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Long Distance Entanglement

• Many body systems as quantum teleportation 
resource

• End sites act as Alice and Bob

• Ground State Entanglement between end sites • Ground State Entanglement between end sites 
determines teleportation fidelity

• Exploit monogamy to achieve entangled end 
points

• Consider robustness against thermal 
fluctuations



Ground state in XX model

Alternating coupling 
strengths

Dimerized ground state

Monogamy favors dimerization
in strong bonds

Uniform coupling strengths

GS not dimerized

Monogamy decouples ends 
from bulk

Gap closes algebraicallyin strong bonds

Gap closes exponentially

LDE grows fast with degree of 
dimerization

Not robust against temp.

Gap closes algebraically

LDE grows moderately with 
degree of weak coupling

Relativelly Robust against 
temperature

Implementation in cold atoms, cavities, ion traps…

Disorder in coupling strength and role of localization

Alternative models with reasonable engineering and high robustness



Systems possessing only long-distance entanglement:  Open 

Long-range vs. long-distance entanglement 

Qubit teleportation:
Existence of a good  A-B quantum channel: Highest possible end-to-end 
entanglement    => highest possible end-to-end teleportation fidelity. Difficult 
without long-range interactions. Long-range interactions involve many different 
subsystems   => strong source of noise and decoherence.

Systems possessing only long-distance entanglement:  Open 
spin chains with alternating couplings, or  average bulk interactions with
modified, “weak” end bonds. At exactly T = 0, these systems can support
maximal entanglement and perfect qubit teleportation (i.e. with unit fidelity)
between the ends A and B of the chain (“Long-Distance-Entanglement” -LDE ):



Infinite-distance entanglement and perfect teleportation (zero temperature):

Dimerized 1-D XX spin chain with fully alternated couplings ( l << 1). 
Maximal Alice-Bob entanglement. Unit fidelity for teleporting an 
unknowninput state from Alice to Bob at zero temperature. Arbitrary 

Long-distance entanglement – The ideal case 

( l = J1 / J2 ; 1 = J2 / J2 )

unknowninput state from Alice to Bob at zero temperature. Arbitrary 
length, finite size or thermodynamic limit.

Energy Gap between ground and 

excited state falls exponentially with N



“Weak end-bond” XX spin chain with O(1) Bulk interactions and weak 
couplings at the end points of the chain ( l << 1). Large Alice-Bob 
entanglement, and large teleportation fidelity at zero temperature. Slowly 

Long-distance entanglement – The weak end-bond case

( l = J1 / Jb = JN-1 / Jb ; 1 = Jb / Jb )

entanglement, and large teleportation fidelity at zero temperature. Slowly 
decreasing with the length of the chain (distance A-B). 

Robust against temperature but

entanglement very small

except for vanishingly small λλλλ



Augmented XX spin chain with O(1) Bulk interactions and alternating 
strong/weak couplings at the ends of the chain ( l <<  1 < <m). Large
Alice-Bob entanglement and teleportation fidelity at zero temperature. 

Long-distance entanglement – Optimizations

( l = J1 / Jb = JN-1 / Jb ;  m = J2 / Jb = JN-2 / Jb ; 1 = Jb / Jb )

Alice-Bob entanglement and teleportation fidelity at zero temperature. 
Slowly decreasing with the length of the chain.

Long-distance entanglement 

and high-fidelity teleportation 

at zero and finite T





Entanglement and quantum phase transitions
in interacting quantum spin systems

1
∑ ∑

Fundamental systems of interacting qubits(spin 1/2) undergoing quantum phase 
transitions at zero temperature. The XYZ  Hamiltonian: It comprises the most 
important models of  quantum spins coupled by exchange interaction terms, 
including the Ising, Heisenberg, XY, XX, XXZ models.  Moreover, most relevant 
models of quantum spin chains for quantum information tasks (more on this in the 
following ).
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Includes models with short, finite, and long-range interactions. Most cases are 
non exactly solvable, with some notable exceptions, like the XY model.



B1)  Entanglement and quantum phase transitions
in quantum spin chains

XY model: x x y y z

XY i i 1 i i 1 i
i i

H S S S S h S+ += − + ∆ +∑ ∑
Anisotropic spin model ( 0 ≤ D < 1). Phase transition: A spontaneous 
magnetization develops along the x axis as the external transverse field h 
is varied. The divergence of  the first derivative  (with respect to h) of the 
von Neumann block entanglement entropy between a single spin and the 
rest of the system signals the onset of the quantum phase transition:rest of the system signals the onset of the quantum phase transition:
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D = 0.25 (--------)

D = 0.28 (         )

Quantum critical points

Factorization points 

Magnetic field



B2)  Ground state factorization in systems of interacting 
qubits (quantum spin chains)

In the XY model, we have just seen an instance of a factorization point: The 
quantum entanglement vanishes and the ground state becomes factorized, even if the 
system is strongly interacting! Is this an acccidental phenomenon, a coincidence, or it 
hides a more profound physical picture?

