



2227-1

#### Joint ICTP-IAEA Workshop on Radiation Resistant Polymers

14 - 18 March 2011

"The use of gamma irradiation for biopolymers development for food packaging application"

M. Lacroix *University of Quebec* 

# Basics of requirements for food packaging and its sterilization by irradiation: Problems and Challenge

Monique Lacroix, Ph.D.
Professor
INRS-Institut Armand-Frappier
531 des Prairies
Laval, Qc, Canada H7V 1B7
Email: monique.lacroix@iaf.inrs.ca

Web: www.iaf.inrs.ca

Tel 1 450 687 5010 ext 4489

Fax 1 450 686 5501

#### History of food packaging

■ Inauguration of food microbiology canning process, glass bottle, wooden crates

- War I and II
  aluminum foil, plastic (PE, PVC)
- Development of Polypropylene, polyester, etylene vinyl alcool

#### Current global consumption of plastics

200 million tonnes/year

polyethylene terephthalate (PET)
polyvinylchloride (PVC)
polyethylene (PE)
polypropylene (PP)
polystyrene (PS)
polyamide (PA)

#### Function of packaging

Protection and preservation from the external contamination

retardation of deterioration, shelf life extension, quality, safety

Protection from environmental influence

### Migration of packaging components

plastic monomers, dimers, oligomers

antioxydant

plasticizers

dye/adhesive solvent residues

#### Ideal packaging

should be inert

resistant to hazards

not allow molecule transfer from or to packaging materials

#### Recyclable and/or biodegradable films

- Biodegradable synthetic polymers
  - Starch, cellulose, lignin

- Non biodegradable bioplastic
  - Nylon 9 types polymers
  - Polyamid 11

#### Performance expected

Containing and protecting the food

Could be assured

by controlling and modifying their mechanical and barrier properties

The stability should be demonstrated when in contact with the food

### **Examples of biodegradable polymers**

poly (lactic acid) (PLA)

polyhydroxyalkanoates (PHA)

polycaprolactone (PCL)

### Improvement of biopolymers performance

**Nanocomposite** 

**Grafting** 

**Cross-linking** 

#### Permselectivity of packaging

- Coating
- Microperforation
- Lamination
- Co-extrusion
- Blending

## Barrier properties of commercial laminated or coated PET based films

| Film           | OTR cc/m²/day | WVTR g.mm/m²daymmHg |
|----------------|---------------|---------------------|
| PET            | 110           | 15                  |
| PET/PE         | 0.9-1.2       | 0.25-0.37           |
| PET/PVAL/PE    | 0.1           | 0.26-0.39           |
| PET/EVOH/PE    | 0.06          | 0.13-0.27           |
| PET/AL-met/PE  | 0.06-0.1      | 0.06-0.03           |
| PET/SiOx       | 0.06          | 0.0024-0.06         |
| PET/PVDC/PE    | 0.3           | 0.132               |
| PET/Al-foil/PE | 0             | 0                   |

#### Active and Intelligent packaging

Active packaging allows to interact with food product and the environment and play a dynamic role in food protection

#### **Examples of smart packaging**

- Time-temperature indicator
- Ripeness indicator
- Biosensor
- Radio frequency identification (for tracking or tracing produce and other perishable commodities)

#### Decontamination of food packaging

Irradiation: Simple, good penetration, treatment done at room temperature.

Stability of the polymers should be demonstrated

### **Examples of polymer reactions to irradiation treatments**

- Cross-linking: Polyethylene (PE);Polypropylene (PP);Polystyrene (PS)
- Chain scission: Natural polymers
- Stable polymers at doses < 8 kGy:</p>

Low and high density

polyethylene (LDPE, HDPE); PP

Polyethylene terephthalate (PET);

Poly(vinyl) chloride (PVC);

#### Regulations- up to 10 kGy

glassine paper coated cellophane wax-coated paperboard **Kraft paper** Nylon 11 multilayer PET **PVDC-VC** copolymer PS polyetylene films

#### Irradiation at doses > 25 kGy

■ PP and PE: low volatiles compounds oligomers and additives

■ PET; PA; PS stable until a dose of 44 kGy

PVC: release of HCL, many volatiles

Haji-Saeid, Sampa and Chmielewski, 2007, Rad. Phys. Chem. 76, 1535-1541.

#### Regulations-up to 30 kGy

**Etylene-vinyl acetate** 

#### Regulation up to 60 kGy

Multilayer Polyethylene
Nylon 6
PET
PVC-VA co-polymers

### Summary: Safety of irradiated polymers

- Polymers with aromatic structures like PET are more stable to irradiation
- Aldehydes and hydrocarbones are the most important migrants from the irradiated bags
- The use of stabilisers can protect the functional properties and can reduce the formation of off-odours
- Physical surface modification of polymers like grafting can improve the functional and physico-chemicals properties of packaging

#### Challenges

Intelligent and active packaging

**Nanotechnology** 

Natural polymers with good functional and mechanical properties

The use of natural stabilizers or natural active compounds

Ref: Sanchez-Garcia et al., 2010, Trends in Food Science & Technology 21, 528-536

#### Challenges

- Modification of the biodegradable polymers Nanocomposites (Nanofibers, nanocarbon) enhance mechanical properties, thermal and electrical conductivity (microwavable, antistatic, intelligent packaging)
- Grafting of natural polymers
- Nanoclays enhance rigidity, thermal stability and barrier properties, block UV radiation
- Nanoparticles permit control release and the development of active packagings

#### Thank you

Monique Lacroix, Ph.D.
Professor
INRS-Institut Armand-Frappier
531 des Prairies
Laval, Qc, Canada H7V 1B7
Email: monique.lacroix@iaf.inrs.ca

Tel 1 450 687 5010 ext 4489 Fax 1 450 686 5501

Web: www.iaf.inrs.ca