Multi-RCM Simulations and Bias Assessm ent for CORDEX-East Asia

Hyun-Suk Kang¹, Myung-Seok Suh², Dong-Kyou Lee³, Song-You Hong⁴, Suk-Jin Choi³, Chun-Ho Cho^{1,} Won-Tae Kwon¹

¹ National Institute of Meteorological Research, Korea Meteorological Administration, Seoul, Korea
 ² Department of Atmospheric Sciences, Kongju National University, Kongju, Korea
 ³ School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
 ⁴ Department of Atmospheric Sciences, Yonsei University, Seoul, Korea

International Conference on CORDEX, 21 – 26 March, 2011, Trieste, Italy

Introduction

- What We've Done
 - Optimal Physics Configuration (Convection and Micro-physics)
 - Lateral Boundary Forcing (ERA-interim, NCEP/DOE RA2)
 - 20-year-long (1989-2008) Simulations with Multi-RCMs
- Summary

- Korea Meteorological Administration (KMA) is coordinating a collabo rative program with domestic universities for CORDEX-East Asia – 4 RCMs and 1 SD are involved from three universities.
- The motivation, objective, and frameworks of this project are exactly same to the CORDEX for not only the ESA-44 domain but also th e Korea domain with higher resolution (0.11 deg)

Time-line and Contents

	Year1 (2010)	Year2 (2011)	Year3 (2012)		
	Evaluation Framework	Projection Framework			
Model	M	IM5, WRF, RegCM4, RSM			
Domain	East Asia (0.44 deg)	East Asia (0.44 deg), Korea (0.11 deg)			
Lateral BC	ERA-interim, NNRP2	HadGEM2-AO (or one more CMIP5 GCM if available)			
Simulation Period	1989-2008	1981-2010 2041-2070	2071-2100 2011-2040		
RCP	N/A	8.5, 4.5	8.5, 4.5		
Statistical Downscali ng	 Evaluation of PRI SM module CCA based Transfe 	 Application SD to t he projection Bayesian method 	Uncertainty Assessm ent with Bayesian m ethod		
	r function	development			

Physics Configuration

MM5

CORDEX East Asia (50 km) 197 (Lat) X 233 (Lon)

Period: Jan. ~ Dec. 1989

Vertical layers (top)	24 sigma layers (70 hPa)
Cumulus convection	Anthes-Kuo(AK)/ Grell(GR)/ Kain-Fritch (KF)/ Kain-Fritch2(KF2)
Explicit moisture	Simple Ice(SI)/ Reisner2(R2)
Radiation	CCM2 package
PBL	YSU
LSM	NCAR CLM3
Forcing & initial data	ERA-interim
WRF	
Vertical layers (top)	27 sigma layers (70 hPa)
Cumulus convection	Betts-Miller(BM)/ Grell-Devenyi(GD)/ Kain-Fritch2(KF2)
Explicit moisture	WSM3/ WSM6
Radiation	RRTM/Dudhia
PBL	YSU
LSM	Unified Noah
Forcing & initial data	ERA-interim

Annual Precipitation (MM5)

(Spatial Corr.)

2 4 6 8 10 12 14 16 18 20 22 24 2

500 hPa Temp. Bias (MM5)

-2 -1.5 -1 -5 0 .5 1 1.5 2

-2 -1.5 -1 -.5 0 .5 1 1.5 2

-2 -1.5 -1 -.5 0 .5 1 1.5 2

-2 -1.5 -1 -.5 0 .5 1 1.5 2

-2 -1.5 -1 -.5 0 .5 1 1.5 2

-2 -1.5 -1 -.5 0 .5 1 1.5 2

-2 -1.5 -1 -.5 0 .5 1 1.5 2

-2 -1.5 -1 -.5 0 .5 1 1.5 2

Statistics of precipitation (MM5)

