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Climate Hazard Information

Process used to develop climate risk factors for New York City
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e Projection Range, based on 16 GCMs and 3 SRES scenarios

e Time slice experiments based on single GCM gridbox, delta
method approach

e Key thresholds
— Number of days below 32 °F (transportation sector)
— Number of days above 90 °F (energy and health sectors)

— Number of intense precipitation events (e.g., .5 in./day;
water sector)

e Qualitative projections




Flexible Adaptation Pathways
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Key elements to achieve Flexible Adaptation Pathways are a guiding framework,
stakeholder engagement, expert knowledge providers, recurring assessment process,
Action Plans by decision-makers, and vertically/horizontally integrated projects with

ongoing evaluation
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Downscaling Products and Techniques

Single GCM gridbox approach
— Delta method applied to station data (NYC Panel on Climate Change)

Bias-Corrected and Spatial-Downscaled Projections http://gdo-
dcp.uclinl.org/downscaled _cmip3_projections/ (BCSD; Maurer, et al.
2007, based on Wood et al. 2002, 2004, and Maurer 2007)

— Direct use of monthly time series for impact models
— For daily projections at station level, we use delta method and random sampling

RCM simulations from the North American Regional Climate Change
Assessment Program archive (NARCCAP; Mearns et al. 2009, EOS)

— Changes in frequency and duration of key extremes

— Changes in (intra-annual) variability more generally

— Delta method



NARCCAP Simulations

e RCMs were run at 50km resolution for three experiments:
— NCEP Reanalysis-driven, December 1979-November 2000:

How well do the RCMs simulate ‘observations’ over the NE, when driven by
‘perfect’ boundary conditions?*

— GCM hindcast-driven, December 1970-November 2000
How sensitive are the RCM results to ‘biases’™ in the driving GCMs?*

— GCM future-driven, December 2041-November 2070, A2 SRES Scenario

How does the forcing associated with greenhouse gases and other
radiatively important agents manifest itself at more local scales?*

*Several caveats here...



Annual Temperature (°F), 1990-1999

NARR - Annual T(F) 1990-1999 NCEP-crcm -- Annual .RJ 1990-1999

How well do the RCMs
simulate ‘observed’ mean
temperature over the NE,
when driven by ‘perfect’
boundary conditions?

NCEP-mm5i -- Annual T{F) 1990-1999 NCEP-rem3 -- Annual T{F) 1990-1999 NCEP-wifg -- Annual TIF) 1990-1999
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Annual Precipitation (in./day), 1990-1999

NARR -- Annual P(inches/day) 1990-1999 NCEPcrcm -- Annual P(inches/day) 1990-1999

P

How well do the RCMs
simulate ‘observed’ mean
precipitation over the NE,
when driven by ‘perfect’
boundary conditions?
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BCSD

HADCM3-hrm3 -- Annual dT (F) CCSM-wrfg

Projections--Mean Annual Changes

GFDL-rem3 - Annual dT (F) CGCM3-rem3 -- Annual dT (F) CGCM3-crem — Annual dT (F)
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Projections--Mean Annual Changes

%Change CCSMmm5i future/CCSMmmS5i hindcast %Change CCSMcrcm future/CCSMcrem hindcast %Change CCSMwirfg future/CCSMwrfg hindcast
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SRES A2 2050s divided by 1980s annual precipitation (%)



Projections--Mean Changes

NYC Gridbox | Mean Annual | Mean Annual
(# of Temperature | Precipitation
simulations) |Change (°F) |Change (%)
2.5106.1 -9 to 10 (5)
GCM (16) (4.1)
2.9105.7 -6 to 23 (5
BCSD (16) |4 Nvo 02305)
NARCCAP (4.3105.9 0 to 14 (5)
(4) (4.6)

SRES A2-driven 2050s divided by 1980s GCM hindcast-driven




Projections--% Change in # days with >.5 in prcp

%Change CCSMcrecm-NCEPcrem (>0.5") %Change CCSMmmSi-NCEPmm5i (>0.5") %Change CCSMwrfg-NCEPwrfg (>0.5")
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SRES A2-driven 2050s divided by 1980s GCM hindcast-driven



Projections--Extreme Temperatures

Number of | Number of
New York days per days per

City year over 90| vyear at or
°F below 32 °F
GCM (Delta . .
Method) 14. 28 to 58 | 72: 31 to 53
BCSD

(Hybrid 14: 24 to 51| 72: 45 to 64
Technique)

NARCCAP
(Actual 0 to 3:0 to15
Values)

52 to 88:28
to 65




Projections--Interannual Variability
BCSD HADCMS-trm3 — Annual SIAT(F) 20505-1980s
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Conclusions

— The range of results associated with
downscaling technique is often smaller
than other sources of uncertainty that
influence decisions, such as:

o Global climate sensitivity

e Emergent patterns not captured by
global climate models

o Interannual to decadal variability
e Climate impacts
e Socio-economic changes
Next Steps
— Analyze pre-conditions for extreme
precipitation events in GCMs and RCMs
— Explore standardized statistically

downscaled daily products (CMIP3 and
CMIP5) such as BCSD, Bias Corrected
Constructed Analogues (BCCA; Maurer
and Hidalgo, 2008)

— Develop localized downscaling tailored
to sector-specific stakeholder needs
Statistical Downscaling Model
(e.g., SDSM; Wilby et al. 2002)

- Stochastic approaches, weather
generators

Amount (inches)

17 Feb 04 daily
streamflow rank

© Record
O Top 0.2 percent

© Top 1 percent
@ Top 2 percent
* Remainder of sites

IWV (cm)

Neiman et al. 2008, Jour. of Hydromet.

