

Use of high-resolution modelling techniques in Australia: examples and some issues

Climate Adaptation National Research Flagship

Penny Whetton

vww.csiro.au

Acknowledgements: Jack Katzfey, John McGregor, Kevin Hennessy, John Clarke, Ian Watterson, David Kent and others

Outline

- Where I am coming from
- Australian regional modelling applications
 - CCAM
 - Other
- GCM selection issue

Climate change in Australia (2007)

- Probabilistic projections for seven variables
- CMIP3 database
- Full uncertainty sampling
- No downscaling

Reactions

- Multiple variable combinations
- Demand for finer resolution
- Massive demand for future
 application ready data sets

www.climatechangeinaustralia.gov.au

Where I am coming from

Planning new national projections for 2013/14

Considering the role dynamical and statistical downscaling will play in these

- CORDEX

Concerns regarding representation of uncertainty

- GCM selection issue
- Dependence on one or two downscaling techniques

CCAM (McGregor and Katzfey, CSIRO)

- Lateral boundaries
 - Stretched-grid
- Domain size and placement
 - Stretched-grid
 - Scale-selective filter
- Ensembles
 - Downscale multiple GCMs
- Host model forcing
 - Bias-adjusted SSTs (with or without nudging)
- Variability internal and external (from host model)
 - External same as GCMs (ENSO)

CCAM regional applications

- 'Climate Futures Tasmania'
- Pacific
- Indonesia
- Other

Climate Futures Tasmania

- Major research program
- CCAM-based climate scenarios
- Multi-sectoral impact assessment

Acknowledgements: Grose, MR, Corney SP, Bennett JB, Bindoff NL, Katzfey, J, and McGregor, J.

Australian Government Bureau of Meteorology

Australian Government

Attorney-General's Department

Australian Government

Geoscience Australia

Tasmania Explore the possibilities

CCAM modelling for Climate Futures Tasmania

1) 60 km C64 runs over Australia for Climate Futures Tasmania (1961-2100) –
 140 years

-		
Mk3.5	A2	B1
GFDL 2.1	A2	B1
GFDL 2.0	A2	B1
ECHAM5	A2	B1
HADCM3	A2	B1
MIROC-Med	A2	B1

2) 14 km C48 runs over Tasmania Australia (1961-2100) – 140 years downscaled from above 60 km CCAM runs

Current climate rainfall simulation

Simulated annual rainfall for Tasmania at different resolutions

Climate projections mean rainfall (6 model mean)

1980-1999 to 2090-2099 SRES A2

Summer rainfall response – impact of downscaling

Assessing runoff changes

Percent runoff change 2070-2099 v 1961-1990

Biologically Effective Growing degree days 1975-2030-2085

Pinot Noir

DJF rainfall chg (2085-1985) – GCMs v CCAM

DJF rainfall chg (2085-1985) – GCMs v CCAM

gfdlcm21

ukhadcm3

gfdlcm21 - CCAM

ukhadcm3 -CCAM

Pacific Climate Change Project (PCCSP)

- Same six GCMs and A2
- Uses monthly bias-corrected SSTs
- Grid resolution is about 60 km (C160)
- Simulations from 1961-2100
- Downscaled to 8 km over seven islands
 - employing digital filter
- New set of runs with mixed-layer ocean

C48 grid - 200 km. Actually used C160 grid - 60 km

Multi-model dynamical downscaling methodology for Pacific

- To dynamically simulate the regional climate, we need to address:
 - •Uncertainty in regional climate model dynamics/ physics
- PCCSP additional downscaling
- Two time periods: 1981-2000, 2046-2065

Ensemble of Regional Climate Models, in addition to CCAM

Observed DJF rainfall and NCEP-based simulations

Indonesia ensemble CCAM 60 km simulations

- Same six GCMs and A2
- Uses monthly biascorrected SSTs
- Proceeds via 200 km quasiuniform CCAM simulations
- Final grid resolution is about 60 km
- 60 km simulations from 1971-2000, 2041-2060, 2081-2100

Stretched C48 grid with resolution about 60 km over Indonesia

WRF in use at University of NSW (Jason Evans)

Selecting Model Subsets

- Much interest in this issue in the region
 - Both for downscaling and other purposes
 - Attempts to pick best models
- An issue in the CCAM work

Do we know how to select a set of best models?