Model	OBS (mm day ⁻¹)	Simulated preci. (mm day ⁻¹)		BIAS (mm day ⁻¹)	RMSE (mm day ⁻¹)	S.C.	
	,	Total	Conv.	Non-Conv.			
AK_SI		3.91	3.35	0.56	0.31	1.89	0.66
GR_SI		6.17	4.03	2.13	1.95	4.43	0.52
KF_SI	_	6.14	4.13	2.01	1.92	4.76	0.50
KF2_SI	4.00	6.88	4.69	2.19	2.66	4.92	0.71
AK_R2	- 4.22	3.37	2.92	0.44	0.85	2.16	0.58
GR_R2		4.35	3.50	0.85	0.13	2.83	0.45
KF_R2		4.61	3.71	0.90	0.39	2.36	0.63
KF2_R2		5.35	4.4	0.95	1.13	2.31	0.77

Statistics of precipitation (WRF)

Model	OBS (mm day ⁻¹)	Simulated preci. (mm day ⁻¹)		BIAS (mm day⁻¹)	RMSE (mm day⁻¹)	S.C.	
		Total	Conv.	Non-Conv.			
BM_WSM3		5.20	4.01	1.19	0.99	3.32	0.71
GD_WSM3	_	4.01	3.55	0.46	-0.21	2.56	0.61
KF2_WSM3	4 22	5.60	4.82	0.78	1.38	2.76	0.79
BM_WSM6	4.22	6.46	3.70	2.76	2.24	5.46	0.70
GD_WSM6		4.66	4.14	0.53	0.45	2.78	0.67
KF2_WSM6		7.11	5.91	1.20	2.89	5.92	0.76

Sensitivity to Reanalysis Forcing

	ERA-interim	NCEP/DOE (RA2)
Horizontal Resolu tion	Triangular truncation of 255 wa ves (~80 km)	Triangular truncation of 62 wav es (~200 km)
Vertical Resolutio n	Hybrid vertical 60 levels	28 sigma levels
Assimilation syste m	4DVAR (time window, 12 h)	3DVAR

 Experiments
WRF_INT
WRF_RA2

Simulation period

Jan. 1989 – Dec. 1989

WRF Configuration

Vertical layers (top)	27 sigma layers (70 hPa)		
Cumulus convection	Kain-Fritch2(KF2)		
Explicit moisture	WSM3		
Radiation	RRTM/Dudhia		
PBL	YSU		
LSM	Unified Noah		
Forcing & initial data	ERA-Interim, NCEP/DOE RA2		

Annual Precipitation

2 4 6 8 10 12 14 16 18 20 22 24 26 28

WRF_INT

WRF_RA2

2 4 6 8 10 12 14 16 18 20 22 24 26 28

-7.5 -4.5 -1.5 1.5 4.5 7.5

ERA-interim vs. NNRP2

Statistics of Precipitation

Model	Reanalysis	Physics combination (CPS_EMS)	BIAS (mm day ⁻¹)	RMSE (mm day ⁻¹)	Spatial Correla tion.
		AK_SI	-0.70	2.17	0.57
		AK_R2	-1.17	2.44	0.49
		GR_SI	1.24	4.06	0.45
		GR_R2	-0.49	2.73	0.36
	MNIXF Z	KF_SI	0.83	3.30	0.52
		KF_R2	-0.31	2.08	0.60
	_	KF2_SI	1.54	3.49	0.71
MM5		KF2_R2	0.69	2.55	0.75
NIN S		AK_SI	-0.31	1.89	0.66
		AK_R2	-0.85	2.16	0.58
		GR_SI	1.95	4.43	0.52
	EDAIN	GR_R2	0.13	2.83	0.45
	LIXAIN	KF_SI	1.92	4.76	0.50
		KF_R2	0.39	2.36	0.63
		KF2_SI	2.66	4.92	0.71
		KF2_R2	1.13	2.81	0.77
		BM_WSM3	0.35	2.86	0.62
		BM_WSM6	1.41	4.52	0.63
		GD_WSM3	-0.54	2.17	0.63
		GD_WSM6	0.06	2.19	0.69
		KF2_WSM3	0.70	2.39	0.76
WDE		KF2_WSM6	2.06	4.92	0.71
VVINI		BM_WSM3	0.99	3.32	0.71
		BM_WSM6	2.24	5.46	0.70
	EDAIN	GD_WSM3	-0.21	2.56	0.61
		GD_WSM6	0.45	2.78	0.67
		KF2_WSM3	1.38	3.16	0.79
		KF2_WSM6	2.89	5.92	0.76

Spatial Correlation

- Most skillful combinations of the p hysical parameterization schemes a re KF2_R2 for MM5 and KF2_W SM3 for WRF.
- ERA-interim is better in terms of p attern correlation, but not for bias a nd RMS error.