—— Baseline 1971-2000
— HADCMS Baseline
HADCMS 2020s
HADCMS3 2050s
HADCMS3 2080s

- 0
5 >

3
=

Feb 15
Apr1 -
Apr15 -

H] 3 H
z

Snow depth at Wanakena, NY based on SDSM
downscaling. (Tryhorn and Degaetano in
NYState CIIMAID Report, to be released in 2011)



GFDL/RCM3 Growing Season Changes, A2 2050s relative to 1980s
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Corn Sensitivity to Climate Variability Changes

Use stretched
distribution approach
to impose particular
statistical qualities on
observed series

Solid lines include
interactions between
changes in mean and
variability

Note that as alpha
parameter decreases,
rainfall is more
extreme

Sensitivity of SE USA Corn yield
+8- to variability change factors
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Role of NARCCAP Mean and Variability

Changes
a) GFDL/rcm3 b) GFDL/rcm3 c) GFDL/rcm3
Mean changes only Mean and variability changes Variability changes only

7

Impact of <m_._.wc==<dm:m:m_cmm _m-mo-:_um_.mc_mm_s Smw:_ﬁcmw to that of mean
changes
- Non-linear, particularly with respect to CO, effects during drought
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Why AgMIP?

* Food security and climate change
— How will climate affect agriculture in developing regions?
— Many studies assume declining food prices
— Recent food crises and extreme events question this assumption

« Capacity building
— Developing country agricultural regions and crops still understudied

— Local researcher capacity needed to lead future assessments and
adaptive planning

FAO Food Price Index
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* The real price index is the nominal price index deflated by the World Bank Manufactures Unit Value Index (MUV) D 10 to 30%

Source: FAO [l more than 30% 22
Based upon Rosenzweig and Parry, 1994




AgMIP Objectives

Improve scientific and adaptive capacity of major agricultural regions
in developing and developed world

Collaborate with regional experts in agronomy, economics, and
climate to build strong basis for applied simulations addressing key
regional questions

Develop framework to identify and prioritize regional adaptation
strategies

Incorporate crop and agricultural trade model improvements in
coordinated assessment of future climate conditions

Include multiple models, scenarios, locations, crops and participants
Understand roles of land use and mitigation

Link to key on-going efforts
— CGIAR/ESSP, CCAFS, Global Futures, MOSAICC, others
— IPCC AR5




AgMIP Elements and Linkages

Historical Observations,
CMIP3/5, Downscaling,
and Weather Generation

Crop Modeling
Groups, Regional
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Agricultural Economic
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Regional Economists
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NARCCAP mean growing season changes
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Corn Sensitivity to Climate Variability Changes

Use stretched
distribution approach
to impose particular
statistical qualities on
observed series

Solid lines include
interactions between
changes in mean and
variability

Note that as alpha
parameter decreases,
rainfall is more
extreme.

Sensitivity of SE USA Corn yield
+8- to variability change factors
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NARCCAP % changes in standard deviation of

growing season daily temperature
GFDL/rcm3 CGCMa3/crcm CGCM3/rcm3 HadCM3/hrm3
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Except for CGCM3/crcm, standard deviation of temperature generally
increasing



NARCCAP % changes in growing season rainfall
distribution’s alpha parameter (lower = more
extrems)
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RCMa3 simulations producing more extreme distribution of rainfall



NARCCAP % changes in number of rainy days

In growing season
GFDL/rcm3 CGCM3/crcm CGCM3/rcm3 HadCM3/hrm3

L =

Decrease in number of wet days projected for almost all land areas in all
models



GCM Ensemble Projections

25t percentile of % Median % change in 75t percentile of %
change in corn yield corn yield (A2 2050s) change in corn yield
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No variability changes
- Imposes mean changes entirely on intensity of storms, not frequency



Projections of GCM Ensemble with NARCCAP

variability

change in corn yield corn yield (A2 Nomcmv change in corn yield

-20 -15 -10 -5 0 5 10 15 20

Results from 16 GCM ensemble, with GCM mean changes and variability
changes imposed from 4 NARCCAP runs (64 ensemble members)

- Including higher-frequency variability from NARCCAP results in a more
pessimistic projection of future corn yields across Southeast.



Role of NARCCAP Mean and Variability
S

-20 -15 -10 -5 0 5 10 15 20

Impact of variability changes is comparable in magnitude to that of mean
changes
- Non-linear, particularly with respect to CO, effects during drought



