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Motivations

Interracing Quantum Intormation and Condensed Matter Physics:

1. Suitably engineered systems of condensed matter for the implementation of
quantum computing protocols (NMR, Quantum dots, Spin chains, Optical
lattices, Coupled cavity arrays, etc.)

2. Scaling and area laws for the entropy of entanglement.: mathematical control
and design of numerical techniques for the efficient simulation of complex quan-
tum systems (DMRG (Density Matrix Renormalization Group), PEPS (Pro-
jected Entangled-Pair States), MERA (Multi-scale Entanglement Renormaliza-

tion Ansatz, etc.)

3. Is It possible to use the tools of entanglement theory to gain novel insight
on the physics of complex and quantum many-body systems that are
complementary (and/or deeper) to the understanding obtained using the
standard tools of quantum statistical mechanics (order parameters, n-

point correlation functions, etc.)?



. Long-distance and modular entanglement in quantum spin systems: Pairing
quantum objects that are distant and non-interacting, thanks to monogamy and

modularity of entanglement

. Occurrence of separable ground states of strongly interacting systems. General
theory and possible development of approximation schemes for the study of
non-exactly solvable models

. Hierarchy of bipartite-multipartite entanglement measures applied to the study
of quantum spin models: Sequence of novel transitions in the symmetry broken
phase. Successive oscillations in the magnetic order of local domains, parity
inversion points, and multipartite-to-bipartite transmutations of entanglement

. General theory of classical and quantum frustration in quantum many-body sys-
tems. Understanding frustration in terms of bipartite geometric entanglement
and related, properly defined, entanglement monotones



Long Distance Entanglement

Many body systems as quantum teleportation
resource

End sites act as Alice and Bob

Ground State Entanglement between end sites
determines teleportation fidelity

Exploit monogamy to achieve entangled end
points

Consider robustness against thermal
fluctuations



Ground state in XX model

Alternating coupling

stre‘g;hs. —o o—o @

O
O

> 0

Dimerized ground state

Monogamy favors dimerization
in strong bonds

Gap closes exponentially

LDE grows fast with degree of
dimerization

Not robust against temp.

Uniform coupling strengths
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GS not dimerized

Monogamy decouples ends
from bulk

Gap closes algebraically

LDE grows moderately with
degree of weak coupling

Relativelly Robust against
temperature

Implementation in cold atoms, cavities, ion traps...

Disorder in coupling strength and role of localization

Alternative models with reasonable engineering and high robustness



Long-range vs. long-distance entanglement

Qubit teleportation:

Existence of a good A-B quantum channel: Highessible end-to-end
entanglement => highest possible end-to-end teleportation fidelyficult
without long-range interactions. Long-range intéoacs involve many different
subsystems=> strong source of noise and decoherence.

Systems possessing only lo-distance entanglement:Open

spin chains with alternating couplings, or averiagkk interactions with
modified, “weak” end bonds. At exactly= 0, these systems can support
maximal entanglement and perfect qubit telepomai@. with unit fidelity)
between the ends A and B of the chain (“Long-Distaintanglement”’ LDE):

N—-1
H= (SISt +5'S0,)
i=1



Long-distance entanglement — The ideal case

Infinite-distance entanglement and perfect telepoution (zero temperature)
(A=J,/3,;1=31J,)

i 3 F 1 I & 4. -k
Aor—ea—o—o—a-cuuenn... oo o o B

Dimerized 1-DXX spin chain with fully alternated couplingd €< 1).
Maximal Alice-Bob entanglementnit fidelity for teleporting an
unknowr input state from Alice to Bob at zero temperatémbitrary
length, finite size or thermodynamic limit.

e e UL Energy Gap between ground and
f . _ . . _ 1 excited state falls exponentially with N
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Long-distance entanglement — The weak end-bond case

(A=3,/3, =3,/ 3,:1=313,)
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“Weak end-bond” XX spin chain withO(1) Bulk interactions and weak
couplings at the end points of the cham<< 1). Large Alice-Bob
entanglement, and large teleportation fidelityexbzzemperature. Slow
decreasing with the length of the chain (distand#)A

1 OFeD
Bl

' Robust against temperature but
entanglement very small

except for vanishingly small A

nal
Cr 7w -
e

o2k




Long-distance entanglement — Optimizations

(A=3,13, =33yl 3y =313, =313, ;1=313,)

Ae—ea—eo—o—o- ... s & o B

Augmented XX spin chain withO(1) Bulk interactions andlternating
strong/weakcouplings at thendsof the chain ( << 1 < <u). Large
Alice-Bob entanglement and teleportation fidelity at zemoperature
Slowly decreasing with the length of the chain.
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Generalization: Modular Entanglement.

