International Conference on the CORDEX, 21-26 March 2011, Trieste, Italy

Suhee Park, Hyun-Suk Kang, and ChunHo Cho

National Institute of Meteorological Research (NIMR)/KMA

Contents

Æ

- Introduction
- Experimental design
 - Model domain: CORDEX-East Asia domain
 - Model description: HadGEM3-RA
- Evaluation results
 - Mean climate
 - Inter-annual variability
 - Climate extreme
- Summary and concluding remarks

Introduction

- UM-based regional climate modeling in KMA
 - KMA is using the UM-regional model for dynamical downscaling over the East Asian region according to the collaboration agreement between Korea Meteo rological Administration (KMA) and Met Office (2008).
 - HadGEM3-RA (vn7.6) is being used as a main tool of dynamical downscaling for both CORDEX (50-km) domain over the East Asian region and high resolu tion (12.5 -km) domain around the Korean peninsula.
- Status and Plan for the CORDEX project
 - ERA-Interim forcing experiment (1989~2008): Done
 - Met Office Hadley Centre kindly provided the ERA-Interim LBC data and various pat ch code for regional climate run.
 - HadGEM2-AO's historical run forcing experiment (1950~2005)
 - HadGEM2-AO's RCP 3/4.5/6/8.5 run forcing experiment (2006~2100)

Goal of this talk

 To evaluate the dynamical downscaling ability of HadGEM3-RA over the East Asian region based on the ERA-Interim forcing experiment

Experiment Design: CORDEX-East Asia domain

- Model domain : Region 7 East Asia in CORDEX domains
 - RotPole (295.22; 77.61), TLC (319.08; 46.20), Nx=203, Ny=167, resolution=0.44 deg

- ✤ Lateral boundary condition: ERA-Interim data
- Simulation period: 1989 ~ 2008 (20 years)

Model description

- Regional climate model: HadGEM3-RA
- A regional atmospheric model based on the global atmospheric model, HadGEM3, of the Met Office Hadley Centre

In this study, a proto-type configuration of HadGEM3-RA was used.

		Description				
Dynamics		Non-hydrostatic, Arakawa-C grid (horizontal) and Charney-Phillips grid (vertical), semi-La grangian advection, conservative monotone treatment of tracers, semi-implicit time integration (Davies et al. 2005)				
Physics	Radiation	General 2-stream radiation (Edwards and Slingo 1996; Cusack et al. 1999a)				
	Boundary layer	Nonlocal mixing scheme for unstable layers (Lock et al. 2000). Local number scheme for stable layers (Smith 1990)				
	Microphysics	Mixed phase scheme including prognostic ice content; solves physical equations for micr ophysical processes using particle size information (Wilson and Ballard 1999)				
	Convection	Revised mass flux scheme from Gregory and Rowntree (1990) including triggering of d ep and shallow cumulus convection based on the boundary layer scheme and paramet ized entrainment/detrainment rates for shallow convection (Grant and Brown 1999)				
	Gravity wave drag	Orographic scheme including flow blocking (Webster et al. 2003)				
	Land surface	MOSES-II (Essery et al. 2003); nine surface tile types plus coastal tiling				

Evaluation results 1 - Mean surface climate

Performance: Precipitation

20-yr mean annual precipitation (1989~2008)

GPCP: Global Precipitation Climatology Project; monthly, 2.5x2.5
UDEL: the University of Delaware precipitation (v.2.01); monthly, 0.5x0.5

- > The precipitation distributions of both ERA-Interim and HadGEM3-RA are similar to observation.
- HadGEM3-RA could resolve small-scale features.

Performance: Precipitation bias

Difference of 20-yr mean annual precipitation from observation

ERA - GPCP

RCM - GPCP

Performance: Precipitation

(f)

20-yr mean summer precipitation (JJA 1989~2008)

- > The precipitation distributions of both ERA-Interim and HadGEM3-RA are similar to observation.
- > It is clear that the HadGEM3-RA could produce small-scale information, especially around coastal regions.

Performance: Precipitation

Difference of 20-yr mean summer precipitation from observation

ERA - GPCP

RCM - GPCP

Low level circulation

✤ 20-yr mean summer 850-hPa wind and humidity (JJA 1989~2008)

Observation

Bias

Performance: Precipitation

(f)

20-yr mean winter precipitation (DJF 1989~2008)

Precip. DJF (89-08) [GPCP:2.5deg]

ERA-Interim

6 8 10 12 14 16 18 20 22 24 26 28

HadGEM3-RA

Performance: Precipitation

Difference of 20-yr mean winter precipitation from observation

ERA - GPCP

RCM - GPCP

Performance: Surface Air temperature

✤ 20-yrs mean annual surface air temperature (1989~2008)

•Observation: the University of Delaware precipitation and temperature (v.2.01); monthly, 0.5x0.5

- > The HadGEM3-RA could reproduce the climatological distribution of mean annual temperature.
- > It is clear that the HadGEM3-RA could resolve small-scale features related with topography.