Smith and Chandler (2010) (updated)

	А	В	С	D	E	F	G	Н	l I	J	K
	Aus	Aus	Aus	Aus	ENSO	North	MDB	MDB	GLOBE	NH	SH
						Pacific					
BCCR-BCM2.0	<mark>5</mark>	5	<mark>590</mark>	Yes		<mark>No</mark>	<mark>No</mark>		No		No
CCSM3	0	2	677	<mark>No</mark>	No	Yes	No		Yes	7	Yes
CGCM3.1(T47)	1	<mark>8</mark>	<mark>518</mark>	<mark>N</mark> o	<mark>No</mark>	Yes	Yes	<mark>N</mark> o	Yes	<mark>10</mark>	
CGCM3.1(T63)	1	<mark>10</mark>	<mark>478</mark>			Yes	<mark>No</mark>		Yes		Yes
CNRM-CM3	0	4	<mark>542</mark>		No	<mark>No</mark>		<mark>N</mark> o	No	3	No
CSIRO-Mk3.0	1	7	601	Yes	<mark>No</mark>	<mark>No</mark>	Yes	<mark>No</mark>	No	<mark>14</mark>	Yes
ECHAM5/MPI	0	1	700	Yes	Yes	<mark>No</mark>	<mark>No</mark>	<mark>N</mark> o	Yes	1	Yes
ECHO-G	0	4	632	Yes	<mark>No</mark>	Yes	Yes	<mark>No</mark>			
FGOALS-G1.0	<mark>2</mark>	2	639	<mark>No</mark>	<mark>No</mark>	<mark>No</mark>	Yes		No	<mark>15</mark>	No
GFDL-CM2.0	0	2	671	Yes	Yes	Yes	<mark>No</mark>	Yes	Yes	5	No
GFDL-CM2.1	0	2	672	Yes	Yes	Yes	<mark>No</mark>	Yes	Yes	2	Yes
GISS-AOM	1	8	<mark>564</mark>	<mark>No</mark>	<mark>No</mark>	<mark>No</mark>	Yes		No		
GISS-EH	<mark>5</mark>	<mark>14</mark>	<mark>304</mark>		<mark>No</mark>	<mark>No</mark>			No		No
GISS-ER	0	<mark>8</mark>	<mark>515</mark>	Yes	<mark>No</mark>	<mark>No</mark>	<mark>No</mark>	<mark>No</mark>	No	12	No
INM-CM3.0	1	7	627		No	<mark>No</mark>		Yes	No	8	No
IPSL-CM4	2	<mark>14</mark>	<mark>505</mark>	No	No	<mark>No</mark>	Yes		No	11	No
MIROC3.2(hires)	0	7	608		Yes	Yes	Yes		Yes		Yes
MIROC3.2(medres)	<mark>2</mark>	7	608	Yes	Yes	Yes	Yes	<mark>N</mark> o	Yes	Λ	No
MRI-CGCM2.3.2	1	3	601	<mark>N</mark> o	<mark>No</mark>	Yes	Yes	Yes	Yes	N	
РСМ	<mark>3</mark>	<mark>11</mark>	<mark>506</mark>		<mark>No</mark>	<mark>No</mark>			No		NO
UKMO-HadCM3	0	6	608		Yes	Yes			Yes		
UKMO-HadGEM1	0	2	674		<mark>No</mark>	<mark>No</mark>			Yes		Yes

'Reliability' and 'Applicability' and a representative subset of models

- In attempting to select we are not good at controlling for reliability: the extent to which we can trust the simulated future climate change
- Even if we could chose more reliable models, the 'robust decision-making*' approach to adaptation requires the range of plausible climates to be considered, not just more likely ones.
- However some models are clearly more *applicable:* have greater realism of simulated surface climate in variables relevant to impact applications
- Choose a subset of applicable models which are representative of the range of plausible future climates
 - * Lempert & Schlesinger, 2000, Dessai 2009

Classifying and using plausible future climates

	Little change up to 0.5C warmer	Warmer 0.5 to 1.5C warmer	Hotter 1.5 – 3.0C warmer	Much hotter more than 3.0C warmer
Much wetter (more than +15%)	No evidence	No evidence	No evidence	No evidence
Wetter (0 to 15% wetter)	No evidence	No evidence	Unlikely 4 models	Very unlikely (CGM3.1 T47)
Drier (0 to 15% drier)	No evidence	Very unlikely (GISS AOM)	As likely as not 10 models	Unlikely 3 models
Much drier (More than 15% drier)	No evidence	No evidence	Very unlikely CNRM-CM3,CSIROmk3	Very unlikely CSIRO Mk3.5, IPSL

SE Australia region, A1FI, 2070

- Usually T and P, but not always
- With users, subset of climates selected and then populated with applicable data sets
- Probability?
- Classifying downscaled data without seeing them?
- Different models selected by user and sector

Simulated Australian climate change and regional SST (Watterson, submitted)

PID = Warming in Eq. Eastern Pacific minus warning in the Eq Western Indian

Correlation of CMIP3 simulated precipitation changes with a regional index of SST changes: 'PID'

CMIP3 model spread, PID and global SST (I. Watterson, submitted)

In most locations 60% of range of change captured

Concluding comments

- Various recent CCAM based simulations available for the region based on six GCMs
 - Well analysed only in some sub-domains
 - Analysis under way for the Southwest Pacific region
 - Set of 60km simulations available globally (i.e. for CORDEX regions)
- Encourage simulations for the Australian region!
- Some methods for model selection presented
 - Temperature and precipitation
 - Regional climate drivers (SST warming patterns), possibly preferable

