M}\right\}$ acts on the qubit

Depending on the nature of the Markov Chain the channel Either :
(1) forgetful or (2) not-forgetful
(1) Forgetful channel : a channel in which the correlation in the noise dies out with time
(2) not-forgetful channel : a channel with long-term memory
(Q) When is the quantum memory channel with Markovian correlated noise forgetful?
(A) If the underlying Markov chain is
(1) irreducible

(2) aperiodic


- In this case the Markov Chain has a unique invariant distribution and it satisfies the property called


If Quantum Channel with Markovian Correlated Noise

$$
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i_{1}, . ., i_{n}=1}^{M} \gamma_{i_{1}} q_{i_{1} i_{2}} \ldots . q_{i_{n-1} i_{n}}\left(\phi_{i_{1}} \otimes \ldots \otimes \phi_{i_{n}}\right)\left(\rho^{(n)}\right)
$$

satisfies "convergence to equilibrium"

$$
i, j \in I, \quad q_{i j}^{(n)} \underset{n \rightarrow \infty}{\longrightarrow} \gamma_{j}
$$

. $\Rightarrow$ For $n$ large enough, the prob. that the $n^{\text {th }}$ qubit sent through the channel is acted upon by the memoryless channel $\phi_{j}$ does not depend on which memoryless channel $\phi_{i}$ acted on the first qubit.

## In this case (of a forgetful channel) :

- The classical capacity of the channel is given by a formula which is very similar to that of a memoryless channel
- For a memoryless channel

$$
\begin{aligned}
C(\Phi) & =\lim _{n \rightarrow \infty} \frac{1}{n} \chi^{*}\left(\Phi^{\otimes n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\left\{p_{i,}, \rho_{i}^{(n)}\right\}} \chi\left(\left\{p_{i,} \Phi^{\otimes n}\left(\rho_{i}^{(n)}\right)\right\}\right)
\end{aligned}
$$

regularised Holevo capacity

- For our forgetful channel

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\left\{p_{i}, \rho_{i}^{(n)}\right\}} \chi\left(\left\{p_{i,} \Phi^{(n)}\left(\rho_{i}^{(n)}\right)\right\}\right)
$$

- The reason behind getting such a similar result:
can be explained by a simple double-blocking argument
- We shall consider this argument in a more general setting.

Why?
(I) Forgetful channels form an important subclass of ALL quantum channels with memory - (not only those with Markovian correlated noise)
(II) For forgetful channels, expressions for each of the different capacities are similar to the corrs. capacity formulas for memoryless channels ---
-- and can be understood by a double-blocking argument

## General model for quantum channels with memory

- Thus far : we have studied only a small class of quantum memory channels - those in which the memory is
(i) classical and (ii) governed by an underlying Markov Chain
- Bowen \& Mancini : introduced a more general model for quantum memory channels in which the memory could even be quantum.
- Kretschmann \& Werner : studied this model exhaustively in the Heisenberg picture
-- they were the first to evaluate capacities of forgetful channels.
- In this model : a forgetful channel is one in which :

The effect of the initializing memory dies away with time

- Recall: for the Markovian correlated noise model


## condition for forgetfulness

"convergence to equilibrium"

$$
i, j \in \mathrm{I}, \quad q_{i j}^{(n)} \underset{n \rightarrow \infty}{\longrightarrow} \gamma_{j}
$$

- it ensures that the initializing memory dies out asymptotically
- It is easy to evaluate the capacities of forgetful channel by reducing them to a memoryless setting via a double-blocking argument


## The double-blocking argument

- Consider a strictly forgetful channel $\Phi$
- one in which : the effect of the initializing memory dies away after a finite number of uses (say, m uses)
- e.g transmission of info over a quantum spin chain which is reset after every third use ( $\mathrm{m}=3$ ).
- For processing of long messages (signal states) we group the successive uses of the channel in blocks of length (m+l)
$m+l$ uses
$m+l$ uses
$m+l$ uses


