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« SH comes from the nature, ability to heal
IS a chracteristic of living organisms. A
damage triggers an automatic healing
response.

e Materials that can recover mechanical
properties following failure offer “increased
safety and service life”.

 Relevant to materials that are used without
or with only limited access by men, e.g.
Medical applications, civil, aerospace,
automotive and power engineering.



Self-healing Coatings in Practice - Examples

- Nissan X-Trail (2005; ,Scratch Guard®)

- Nissan Infiniti (2008: ,Scratch Shield™)

- Toyota Lexus (2010)

- lveco/PPG (driving cab of an innovative concept truck 2010)

- Fiat/PPG (practice test with different test cars 2010/2011)

Business Unit Coatings, Adhesives & Specialties @ Baver MaterialScience
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Healing of Scratches?




Polymer networks are made to self-heal by
either adding microcapsules filled with
uncured resin or by introducing reversible
bonds.

The resin held within the matrix Is released
upon crack formation and hardens to heal
the crack.

The other mechanism of healing relies on
the reversibility of bonds found designed
Into polymer networks.

SH polymeric materials are therefore
multifunctional composite systems.




SH by MICROCAPSULE APPROACH

Figure 1. (a) Basic method of the microcapsule approach, (b) ESEM image showing ruptured
microcapsule [White et al, 2001]



Prerequisite for a self-healing of a
(mechanical damage) is the generation of a
mobile phase which can close this crack

www. MatenalsViews.com
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Figure 1. Common basic principle of selfhealing materials. a) The
mechanical load induces a crack; b) detailed view of the crack; <) a
“mobile phase” is induced; d) closure of the crack by the “maobile phase”;
e} immobilisation after healing.



SH by REVERSIBILITY OF BONDS

www.MaterialsViews.com

Figure 3. Self-healing properties of a supramolecular polymer by Leibler

and coworkers. Reproduced with permission ™ Copyright 2008, Ludwik
Leibler, CHRS.
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M. D. CHIPARA ET AL
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Figure 5. Stress-strmin dependences for polystyrene-biock-polybutadiene
block-palystyrene filled with 5% microbubbles containing DOPD (black
ling; seff-healing features not activated) and paolystyrene-biock-
polybutadiene block-polystyrene filled with 5% microbubbles containing
DCPD and loaded with 1% Grubbs catalyst.
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THERMALLY CONTROLLED
HYDROGEN-BOND XL

13



HOLLOW GLASS FIBRES
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2007-01-3211

Self-Healing Technology for Gas Retention Structures and
Space Suit Systems

J. Ferl, J. Ware, D. Cadogan and J. Yavorsky
ILC Dover, LP
Copyright @ 2007 SAE International

18



THL MCROMETEOROD o TML

ABSORBER LAYER ATTEMUATION SHELL
F& EIFIC WEBEING
RESTRAINT MMIOD ATTENLATION
AND SPA CER LAYERS
INTERICA LINER P ;
FABRIC ; 1l TML MULTH LAY ER
. Tk ARAE 1 :
ey AE : i THERMAL INSULATION
Hh | . TMIE COVER {ORTHOFABRIC)
" - ' MG IHELILATION
e ! /{MULTLLAYER ALUMMNEZED MYLAR)
i 4 TMG LINER
{ 7 {NEOFRENE COATED HYLON RIFSTOR)
COA TED FABRIC BLADDER.,. 'y  RESTRAINT A CROH

{URETHAHE COATED NYLOM) . - [ & 4

- .
— 5,
2

LCVGE WATER TRANSPORT
TUEING IN MY LONEPAHNDEX

LG UMER
{NYLON TRIGDT)
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CHEMICAL INFLATION PRESSURE
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Figure 9. Chemical Reaction Concept Schematic



BLADDER MATERLAL WITH
MICROENCAPSULATED CHEMICAL REACTANT
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Figure 8. Environmental Feaction Concept Schematic
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Figure 17. Self-healing Viscoelastic Gel Localized on
Each Pattern Piece of SSA Lower Arm Bladder
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Figure 18. Self-Healing Sample Test Fixture in Vacuum
Chamber
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PUNCTURE TESTS IN VACUUM
CHAMBER
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Figure 20. Hesulis of Self-Healing Viscoslastic Material
Puncture Tests in Vacuum Chamber
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INVERSE TEMPERATURE-
ANNEALING PHENOMENA
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Fig: 1. Drecrease in ultimate alongation for matenal A dunng

degradation at 22°C and 200Gy h~' and the recovery of

mechanical propertics upon annealing at 140°C for 24 h after

33, 954 and R40kGy. Note the slower degradation for the
material when aged at &FC.
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Fig. 2. Changes in the gel content of matenal A dunng com-
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during degradation of crosslimked polvolefins 233
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Fig. 5. Changes in the gel content of maternial B dunng aging
ai different temperatures and dose rates ronging from 0.21 1o
033 kGyh!,
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Fig. 6. Changes in the gel content of matenal C during aging
at 22°C (0.21 kGyh~") and 80°C (0.315kGyh ")



236 M. Celin
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Fig. 7. Changes in the gel content of matenal D dunng aging
at 43°C (0 T5kGy h~") and 70°C (0194 kGy h ).
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238 M. Celina et al.
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Fig. 11, Gas treatment of material A, aged at 22°C 1o 400kGy at 483 Gyh ', and its influence on subsequent crosslinking during
annealing at 140°C {deactivation of any hydroperoxides)



THANK YOU
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