T

H}.'-")'I'I'I'H'II'I'I'II": = Hirjnl —I_ H.{Ej‘_}p —|_ H-'{.-':'+l . ILJ |

with

. 0=l

( l (OO 0oty F Oy
Hntll_-]' — EZ '.LI.;_|_1'.‘|E'J_:: bf‘|‘l + b ILJ_|_1| 3 '.t.f_]

where H! . is the interaction Hamiltonian between the two boundary qubits in By and Bs.

ME



Entanglement and quantum phase transitions

In Interacting quantum spin systems

Fundamental systems of interactopgpits (spin 1/2) undergoing quantum phase
transitions at zero temperature. The XYZ Hamiltonian: It caseprthe most
important models of quantum spins coupled by exchange interaction terms,
iIncluding the Ising, Heisenberg, XY, XX, XXZ models. Moreover, niektvant
models of quantum spin chains for quantum information tasks (more on thés in

following ).

Hoe = 22 0SS+ )85+ 9SS § -
i - - - i

r=1r- |

Includes models with short, finite, and long-rangeractions. Most cases are
non exactly solvable, with some notable exceptibkes the XY model




Q7 »
P’%’ﬁ B1) Entanglement and guantum phase transitions

In quantum spin chains

XY model: H,, = _ZS‘.XSX+1+A$S+1+ fi S

Anisotropic spin mode] 0< A < 1). Phase transition: A spontaneous
magnetization develops along thaxis as the external transverse field
Is varied. Thealivergenceof the first derivative (with respect it of the
von Neumann block entanglement entropy betweenglesspin and the
rest of the system signals the onset of the quaphase transitio
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QI . . .
9’%’} B2) Ground state factorization in systems of interacting

gubits (quantum spin chains)

In the XY model, we have just seen an instance td@orization point: The

guantum entanglement vanishes and the groundstatames factorized, even if the
system is strongly interacting! Is this an accctdephenomenon, a coincidence, or it
hides a more profound physical picture?

Exploiting methods inspired by entanglement theibrg, possible to derive a general
theory ofinteraction balancing and determine the conditions for the occurrenc
full factorization of the many-body states In ideting quantum systems.

Main results of the analysis for quantum spin meaéitheXYZ type:

) Factorization of the ground state is not a rdarenqomenon.
II) Itis due to a delicate balancing between smpmsnteractions and external fields.
lIl) It occurs irrespective of spatial dimension anteraction range.



B2) Factorization in guantum spin systems:

Single-qubit unitary operations (SQUOS)

Single Qubit Unitary Operations: U,, =0

A

Hermitian: O = O

[
Q
[

Unitary: 0,0,

Traceless: TrO, =0

Response of the system to controlled, nontriviédeal perturbations.



B2) Factorization and SQUOSs in guantum spin systems

Factorization:

b),e = 9), O,
Theorem:
W, =W, i DUZ: UG, =W,

Factorization < Invariance under the action of SQUOSs

L The “extremal” SQUO Ui)g is uniquely defined



B2) Factorization in guantum spin systems:

SQUOs and entanglement

Pure State: LP > AR

Transformed State: l:p>AB — UA|B‘L|J>AB
UNERERRUTN|

Theorem: Distance ¢ Entanglement (von Neumann entropy)

S. (0.) = minf d|w),, |9)..)]

Hilbert-space distance: d(‘ l_|J> :
’B




B2) Quantifying factorization in quantum spin systems

with SQUQOrelated observables

Observable estimators Q of separability under the eéion of SQUOs
[ Bipartite system. Spin | = party A. Party B = allremaining spins N/i ]

0),, = Upl), 2Q=,(0QW), - . (W Ju),
. 1) AQ20, 2) | U,,Q# ¢

Then: AQ =0 = ‘L|J>i|(N/i) = ‘(p>| ‘X>(N/i)

This in turn implies total (full) factorization in translational-invariant systems

AQ=0 = |y)=0lg)




B2) Determining ground-state factorization in qguantum spi

systems with entanglement excitation energies (EXES)

Hamiltonian Structure: Entanglement excitation
energies (EXESs) associated to extremal SQUOSs

Vo N A

ldentification:  Q=H
GroundState: [ =|G)

Entanglement Excitation Energy: AE = <q r"é _< QHI (;

NAE=0 - Factorized ground state

NE>0 = Entangled ground state



B2) Applying the general theory to the determination of the
factorization points of interacting quantum spin systems

Previously known factorization

I

1/1

L

All the factorized ground states

Excited states? (Factorized)

1

J./3,

Forbidden region



B2) Summary on factorization in many-body systems

1) Formalism of local unitary operations. Operatioral- geometric approach to
the characterization of separability and entanglemet.