## Strictly forgetful channel



## Strictly forgetful channel



- ignore the outputs of the first $m$ channels of each such block
- actual encoding is done for the remaining $l$ blocks
- Eventually let $l \rightarrow \infty$
- If we restrict inputs to products states of block length $m+l$

$$
\text { input }=\rho_{1}^{(m+l)} \otimes \rho_{2}^{(m+l)} \otimes \ldots . .
$$

$\rho_{1}^{(m+l)}$

## Strictly forgetful channel



- due to the strict forgetfulness of the channel:
-- the (relevant part of the) output state factorizes
- The whole set-up corrs. to a memoryless channel acting on a larger Hilbert space $\Phi^{(m+l)} \approx$ memoryless channel


The same double-blocking argument can be applied to channels which are forgetful (and not just strictly forgetful)

## Classical Capacity

- For a memoryless channel

$$
\begin{aligned}
C(\Phi) & =\lim _{n \rightarrow \infty} \frac{1}{n} \chi^{*}\left(\Phi^{\otimes n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\left\{p_{i}, \rho_{i}^{(n)}\right\}} \chi\left(\left\{p_{i,} \Phi^{\otimes n}\left(\rho_{i}^{(n)}\right)\right\}\right)
\end{aligned}
$$

regularised Holevo capacity

- For forgetful channels

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\left\{p_{i}, \rho_{i}^{(n)}\right\}} \chi\left(\left\{p_{i,} \Phi^{(n)}\left(\rho_{i}^{(n)}\right)\right\}\right)
$$

- Lloyd, Shor \& Devetak: LSD Theorem

$$
Q(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\rho^{(n)}} I_{c}\left(\rho^{(n)}, \Phi^{\otimes n}\right)
$$

coherent information

purification
of $\rho$

$$
\sigma_{R B}=\left(\mathrm{id}_{R} \otimes \Phi\right) \Psi_{\rho}
$$

coherent information

$$
I_{c}(\rho, \Phi)=-S\left(\sigma_{R B}\right)+S\left(\sigma_{B}\right)=-S(R \mid B)_{\sigma}
$$

## Quantum Capacity

- For a memoryless channel

$$
Q(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\rho^{(n)}} I_{c}\left(\rho^{(n)}, \Phi^{\otimes n}\right)
$$

Regularised
Coherent information

- For forgetful channels

$$
Q(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\rho^{(n)}} I_{c}\left(\rho^{(n)}, \Phi^{(n)}\right)
$$

## LECTURE III

A channel with long-term memory (not-forgetful)

Coding Theorem for a Class of Quantum Channels with Long-Term Memory,
ND and Tony Dorlas,
J. Phys. A: Math. Theor. 40, 8147-8164 (2007).

- The correlation in the noise does not die out with time
- evaluating their capacities is a more challenging task
- Simplest example:
convex combinations of a finite number of memoryless

$$
\begin{aligned}
& \left\{\phi_{1}, \phi_{2}, \ldots, \phi_{M}\right\} \quad \text { channels } \\
& \forall i=1,2, \ldots, M, \quad \phi_{i}: D\left(H_{A}\right) \rightarrow D\left(H_{B}\right) ;
\end{aligned}
$$

$$
\Phi_{\nearrow}^{(n)}\left(\rho^{(n)}\right)=\sum_{i=1}^{M} \gamma_{i} \phi_{i}^{\otimes n}\left(\rho^{(n)}\right)
$$

- $n$ uses of the channel: $\quad \gamma_{i}>0 \quad \forall i=1,2, . ., M, \sum_{i=1}^{M} \gamma_{i}=1$

A channel with long-term memory

$$
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i=1}^{M} \gamma_{i} \phi_{i}^{\otimes n}\left(\rho^{(n)}\right)
$$

$$
H_{A}, H_{B} \simeq C^{2} \quad \gamma_{i}>0 \quad \forall i=1,2, . ., M, \sum_{i=1}^{M} \gamma_{i}=1
$$

- The channel has

M memoryless branches


- Comparing this channel:

$$
\begin{equation*}
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i=1}^{M} \gamma_{i} \phi_{i}^{\otimes n}\left(\rho^{(n)}\right) \tag{a}
\end{equation*}
$$