Exploiting methods inspired by entanglement theory, it is possible to derive a general 
theory of interaction balancing and determine the conditions for the occurrence of theory of interaction balancing and determine the conditions for the occurrence of 
full factorization of the many-body states in interacting quantum systems.

Main results of the analysis for quantum spin models of the XYZ type: 

I) Factorization of the ground state is not a rare phenomenon.
II) It is due to a delicate balancing between spin-spin interactions and external fields. 
III) It occurs irrespective of spatial dimension and interaction range.



Single Qubit Unitary Operations:
A|B A BU O I= ⊗

Hermitian: †

A AO O=

B2) Factorization in quantum spin systems: 
Single-qubit unitary operations  (SQUOs)

ATr O 0=

Hermitian:

Unitary:

Traceless: 

† 2

A A A AO O O I= =

A AO O=

Response of the system to controlled, nontrivial external perturbations.



Factorization:
F

AB A B
ψ ≡ φ ⊗ χ

F extr extriff U : Uψ = ψ ∃ ψ = ψ
Theorem:

B2) Factorization  and SQUOs in quantum spin systems

F extr extr

A|B A|BAB AB AB AB
iff U : Uψ = ψ ∃ ψ = ψ

Factorization  ñ Invariance under the action of SQUOs

The “extremal” SQUO            is uniquely defined
extr

A|BU



Pure State:

( ) 2

AB AB AB AB
d , 1ψ ψ = − ψ ψɶ ɶ

Transformed State: A|BAB AB
Uψ = ψɶ

Hilbert-space distance:

B2) Factorization in quantum spin systems: 
SQUOs and entanglement

AB
Ψ

{ } ( )
A|B

2

E A AB ABU
S ( ) min d , ρ = ψ ψ ɶ

( )AB AB AB AB
d , 1ψ ψ = − ψ ψɶ ɶ

Theorem:  Distanceï Entanglement (von Neumann entropy):



A|BAB AB
Uψ = ψɶ

AB AB AB AB
ˆ ˆQ Q Q∆ = ψ ψ − ψ ψɶ ɶ

Observable estimators Q of separability under the action of SQUOs
[ Bipartite system. Spin i = party A. Party B = all remaining spins N/i ]

ˆ1) Q 0 , 2) U ,Q 0 ∆ ≥ ≠

B2) Quantifying factorization in quantum spin systems 
with SQUO-related observables

If: A|B
ˆ1) Q 0 , 2) U ,Q 0 ∆ ≥ ≠ 

i|(N/ i) i (N/ i)
Q 0∆ = ⇒ ψ = φ ⊗ χ

This in turn implies total (full) factorization in translational-invariant systems:

ii
Q 0∆ = ⇒ ψ = ⊗ φ

Then:



Hamiltonian Structure: Entanglement excitation 
energies (EXEs) associated to extremal SQUOs

ˆ ˆQIdentification:

Ground G

H

State:

=
ψ =

B2) Determining ground-state factorization in quantum spin 
systems with entanglement excitation energies (EXEs)

Entanglement Excitation Energy: ˆ ˆE GHG GHG∆ = −ɶ ɶ

E 0∆ = ⇔ Factorized ground state

Entangled ground stateE 0∆ > ⇔



Phase diagram for factorization in the XYZ models

Previously known factorization

B2) Applying the general theory to the determination of the 
factorization points of  interacting quantum spin systems

r r
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r r

z xJ J

Excited states? (Factorized) 

All the factorized ground states 

Forbidden region



1) Formalism of local unitary operations. Operational- geometric approach to 
the characterization of separability and entanglement.

2) Theory of ground state factorization for (generally non exactly-solvable) 
quantum spin systems. Arbitrary lattice dimension and range of interaction.
Classes of exact solutions, exploiting concepts and techniques of quantum 

B2)  Summary on factorization in many-body systems

Classes of exact solutions, exploiting concepts and techniques of quantum 
information.

3) Factorization: A highly nontrivial balancing in strongly interacting 
many-body quantum systems.



Geometric Entanglement

Bipartite States

All states
Separable statesSeparable statesSeparable states



Geometric Entanglement

Tripartite states

All states

2-

Separable

states

2-

Separable

states

3-Separable states3-Separable states3-Separable states



Geometric Entanglement

Multipartite states

All states

(N-1)-

Separable

states

(N-1)-

Separable

states
N-Separable statesN-Separable statesN-Separable states



Hierarchies of

Geometric Entanglement

• Take the Geometric Entanglement measure 

and compute for the         and the              :

LARGE     :



Hierarchical Entanglement Measures

• Let                            be a K-partition of  N:

• A state is K-separable if it separable by • A state is K-separable if it separable by 

some K-partition

• Geometric Entanglement is defined as



A useful tool

• Identifies and distinguishes several 

multipartite entanglement measures

• Can be extended by the convex roof

• Scaling laws can be obtained in the presence 

of permutation symmetry

• Can provide insight about the structure of 

levels of K-separability
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