2) Theory of ground state factorization for (generdly non exactly-solvable)
guantum spin systems. Arbitrary lattice dimension ad range of interaction.
Classes of exact solutions, exploiting concepts atethniques of quantum
Information.

3) Factorization: A highly nontrivial balancing in strongly interacting
many-body quantum systems.



Geometric Entanglement

Bipartite States

All states




Geometric Entanglement

Tripartite states

All states




Geometric Entanglement

Multipartite states

All states




Hierarchies of

Geometric Entanglement

 Take the Geometric Entanglement measure

Eo(léy)=1— min |[{o[v}]’
|chy = Sep
and compute for the iy and the ¢uz
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Hierarchical Entanglement Measures

e Let . be a K-partition of N:

o S
e A state is K-separable if it separable by
some K-partition

e Geometric Entanglement is defined as

b‘gﬂ(|*a,-:'}}} =1— min  |{oeb]”

|chiE W -Sep

(K4 1)-Sep € K-Sep = EEHU(\*&,-TJ}) > ES{}H@;’;}]



A useful tool

|dentifies and distinguishes several
multipartite entanglement measures

Can be extended by the convex roof

Scaling laws can be obtained in the presence
of permutation symmetry

Can provide insight about the structure of
levels of K-separability



Ground state physics of quantum spin models via a hierarchy or geometric
measures or entanglement

o Exactly solvable system: XY mode|

o Entanglement measure:  Hierarchical geometric measure



Hierarchical geometric measure or entanglement

. K-partition of the system in K nonintersecting subsystems {Q1,Q2,....Qx}:

Q:[Qs =0 for s = &'

. The K-th element or the hierarchy of geometric measures of entanglement
is defined as the Euclidean distance from the set orf K-separable states:

EEV (W) = 1— AR(|W))

2
(®|w)]

_-"‘L%;{: | '-I’::) = Max| o

For instance E{GEJ measures the bipartite entanglement in the state |\¥),
E;g'} measures all the contributes up to tripartite entanglement, and so on up to

Eg‘” the original Wei-Goldbart global geometric entanglement that encompasses
all the bipartite and multipartite contributions

. There follows the natural hierarchy li";{GNj > E{GN_U Z o 2 EE’} = Eg}

. General result for the bipartite geometric entanglement:
EZ (%) = 1 — Anax

Amax Maximum eigenvalue associated with the reduced block density matrix



Paradigmatic model: Anisotropic XY spin chain Basics

."'\‘r T F4 (i s
Hyy = Zz’:l [(1 + )5 Ljf.&-|-1 + (1 -)s} r"3-|-1] hzs 1 q,r 51‘.f-|-1 =5

S* (=, y, z) spin-1/2 operators, h magnetic field, ~ anisotropy

1. Exactly solvable by Fermionization ({58} — {eci})

2. The parity of the number of down spins is a constant of motion

= Even (e) and Odd (o) fermion sectors

Lowest energy states
W) (o= e, o)

W) =1,  cos, + sin6, T, €40-Pelel ) 0)

Wo) = %E?:ﬁi [1, (CDSH@ + gsing Eha 10 HLLJ)WH

(10)) = 0)1... [0}y & | 1. )



Bipartite and multipartite geometric entanglement in the ground state or
the XY model

Novel information on the physics of the ground state can be obtained by analyzing
the following measures.

o B/ (MN - M)
o EE(M;|M;|IN - M; — M;)
o BG (MMM N — M; — M; — M)

The sets M, M;, M;, My, denote blocks of either contiguous or non-contiguous spins,
so that the internal distances between the spins play an important role



Ground state bipartite geometric entanglement (M = 2)

e ——

EQ @)= E@G,i+r]1,...,5....itr,...,N)

e

{ 025 03 hy hi 123
I

E'({-f%(rj as a function of h with v = 0.5 for spin-spin distances r =1, r =2, r = 3 in
the main plot, r=4, r =5, r =6, = 10 in the inset

e Inflection point at the critical field h¢ (divergence of the first derivative)

e Intersection point at the factorizing field (hy = /1 —~?)