- with the Markovian correlated noise model:

$$
\begin{equation*}
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i_{1}, . ., i_{n}=1}^{M} \gamma_{i_{1}} q_{i_{1} i_{2}} \ldots . q_{i_{n-1} i_{n}}\left(\phi_{i_{1}} \otimes \ldots \otimes \phi_{i_{n}}\right)\left(\rho^{(n)}\right) \tag{b}
\end{equation*}
$$

- We note that (a) is a special case of (b):
- The Markov Chain has $M$ states

$\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{M}\right\}$ states of the MC
- Comparing this channel:

$$
\begin{equation*}
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i=1}^{M} \gamma_{i} \phi_{i}^{\otimes n}\left(\rho^{(n)}\right) \tag{a}
\end{equation*}
$$

- with the Markovian correlated noise model:

$$
\begin{equation*}
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i_{1}, . ., i_{n}=1}^{M} \gamma_{i_{1}} q_{i_{1} i_{2}} \ldots . q_{i_{n-1} i_{n}}\left(\phi_{i_{1}} \otimes \ldots \otimes \phi_{i_{n}}\right)\left(\rho^{(n)}\right) \tag{b}
\end{equation*}
$$

- We note that (a) is a special case of (b):
- The Markov Chain has $M$ states
- $q_{i j}=\delta_{i j}$
- aperiodic but not irreducible
- Convergenceto equilibrium : so it is not forgetful
- Macchiavello and Palma considered:

$$
q_{i j}=(1-\mu) \gamma_{j}+\mu \delta_{i j} ; 0 \leq \mu \leq 1
$$

- Our choice $q_{i j}=\delta_{i j} \quad$ corresponds to $\quad \mu=1$
(fully correlated noise -- successive actions identical)

Let us evaluate: the product state capacity of the channel

$$
\begin{equation*}
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i=1}^{M} \gamma_{i} \phi_{i}^{\otimes n}\left(\rho^{(n)}\right) \tag{a}
\end{equation*}
$$

- i.e., the classical capacity under the restriction of $C^{(1)}(\Phi)$ product-state inputs
- Recall : for a memoryless channel $\phi$ : [HSW Theorem]

$$
\begin{equation*}
C^{(1)}(\phi)=\sup _{\left\{p_{j}, \rho_{j}\right\}} \chi\left(\left\{p_{j}, \phi\left(\rho_{j}\right)\right\}\right)=\chi^{*}(\phi) \tag{A}
\end{equation*}
$$

$\begin{array}{ccc}p_{a v}^{(n)} \rightarrow 0 & p_{a v}^{(n)} \nrightarrow 0 \\ \text { as } n \rightarrow \infty & \chi^{*}(\Phi) & \text { as } n \rightarrow \infty\end{array} \quad R$ (rate)

- Any $R \leq \chi^{*}(\Phi) \quad$ is achievable.

For a memoryless channel $\phi$ :

$$
\begin{equation*}
C^{(1)}(\phi)=\sup _{\left\{p_{j}, \rho_{j}\right\}} \chi\left(\left\{p_{j}, \phi\left(\rho_{j}\right)\right\}\right)=\chi^{*}(\phi) \tag{A}
\end{equation*}
$$

- So in this case, because the channel has $M$ memoryless branches, one might naively expect:

$$
\begin{align*}
C^{(1)}(\Phi) & =\min _{1 \leq i \leq M} \chi^{*}\left(\phi_{i}\right) \\
& =\min _{1 \leq i \leq M} \max _{\left.j, p_{j}, \rho_{j}\right\}} \chi\left(\left\{p_{j,}, \phi_{i}\left(\rho_{j}\right)\right\}\right) \tag{B}
\end{align*}
$$

## BUT

- $(B)$ is NOT TRUE ; $\min \longleftrightarrow \max$
- Theorem:


## ND \& Dorlas

The product-state capacity of the long-term memory channel

$$
\begin{equation*}
\Phi^{(n)}\left(\rho^{(n)}\right)=\sum_{i=1}^{M} \gamma_{i} \phi_{i}^{\otimes n}\left(\rho^{(n)}\right) \tag{a}
\end{equation*}
$$

is given by

$$
C^{(1)}(\Phi)=\max _{\left\{p_{j}, \rho_{j}\right\}} \min _{1 \leq i \leq M} \chi\left(\left\{p_{j,} \phi_{i}\left(\rho_{j}\right)\right\}\right)
$$

