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The problem

• Institutional portfolios are large, number of items
N >> 1

• Sampling frequency cannot be high (one doesn’t
rebalance a portfolio every second), the look-back
period cannot be long (lack of stationarity),
therefore the size of the samples (length of time
series T) is not large enough.

• One cannot make a good decision without
sufficient information



Estimation error

• The estimation error strongly depends on the ratio
N/T: for N/T → 0 the error is small, for N/T ~ O(1) it
can be very large, at a critical value (N/T)c it actually
diverges. (An algorithmic phase transition takes
place.)

• Large portfolios are close to this critical point, or
they are even on the „wrong side” of it, with N/T > 1.

• This is a generic problem in high dimensional
statistical optimization (social, medical sciences,
gene chips, climate research, etc.)



Classical portfolio theory

• Markowitz: the risk measure is the variance to be
minimized subject to the budget constraint and
possible other linear constraints.

• Its critical point is at (N/T)c = 1, where the covariance
matrix first develops a zero eigenvalue.

• The variance is not an adequate risk measure for fat-
tailed items.

• A host of alternative risk measures are being
considered: mean absolute deviation, VaR, Expected
Shortfall, other coherent measures, etc.



Consider the following trivial investment problem
(N = 2,  T = 1)

N = 2 assets with returns:      and      , iid normal, say,
and a sample of size T = 1, that is a single observation.
Let us choose the Maximal Loss (ML), the best
combination of the worst losses, as our risk measure:

This is a coherent measure, in the sense of Artzner at al.,
a limiting case of Expected Shortfall (ES).
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In the particular case of   N=2, T=1
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Our optimization problem is then
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The two cases
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ML as a risk measure is unbounded with probability 1,
 if N =2 and T = 1.



If there are some constraints, e.g. short
selling is banned, 0iw >
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So, for N = 2, T = 1 (and also for any N › T)

Without constraint:
the risk measure ML is not bounded with
probability 1, there is no solution, we are
tempted to go infinitely long in the dominant
item, and infinitely short in the dominated one.

With constraint:
the risk measure is bounded but monotonic, so
with probability 1 we go as long as allowed by
the  constraint in the dominating item, and take
a zero position in the dominated one.



The same for N = 2 and T = 2

                                         , where
 and

There is no solution if                  and                , or
                  and                   , that is when one of the items
 dominates the other in the sample. This happens with
 probability ½ (assuming iid variables, say).

There is a finite solution if               and               , or
                and                  , that is when none of the items
 dominates the other.The probability of this event is 1/2 again.
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Geometrically



For N =2, T =2 there is no solution with probability
1/2, and there is a finite solution with probability 1/2.
When one of the items dominates, there is no finite
solution, unless we impose some constraints. Then
we go as long as allowed by the constraints in the
dominating item, and take zero position as in the
dominated one.

When neither of them dominates, we have a finite
solution that may or may not fall inside the allowed
region.









• The existence of a finite solution depends on the
sample, therefore it is a probabilistic event.

• Although the constraints may prevent the solution
from running away to infinity, they do not quite
stabilize it: If a set of weights vanishes for a given
sample, a different set will vanish for the next
sample, the solution jumps around on the boundaries
of the allowed region.

• The smaller the ratio N/T, the larger the probability of
a finite solution, and the smaller the generalization
error.

• In real life N/T is almost never small; the limit N,T
→∞, with N/T = fixed, is closer to reality.



Probability of finding a solution for the minimax
problem (general N and T, elliptic underlying

distribution):
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In the limit N,T → ∞, with
N/T fixed, the transition
becomes sharp at N/T = ½.
The estimation error diverges
as we go to N/T= ½ from
below.



Generalization: Expected Shortfall

ES is the conditional expectation value of losses
above a high threshold. It has an obvious meaning,
it is easy to determine form historical time series, and
can be optimized via linear programming. ML is
the limiting case of ES, when the threshold goes to 1.
ES shows the same instability as ML, but the locus of
this instability depends not only on N/T, but also on
the threshold β above which the conditional average
is calculated. So there will be a critical line.



This critical line or phase boundary for ES has been obtained
numerically by I. K., Sz. Pafka, G. Nagy: Noise sensitivity of
portfolio selection under various risk measures, Journal of Banking
and Finance, 31, 1545-1573 (2007) and calculated analytically in A.
Ciliberti, I. K., and M. Mézard: On the Feasibility of Portfolio
Optimization under Expected Shortfall, Quantitative Finance, 7, 389-
396 (2007)

The estimation
error diverges as
one approaches
the phase
boundary
from below



Generalization stage II: Coherent measures

• The intuitive explanation for the instability of ES and ML is that
for a given finite sample there may exist a dominant item (or a
dominant combination of items) that produces a larger return at
each time point than any of the others, even if no such dominance
relationship exist between them on very large samples. This
mirage of arbitrage leads the investor to believe that if she goes
extremely long in the dominant item and extremely short in the
rest, she can produce an arbitrarily large return on the portfolio, at
a risk that goes to minus infinity (i.e. no risk).