Performance: Surface Air temperature

✤ 20-yr mean summer surface air temperature (JJA 1989~2008)

Performance: Surface Air temperature

20-yr mean winter surface air temperature (DJF 1989~2008)

Statistics: Precipitation & Temperature (Land)

Mean of observation and hadGEM3-RA, bias, Root-mean-squared error (RMS
E) and pattern correlation coefficient of precipitation and temperature.

Variables		Mean (UDEL)	Mean (Model)	Bias	RMSE	Pattern Corr
	ANN	2.56	3.61	1.05	1.24	0.835
Precip. (mm/day	JJA	4.23	5.90	1.67	2.32	0.759
)	DJF	1.48	1.91	0.43	0.64	0.883
Tanan	ANN	10.8	10.1	-0.6	1.6	0.982
(deg C)	JJA	20.6	20.6	0.0	1.4	0.958
	DJF	-0.5	-1.5	-1.0	2.4	0.983

Sub-domains for annual cycle analysis

Two sub-domains: EAS and SEA

Performance: Annual cycle

20-yr mean annual cycle of domain-averaged precipitation and surfac e air temperature (1989~2008): East Asia

Performance: Annual cycle

 20-yr mean annual cycle of domain-averaged precipitation and surfac e air temperature (1989~2008): Southeast Asia

Evaluation results 2 - Climate variability (Inter-annual variability)

Inter-annual variance: Precipitation

> Although HadGEM3-RA has stronger inter-annual variance, general pattern is reproduced well.

Inter-annual variance: Precipitation

Standard deviation of summer mean precipitation

ERA-Interim

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 5 7 9 Std.Dev. Precip. JJA [ERA-Interim:1.5deg]

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 5 7 9

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 5 7 9 Std.Dev. Precip. JJA [HadGEM3-RA:0.5deg]

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 5 7 9

HadGEM3-RA

Inter-annual variance: Precipitation

Standard deviation of winter mean precipitation

ERA-Interim

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 5 7 9 Std.Dev. Precip. DJF [ERA-Interim:1.5deg]

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 5 7 9

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 5 7 9 Std.Dev. Precip. DJF [HadGEM3-RA:0.5deg]

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 5 7 9

HadGEM3-RA

> Although HadGEM3-RA has wet and cold biases, model show good inter-annual variation.

Inter-annual variation: Precipitation and SAT

Annual precipitation and temperature averaged over sub-regions

Inter-annual variation: Precipitation and SAT

Summer precipitation and temperature averaged over sub-regions

Inter-annual variation: Precipitation and SAT

Winter precipitation and temperature averaged over sub-regions

Evaluation results 3 - Climate extreme (Daily precipitation)

Daily precipitation intensity

Number of rainy day based on daily precipitation intensity

- Observation: APHRODITE's Water Resources (Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources); daily, 0.5x0.5 (and 0.25x0.25)
- > In EAS sub-region, rainy days at all intensity are overestimated.
- > In SEA sub-region, rainy days at light and extreme intensities are underestimated.

Daily precipitation intensity and amount

Sub-region: East Asia

		Light (0.1-1)	Moderate (1-10)	Heavy (10-30)	Extreme (30-)	Total
Number of	OBS	63.6	70.0	18.8	4.5	157.0
day	RCM	76.4	92.9	27.8	5.7	202.8
Total Amou	OBS	26.1	263.6	313.8	220.4	823.9
nt	RCM	31.6	356.7	461.1	269.3	1118.8

Daily precipitation intensity and amount

Sub-region: Southeast Asia

		Light (0.1-1)	Moderate (1-10)	Heavy (10-30)	Extreme (30-)	Total
Number of	OBS	70.3	129.3	42.0	9.3	250.9
day	RCM	37.1	143.3	120.7	6.8	307.9
Total Amou	OBS	31.7	522.5	699.3	445.6	1699.0
nt	RCM	17.0	763.4	1811.7	316.0	2908.0

GEV analysis : Probability density function

GEV analysis: Fitting time series of annual maximum daily precipitati on to generalized extreme value (GEV) distribution

- > In EAS sub-region, PDF of model extreme shifted to strong intensity and variance.
- > In SEA sub-region, PDF of model extreme shifted to weak intensity and variance.

GEV analysis : 20-year return value precipitation

GEV analysis: 20-year return value of maximum daily precipitation

- > In EAS sub-region, 20-yr return value precipitation tends to overestimated.
- > In SEA sub-region, 20-yr return value precipitation tends to underestimated.

Summary and concluding remarks

- Twenty-year integrations on CORDEX-EA domain (50km) forced by y the ERA-Interim data have been conducted by the HadGEM3-R A of proto-type.
- The model performance of mean climate, annual cycle, inter-annual variability and climate extreme are evaluated.
- Results reveals that the HadGEM3-RA has the dynamical downsc aling ability for the CORDEX-East Asia domain.
- Meanwhile, HadGEM3-RA show generally wet and cold biases. T herefore, we will test the final version of HadGEM3 with new confi guration in model physics options.