- whereas are guess was:

$$
C^{(1)}(\Phi)=\min _{1 \leq i \leq M} \max _{\left\{p_{j}, \rho_{j}\right\}} \chi\left(\left\{p_{j,} \phi_{i}\left(\rho_{j}\right)\right\}\right)
$$

## Sketch of the proof


(Q) Is there any way in which Bob can find out which of the $M$ memoryless branches the qubits have been sent through?
i.e., Can Bob distinguish between the outputs of the different memoryless branches ?

- If so, then at least from his point of view: problem memoryless channel

Sketch of the proof contd.

(A) Yes - provided

- Alice adds a preamble to her codewords \&
- Bob does a collective measurement on the qubits he receives

Sketch of the proof contd.


Assume: $\quad \phi_{i}, i=1,2, \ldots, M$ are all different
Else we do not need to distinguish between all of them
\& we can introduce a compound prob. for each
set of identical branches.

- e.g. If $\quad \phi_{1}=\phi_{2}=\tilde{\phi} \quad$ prob. $\quad \tilde{\gamma}:=\gamma_{1}+\gamma_{2}$

Sketch of the proof contd.

$\phi_{i}, i=1,2, \ldots, M$ are all different

- For each pair $\phi_{i}, \phi_{j}: 1 \leq i, j \leq M$,
-- there exists states $\omega^{(i j)}$, such that

$$
\phi_{i}\left(\omega^{(i j)}\right) \neq \phi_{j}\left(\omega^{(i j)}\right)
$$

- For simplicity consider $\quad M=2$

(Q) Can Bob distinguish the outputs of these 2 branches ?

Let $\omega$ be a state such that

$$
\phi_{1}(\omega) \neq \phi_{2}(\omega)
$$

- To allow Bob to distinguish between the 2 branches,

Alice adds a preamble to the input state $\rho_{i}^{(n)} \longleftarrow i$


- Instead of encoding $\quad j \mapsto \rho_{j}^{(n)}$
- She encodes

$(m+n)-$ quit state
-- where $\omega$ is a state such that $\phi_{1}(\omega) \neq \phi_{2}(\omega)$
- Bob receives the state

$$
\sigma_{i}:=\phi_{i}(\omega)
$$

$$
\begin{aligned}
& \phi_{i}^{\otimes m+n}\left(\omega^{\otimes m} \otimes \rho_{j}^{(n)}\right) \quad \text { with prob. } \quad \gamma_{i} \\
= & \left(\phi_{i}(\omega)\right)^{\otimes m} \otimes \phi_{i}^{\otimes n}\left(\rho_{j}^{(n)}\right)=\sigma_{i}^{\otimes m} \otimes \phi_{i}^{\otimes n}\left(\rho_{j}^{(n)}\right)
\end{aligned}
$$


$\omega^{\otimes m}$

with prob. $\gamma_{i}$

- Bob gets the state $\sigma_{i}^{\otimes m} \otimes \phi_{i}^{\otimes n}\left(\rho_{j}^{(n)}\right)$ with probability $\gamma_{i}$
- Let us focus on the output of the first $m$ qubits

| state of the <br> first $m$ qubits  <br> that Bob <br> receives $\sigma_{1}^{\otimes m}=\left[\phi_{1}(\omega)\right]^{\otimes m}$$\quad$ with probability | $\gamma_{1}$ |  |
| :--- | :--- | :--- | :--- |
| $\sigma_{2}^{\otimes m}=\left[\phi_{2}(\omega)\right]^{\otimes m}$ | with probability | $\gamma_{2}$ |

(Q) Can Bob do a measurement to distinguish between

$$
\sigma_{1}^{\otimes m} \& \sigma_{2}^{\otimes m} ?
$$

(A) Yes. Consider the operator:

$$
A^{(m)}=\gamma_{1} \sigma_{1}^{\otimes m}-\gamma_{2} \sigma_{2}^{\otimes m}
$$