• The same consideration is true for any coherent risk measure: I.
Kondor and I. Varga-Haszonits: Instability of portfolio
optimization under coherent risk measures, Advances in Complex
Systems, 13, 425-437 (2010)



Further generalization

• As a matter of fact, this type of instability appears even
beyond the set of coherent risk measures, and may appear
in downside risk measures in general.

• By far the most widely used risk measure today is Value at
Risk (VaR). It is a downside measure. It is not convex,
therefore the stability problem of its historical estimator is
ill-posed.

• Parametric VaR, however, is convex, and this allows us to
study the stability problem. Along with VaR, we also look
into the closely related parametric estimate for ES.

• Parametric estimates are expected to be more stable than
historical ones. We will then be able to compare the phase
diagrams for the historical and parametric ES.



Phase diagram for parametric VaR and ES
I. Varga-Haszonits and I. Kondor: The instability of downside risk

measures,  J. Stat. Mech. P12007   doi: 10.1088/1742-
5468/2008/12/P12007 (2008)



Adding linear constraints

In practice, portfolio optimization is always
subject to some constraints on the allowed
range of the weights, such as a ban on short
selling and/or limits on various assets,
industrial sectors, regions, etc. These
constraints restrict the region over which the
optimum is sought to a finite volume where no
infinite fluctuations can appear. One might
then think that under such constraints the
instability discussed above disappears
completely.



• This is not necessarily so. If we work in the vicinity
of the phase boundary, sample to sample fluctuations
in the weights will still be large, but the constraints
will prevent the solution from running away to
infinity. Instead, it will stick to the „walls” of the
allowed region.

• For example, for a ban on short selling (wi > 0) these
walls will be the coordinate planes, and as N/T
increases, more and more of the weights will become
zero. This phenomenon is well known in portfolio
optimization. (B. Scherer, R. D. Martin,
Introduction to Modern Portfolio Optimization with
NUOPT and S-PLUS, Springer, New York (2005))



• This spontaneous reduction of diversification occurs
even for iid variables, where it is entirely due to
estimation error and does not reflect any real
structure of the objective function.

• In addition, for the next sample a completely
different set of weights will become zero – the
solution keeps jumping about on the walls of the
allowed region.

• Clearly, in this situation the solution reflects the
structure of the limit system (i.e. the portfolio
manager’s beliefs), rather than the structure of the
market. Therefore, whenever we are working in or
close to the unstable region (which is almost always),
the constraints only mask rather than cure the
instability.



REGULARIZATION



A remedy from statistical learning
theory: regularization

• Large fluctuations have to be penalized by adding a
suitably chosen term to the objective function

• Choosing the regularizer: the L1 norm (the sum of the
absolute values of the weights) is related to imposing a
constraint on short selling. It prevents large longitudinal
fluctuations, but leads to an increasing number of zero
components as N/T increases.This may have advantages
(reduces transaction costs), but is dangerous when the
solution undergoes large sample fluctuations. (Brodie et
al. applied L1 regularization to the variance as risk
measure.)

• The advantages and dangers of sparse solutions.



Regularizing ES via the L2 norm

• This is related to support vector machines: S. Still and I.
Kondor: Regularizing portfolio optimization, New Journal of
Physics 12 075034 (2010)

• The L2 norm (the sum of the squares of the weights) represent
a diversification pressure and is logical to choose, given the
tendency of shrinking diversification.

• Alternatively: adding the L2 term to Expected Shortfall can be
interpreted as the effect of a linear market impact: F. Caccioli,
S. Still, M. Marsili and I. Kondor: Optimal Liquidation
Strategies Regularize Portfolio Selection, to appear in the
European Journal of Finance, (2011)

• L2 does indeed take care of the instability: the phase transition
disappears.







Closing remarks

Given the nature of the portfolio optimization
task, one will typically work in that region of
parameter space where sample fluctuations are
large. Since the critical point where these
fluctuations diverge depends on the risk
measure, the confidence level, and on the
method of estimation (historical or parametric),
one must be aware of how close one’s working
point is to the critical boundary, otherwise one
will be grossly misled by the unstable
algorithm.



• Downside risk measures have been introduced,
because they ignore positive fluctuations that
investors are not supposed to be afraid of.
Perhaps they should be: the downside risk
measures display the instability described here
which is basically due to a false arbitrage alert
and may induce an investor to take very large
positions on the basis of unreliable information
stemming from finite samples.

• In a way, the recent crisis is a macroscopic
example of such a folly.



• Regularization eliminates the instability and
prevents the weight vector from undergoing
large longitudinal fluctuations. The taming
of transverse fluctuations is a task still to be
attended to.

• The choice of the regularizer must be
justified: here we pointed out that it
represents a diversification pressure, but
also argued that linear market impact also
acts as an L2 regularizer.
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