o Novel transition points h.,, precursors of factorization hyp and criticality he = 1.
They are points of parity inversion in the local domains of magnetic order, as
well as points of transmutation/conversion of multipartite into bipartite entan-
glement (points of partial disentanglement)



Physical meaning of the parity inversion points

T he parity inversion point in Eé?} detects a transition between (probabilistic)
odd and even local (block) magnetic orders, identified by the change of the
maximum eigenvalue (probability) of the block reduced density matrix py;

‘% (areyx1Lm), h < hep, odd # of down spins

|}'lma.t:}é.é-|—r- =
cosp| 1) +sineg| [l), h>hyp, even # of down spins

Behavior of the parity inversion point as a function of the distance r between the
two spins of the block forv =0, v =02, ~ =05, v~ = 0.8
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M = 2 : Comparing EZ) (2N - 2) and ES (11N — 2)

0.5¢

0.25F

] 0.25 0.5 hy he 123
I

At the parity inversion point the tripartite entanglement is suppressed as the two
spins in the block become decorrelated (transition between the only two possible

entangled orders, even and odd). Therefore at the cusp point I*;Efj = Eg} since the
only contribution remaining in l-.'-f:'f} at the cusp is the bipartite one between M = 2
and the rest of the chain N — 2. There occurs a conversion of tripartite to bipartite
entanglement.



Bipartite geometric measure: A -spin partition

(2
EJG.I"-I =

= B G 1 Loy g ML oyl By T Ml IN)

I?rj' T L

0.25)

023 0.5

1.25
h
)

E({-f‘“ as a function of A with ~

the main plot, and blocks of M

0.5 for blocks of M =3, M = 4, M = 5 spins in
6, M =7, M = 8 spins in the inset

¢ [or the bipartite entanglement E(E;'

iy there occur multiple parity inversion points
in the range [0, hg].

At fixed M, the number of parity inversion points is M
(mirror symmetry h — —h). As M increases, the rightmost parity inversion point
tends to the factorization point hp

= (hp is naturally interpreted as the last precursor of the transition)



Bipartite geometric measure: blocks M =3 and M =4

W heh®
Structure of the transitions between the different local block magnetic orders:

1. M = 3-spin partition (i,i+ 1,i+2|1,...,1,i+ 1,i+2...,N):
single transition (odd - even)

([ 1L+ 1111) =B TLT) +ml L), h<hg
| Arnar)iitiits =
ao(| TLY A+ 1LY = B2l LTLY + 2 111, A > hep

2. M = 4-spin partition (i,i+1,i+2,i+3[1,....5,i + 1,i+2,i+3,...,N):
double transition (even - odd - even)
| Amaz )iit1,it2,i43 =
(& LT T F & LTIy 4+ i)+
| 1111) + &l 1111 + €| LI +&| 1111, 0<h<hy), h>hY
sr(JLTITy £ 11T + e 110 £ 1)+
Coes( LD L) A ea( LTLD) £ 1 LLTL)), h&y) < h < h$




M = 3 : Comparing E¥ (3N - 3), E(1)2|N - 3), and B (1]1[1|N - 3)
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At the parity inversion point the tripartite and quadripartite entanglement are sup-
pressed and converted to bipartite entanglement according to more complex patterns
among the different blocks (enhanced freedom). As a consequence, the conversion
of the multipartite components is not total, and, at the cusp point, one has an
approximate equivalence: Bl > B > B



Cconclusions

Hierarchical entanglement allows to gain insight in the physical structure of the
ground state that is complementary to that provided by the n-point correlation
functions. It reveals the existence of a structure of locally (probabilistically)
ordered domains as the quantum critical point is approached from the broken
symmetry phase. The sequence is determined by the successive oscillations in
the parity.

Meaning of the factorization point as last precursor of a quantum phase transi-
tion

Phenomenon of conversion/transmutation of multipartite entanglement to bi-
partite entanglement at the parity inversion points

Outlook

Preliminary studies suggest the existence of similar structures in XY Z and Heisenberg-
like systems

Structure of correlation functions and minimization of statistical mechanics
quantities associated to the structure of locally ordered domains

Extension of the analysis to higher-dimensional systems and different universality
classes
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