- Let $\Pi_{1}^{(m)}$ : orthogonal projection onto the non-negative eigenspace of $A^{(m)}$ and

$$
\Pi_{2}^{(m)}=1^{(m)}-\Pi_{1}^{(m)}
$$

- Let Bob does a proj ective measurement (a la Helstrom) described by the operators $\Pi_{1}^{(m)} \& \Pi_{2}^{(m)}$ on the state $\sigma_{j}^{\otimes m}$ that he receives:

$$
\sigma_{j}^{\otimes m}, j=1,2 \quad \text { with probs. } \gamma_{1} \& \gamma_{2} \text { resply. }
$$

- For $m$ large enough, by using Helstrom's strategy, Bob can indeed distinguish between $\sigma_{1}^{\otimes m} \& \sigma_{2}^{\otimes m}$
-- with arbitrarily low probability of error.
- Thus he can determine which memoryless branch the qubits have come through!
- Bob determines which branch the input has come through
- $\quad$ from Bob's point of view : problem reduces to


## decoding codewords sent through a memoryless channel

- So now he can do the appropriate decoding operation on the remaining output state to infer Alice's message

- This idea can be generalized to distinguish between all $M$ branches.


## BUT

- Alice does not know what $\boldsymbol{i}$ is (no feedback)
- Now one can understand why:

$$
\begin{equation*}
C^{(1)}(\Phi)=\max _{\left\{p_{j,}, \rho_{j}\right\}} \min _{1 \leq i \leq M} \chi\left(\left\{p_{j,} \phi_{i}\left(\rho_{j}\right)\right\}\right) \tag{A}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{(1)}(\Phi) \neq \min _{1 \leq i \leq M} \max _{\left\{p_{j}, \rho_{j}\right\}} \chi\left(\left\{p_{j,} \Phi_{i}\left(\rho_{j}\right)\right\}\right) \tag{B}
\end{equation*}
$$

- For a memoryless channel $\phi_{i}$

$$
C^{(1)}\left(\phi_{i}\right)=\max _{\left\{p_{j}, \rho_{j}\right\}} \chi\left(\left\{p_{j,}, \phi_{i}\left(\rho_{j}\right)\right\}\right)
$$

- The input ensemble for $=$ optimal signal which the max is achieved - ensemble
- IF Alice knew $i$ apriori then she could encode her messages using the optimal signal ensemble for $\phi_{i} \&$ obtain (B)

BUT Alice does NOT know $i$ apriori.

- For $\phi_{i}$, for any given input ensemble $\left\{p_{j}, \rho_{j}\right\}$

Max. amount of classical info that can be sent through $\phi_{i}$

$$
=\chi\left(\left\{p_{j}, \phi_{i}\left(\rho_{j}\right)\right\}\right)
$$

- In our channel there are $M$ memoryless branches:
$\therefore$ Max. amount of classical info that can be sent through it (for any given input ensemble $\left\{p_{j}, \rho_{j}\right\}$ ):

$$
=\min _{1 \leq i \leq M} \chi\left(\left\{p_{j,} \phi_{i}\left(\rho_{j}\right)\right\}\right)
$$

- \& this $\Rightarrow$ - any rate $\quad R \leq \max _{\left\{p_{j}, \rho_{j}\right\} \leq 1 \leq i \leq M} \min \chi\left(\left\{p_{j}, \phi_{i}\left(\rho_{j}\right)\right\}\right)$
is achievable
- \& this $\Rightarrow \quad C^{(1)}(\Phi) \geq \max _{\left\{p_{j}, \rho_{j}\right\} \leq 1 \leq i \leq M} \min \chi\left(\left\{p_{j}, \phi_{i}\left(\rho_{j}\right)\right\}\right)$

$$
\text { Theorem: } C^{(1)}(\Phi)=\max _{\left\{p_{j}, \rho_{j}\right\}} \min _{1 \leq i \leq M} \chi\left(\left\{p_{j,} \phi_{i}\left(\rho_{j}\right)\right\}\right)
$$

- We have proved

Direct part (achievability)

$$
C^{(1)}(\Phi) \geq \max _{\left\{p_{j}, \rho_{j}\right\}} \min _{1 \leq i \leq M} \chi\left(\left\{p_{j,} \phi_{i}\left(\rho_{j}\right)\right\}\right)
$$

