

Coordinated regional climate downscaling experiment using WRF: a contribution to the CORDEX initiative by the Spanish WRF community

Universidad de Cantabria

Jesús Fernández (fernandej@unican.es) Lluís Fita Markel García-Díez

Universidad de La Laguna

Albano González Juan Carlos Pérez-Darías

Universidad de Murcia

Pedro Jiménez-Guerrero (pedro.jimenezguerrero@um.es)

Raquel Lorente

Juan Pedro Montávez

Fundación Parque Científico Murcia

Juan Alejandro Palomino

WRF modifications and tools

Coordination / dissemination

Grid computing

ROMS

Canary islands

- The Advanced Research WRF (ARW) core is a flexible dynamical downscaling tool including:
 - Many state-of-the-art physical parameterizations
 - Several grid projections
 - Multiple nesting (one- and two-way)
 - Nudging options (grid and spectral)
- This flexibility makes WRF an ideal tool for downscaling experiments in different regions of the world, working at different resolutions.

Coordination / dissemination

http://www.meteo.unican.es/wiki/cordexwrf

- Several groups use WRF as a regional climate downscaling tool. CORDEX-WRF gathers their plans and configuration (currently there are 22 groups listed):
 - Bjerknes Centre for Climate Research (University of Bergen, Norway)
 - Center for Monsoon System Research (Institute of Atmospheric Physics, CAS, Beijing)
 - School of Atmospheric Sciences, Nanjing University, Nanjing, P.R. China)
 - Climate Change Research Centre (University of New South Wales, Australia)
 - Climate Dynamics and Climate Change Group(Indian Institute of Tropical Meteorology, India)
 - Climate System Analysis Group (University of Cape Town, South Africa)
 - Dept of Earth & Environmental Science (New Mexico Tech, USA)
 - ICARUS (National University of Ireland Maynooth, Ireland)
 - Institute for Physics and Meteorology (University of Hohenheim, Germany)
 - Instituto Dom Luiz Center for Geophysics (IDL-CGUL, University of Lisbon, Portugal)
 - Institut Pierre Simon Laplace (Paris, France)
 - Grupo AIRE (Universidad de Extremadura, Spain)
 - Grupo de Observación de la Tierra y la Atmósfera (University of La Laguna. Canary Islands, Spain)
 - National Institute of Meteorological Research (Korea Meteorological Administration, Korea)
 - Polar Climate and Weather Group (University of Colorado, USA)
 - Regional Atmospheric Modeling Group (University of Murcia, Spain)
 - Regional Climate Modeling Lab (lowa State University, USA)
 - Santander Meteorology Group (University of Cantabria, Spain)
 - Weather and Climate Modeling Group (Western Kentucky University, USA)
 - Wind & Site Competence Centre (Vestas Technology R&D, Denmark)
 - Global Change Impact Studies Centre (GCISC), Islamabad, Pakistan
 - Hydro-Meteorology Monitoring and Modeling Group (Amazonas State University, South America, Brazil)

WRF as an RCM (oportunities related to CORDEX)

- WRF is under very active development, including the addition of long term run capabilities: varying SST, deep soil temp, GHG, detailed radiation and soil schemes, ...
- There are still some missing features:
 - Ability to ask for avg, max, min variables instead of instantaneous (required to meet the output requirements of any RMIP)
 - Ability to change the emission scenario (currently hard-coded to A2 in cam3 radiation package and fixed concentrations in others)
 - ...
- Others are a bit hidden: calendar changing options
- These issues are currently solved individually by each group
 - e.g. in UC we call it CLWRF

http://www.meteo.unican.es/wiki/cordexwrf

CORDEX-WRF is also a place to share developments of the model or associated tools:

Tools

This is a collection of software tools (scripts/small programs) used by the different groups and contributed to the community to avoid duplicated efforts.

- fortnml is a Python script to manage fortran namelists, modifying them from the command line and can also be used as a namelist "beautifier". Also checks for WRF recomendations.
- CLWRF are WRF source code modifications for climate runs.

Within CORWES we plan to develop tools to:

- Ingest data from different GCMs
 - e.g. CMIP5 data in CMOR format
- Compute all output variables requested by CORDEX
 - e.g. Cloud cover at different heights, max 1h precip, ...
 - Some of these can be derived from existing ones, others need to be added to the model and produced as it runs.
- Post-process WRF files to comply with CORDEX format

WRF modifications and tools

CORWES is primarily a project to coordinate the Spanish groups in CORDEX-WRF and focuses on transfer of knowledge and technology among groups and with the community. Open workshops are planned:

- Diagnostic and post-processing tools
- WRF4G framework
- WRF-ROMS coupling

Coordination / dissemination

Grid computing

Grid computing is a computational paradigm taking advantage of geographically distributed computer resources.

A software layer (middleware) provides transparent access to

the distributed resources.

Grid computing

Example: EGI infrastructure

- 150.000 CPUs
- 70 PB
- 260 sites worldwide
- Arquitectures: i386,x86_64
- LRMS: torque, sge, Isf, bqs

Another example: Earth System Grid (only storage)

- Infraestructure shared between several NL in the US
- Holding the PCMDI CMIP3, CMIP5 and many other databases

Grid computing

WRF4G, developed by the Santander Meteorology Group, provides:

- Flexible WRF experiment design for long (climate) runs, hindcast experiments, multi-physics ensembles, etc. and ...
- ... the ability of running these experiments on the Grid or on local resources in a transparent way.

Within CORWES, we plan to face the **challenge of performing** regional climate simulations on the Grid using WRF4G.

This could become a **source of computer power for developing countries**.

ROMS

- The Regional Ocean Modeling System will be interactively coupled to WRF to investigate the role of the air-sea coupling at regional scale.
- The African domain within CORWES will be simulated with prescribed SST and coupled to the ocean
- Also, high resolution simulations for the Canary islands will be tested.

- Challenging region
 - Very complex topography over a small region
 - Large impact of local forcings on climate
 - Important oceanic and African influences

Canary islands

CORDEX 1989-1994 Accumulated Precipitation

WRF at 5 Km resolution

Coordinated regional climate downscaling experiment using WRF a contribution to the CORDEX initiative by the Spanish WRF community

Sensitivity simulations

Poster on Wednesday

Sensitivity experiment on the (north-extended)

African domain

- WRF v3.1.1
- One year (1998)
- 50 Km resolution

CTRL

(CUKF, RAC3, LSRU, BLYS)

Cumulus	Radiation RARR	Land surface		Boundary Layer	
CUBM		LSNO	BLPX	BLMY	
CUGD	RARG				

Coordinated regional climate downscaling experiment using WRF a contribution to the CORDEX initiative by the Spanish WRF community

Thank you!

Contact: fernandej@unican.es

Coordinated regional climate downscaling experiment using WRF a contribution to the CORDEX initiative by the Spanish WRF community

CORWES Task Diagram