<u>Configuration of RCMs for</u> <u>**CORDEX-East Asia**</u>

	RegCM4	RSM	MM5	WRF	
Dynamical core	Hydrostatic	Hydrostatic	Non-hydrostatic	Non-hydrostatic	
Vertical levels	σ-18	σ-22	σ-24	σ-27	
PBL	Holtslag	YSU	YSU	YSU	
Deep Convection	Emanuel	SAS	KF2	KF2	
Cloud micro physi cs	SUBEX	WSM1	Reisner2	WSM3	
LSM	CLM	NOAH	CLM3	Unified NOAH	
LW Radiation	CCM3	GFDL	CCM2	RRTM	
SW Radiation	CCM3	GSFC	CCM2	Dudhia	
Spectral nudging	Yes, but with different formula for each model				
LBC forcing	ERA-interim, NCEP/DOE RA2				

Taylor Diagram for Precip. & Sfc Temp.

.

Bias of Sub-regional Precipitation

SC (Southern China)KR (Korea)ID (India)CC (Central China)JP (Japan)NC (Northern China)MG (Mongolia)MC (Manchuria)IC (Indochina)

Annual Cycle of Precipitation

Interannual Variability in East Asia (2 0-50°N, 105-140°E)

Correlations: RegCM4 (0.79), RSM (0.39), MM5 (0.89), WRF (0.83)

Performance based Ensemble Averaging (PEA): A Modified REA based on Giorgi and Mearns (2002)

Idel Bias $\Delta T_i = \frac{1}{N_p} \sum_{p=1}^{n} (T_{isp} - I_{op})$ Simple Average Model Bias $\Delta \overline{T} = \frac{1}{N_M} \sum_{i=1}^{N_M} \Delta T_i$ The model Averaging $\Delta \widetilde{T} = \frac{\sum_{i=1}^{N_M} MR_i \Delta T_i}{\sum_{i=1}^{N_M} MR_i}$

Modified Reliability Factor

$$MR_i = \frac{1.0}{[Abs(Bias_i) + 1.0]} \times \frac{1.0}{(RMSE_i + 1.0)} \times Abs(Corr._i)$$

 N_n : Number of point N_i: Number of Model T_{isp} : Simulated value at point p by model i

T_{op}: Observed value at point

 ΔT_i : Bias of the Model i

 $\Delta \widetilde{T}$: *M*odified

Bias over South Korea

Interannual Variability of RMSE

Summary

- With the most skilful precipitation physics, each RCM demonstrates the substantial reproducibility for precipitation and surface air temperature.
- RCM simulations driven by two reanalysis are different mainly in tropics, which is caused by more moist (roughly ~ 0.8 g/kg) and stronger southward circulation in the ERA-interim compared with the NCEP/DOE RA2.
- In 20-yr long simulations, in general, each RCM tends to overestimate precipitation over Southern China and Indochina peninsula due to the enhanced summer monsoon
- The performance based ensemble averaging approach improves performance of simulation results.

<u>Plan</u>

- Based on the results of evaluation framework's simulations, the metrics for GCMs, RCMs, RCPs, and periods should be confirmed very soon for projection framework.
- Robust diagnostics for specific sub-regions and phenomena (e.g., monsoon, typhoons, heavy rainfall, heat waves, etc...) are required.
- Other participants, particularly RMIP community, who are interested in East-Asia domain are always welcomed for contribution to KMA-APCC Data Center to share data, analysis experiences, and scientific knowledge.