- We also need to prove that : any rate

$$
R \geq \max _{\left\{p_{j}, \rho_{j}\right\} 1 \leq i \leq M} \min \chi\left(\left\{p_{j,} \phi_{i}\left(\rho_{j}\right)\right\}\right) \quad \text { is not achievable }
$$

- Ingredients needed to prove the Weak Converse:
- Holevo bound
- Subadditivity of the von Neumann entropy
- Fano's inequality
- Recall: The quantum channel with Markovian correlated noise is forgetful IF the Markov Chain is
(1) irreducible and
(2) aperiodic
- The "not-forgetful" channel that we considered was aperiodic but not irreducuble
- Another example of a "not-forgetful" channel is one for which the Markov Chain is : irreducible but not aperiodic (i.e., memory governed by a periodic Markov Chain)
- E.g. 2-state Markov Chain :

- Transition

Matrix

$$
\mathrm{Q}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

irreducible, periodic (period=2).

- 2 states of the Markov Chain corrs. to 2 single qubit channels $\phi_{1}, \phi_{2}$ which act alternatively on successive inputs

$$
\Phi^{(n)}\left(\rho^{(n)}\right)=\frac{1}{2}\left[\underset{n}{\phi_{1} \otimes \phi_{2} \otimes \phi_{1} \otimes \ldots+}{ }_{2}^{\left.\phi_{2} \otimes \phi_{1} \otimes \phi_{2} \otimes \ldots\right]}\left(\rho^{(n)}\right)\right.
$$

- In this case,

$$
C^{(1)}\left(\phi_{i}\right)=\sup _{\left\{p_{j}, \rho_{j}\right\}} \frac{1}{2} \sum_{i=1}^{2} \chi\left(\left\{p_{j}, \phi_{i}\left(\rho_{j}\right)\right\}\right)=\frac{1}{2} \sum_{i=1}^{2} \chi^{*}\left(\phi_{i}\right)
$$

=average of the Holevo capacities of the individual channels

- Similarly once can consider a channel where the underlying Markov Chain has a period $L>2$

CAMBRIDGE

- ND and Tony Dorlas, Coding Theorem for a Class of Quantum Channels with Long-Term Memory, J. Phys. A: Math. Theor. 40, 8147-8164 (2007).
- ND, T. C. Dorlas and Y. M. Suhov, Entanglement Assisted Classical Capacity of a Class of Quantum Channels with Long-Term Memory, ' Quantum Information Processing, 7, no. 6, 251--262 (2008).
- I._Bj elakovic and H. Boche, On quantum capacity of compound channels, arXiv: 0808. 1007.
- ND and Tony Dorlas,

Classical capacity of quantum channels with general Markovian correlated noise,
J.Stat. Phys. 134, pp 1173-1195, (2009).

- I._Bjelakovic and H. Boche,

Entanglement transmission capacity of compound channels, arXiv: 0904. 3011.

## Information Spectrum Method

- S. Verdu and T. S. Han, IEEE Trans. Inf. Theory 40, pp. 1147-1157 (1994);
- T.S.Han,

Information-Spectrum Methods in Information Theory (Springer-Verlag, 2002);

- H. Nagaoka and M. Hayashi, IEEE Trans. Inf. Theory \{1bf 53\}, 534--549 (2007)
- F. Buscemi and N. Datta, The quantum capacity of channels with arbitrarily correlated noise, IEEE Trans. inf. Th. 56, 1447-1460 (2010),
- Lloyd, Shor \& Devetak: LSD Theorem

$$
Q(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \max _{\rho} I_{c}\left(\rho, \Phi^{\otimes n}\right)
$$

coherent information

purification
of $\rho$

$$
\sigma_{R B}=\left(\mathrm{id}_{R} \otimes \Phi\right) \Psi_{\rho}
$$

coherent information

$$
I_{c}(\rho, \Phi)=-S\left(\sigma_{R B}\right)+S\left(\sigma_{B}\right)=-S(R \mid B)_{\sigma}
$$

