

2229-12

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities

21 - 25 March 2011

Some mathematical properties of order book models

Frederic ABERGEL

Ecole Centrale Paris Grande Voie des Vignes 92290 Chatenay Malabry FRANCE

Some empirical and mathematical properties of limit order books

Frédéric Abergel Chair of Quantitative Finance École Centrale Paris http://fiquant.mas.ecp.fr

- > Joint works (some in progress) with I. Muni Toke, A. Jedidi
- > References
 - I. Muni Toke, *Market making behaviour and its impact on the Bid-Ask spread,* in *Econophysics of Order-driven Markets,* Abergel, F.; Chakrabarti, B.K.; Chakraborti, A.; Mitra, M. (Eds.), Springer, 2011
 - F. Abergel, A. Jedidi, A mathematical approach to order book modelling, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1740889
 - F. Abergel, A. Chakraborti, I. Muni Toke, M. Patriarca, *Econophysics I: empirical facts* and *Econophysics II: agent-based models*, to appear in *Quantitative Finance*

Summary

Empirical properties of the order book

- Stationary statistical properties
- Dynamical statistical properties

Mathematical models

- Mathematical framework
- Price dynamics

Limit order book

- A host of empirical studies going back to ~20 years, addressing the two following questions:
 - When will the next event take place ?
 - Where will the next event take place ?
- > Under independence assumptions: Zero-intelligence models

- Such unconditional statistics do not fully reflect the dynamics of a limit order book.
- > Many interesting phenomena are not described this way
 - Volatility clustering
 - Leverage
 - Autocorrelation of the order flow
- In real markets, agents observe the state of the market and adapt to it
- An example (Muni-Toke): empirical evidence of market making and market taking

> Following a market order

• New limit orders arrive more rapidly than unconditional limit orders

• No significant correlation between the respective signs of the market and limit orders

Statistical properties II Market making

Statistical properties II Market taking

Following a limit order

• New market orders do not arrive more rapidly...

• ... except when the limit order fell within the spread

- Several recent studies accounting for dependencies (Large 2007, Muni Toke 2010, Eisler 2010)...
 - Conditional inter-event duration
 - Lead and lag relationship
 - Conditional price and volume distributions
- > ... lead to models involving
 - State-dependent intensities and placement
 - Mutually excited processes

> The limit order book: a vector valued point process

Main questions to be addressed

- Stationarity
- Price and spread dynamics
- Scaling and long time asymptotics

Back to the simplest example: zero-intelligence model with limit orders, market orders and cancellations (Farmer, Smith, Guillemot, Krishnamurthy, 2003)

$$d L_{t}^{i\pm} \qquad \lambda_{L}^{i\pm} \frac{\Delta P}{\tau}$$

$$d M_{t}^{\pm} \qquad \lambda_{M}^{\pm} \frac{1}{\tau}$$

$$d C_{t}^{i\pm} \qquad \lambda_{C}^{i\pm} \frac{a_{i}}{\tau}, \lambda_{C}^{i-} \frac{b_{i}}{\tau}$$

> Two sets of variables

$$a_{1}, \dots, a_{N}; b_{1}, \dots, b_{N}$$

$$a_{i} \equiv a(i\Delta P) \qquad b_{i} \equiv b(i\Delta P)$$

$$A_{i} = \sum_{k=1}^{i} a_{i} \qquad B_{i} = \sum_{k=1}^{i} b_{i}$$

- Coupled dynamics
- > Two basic types of events
 - Jump: a change in the quantities
 - Shift : renumbering after a change of one of the best quotes

In this simple model, there exists a Lyapunov function (the total available volume), thanks to the exponential damping effect of cancellations

Therefore, there exists a stationary distribution with exponential convergence

> This result can be generalized to state-dependent intensities

Hawkes processes:

- a point process with stochastic intensity
- The intensity is excited by the previous jumps (autoregressive process)

$$\lambda_t^{j} = \lambda_0^{j} + \sum_{p=1}^{N} \int_{-\infty}^{t} \varphi_{jp} \left(t - s \right) dN_s^{P}$$

• Typical choice: exponential kernels

$$\lambda_t^{j} = \lambda_0^{j} + \sum_{p=1}^N \int_{-\infty}^t \alpha_{jp} e^{-\beta_{jp}(t-s)} dN_s^P$$

• Becomes a Markov process in 1D (or higher with equal decay rates)

- > Clustering of orders easily described
- > Leverage modelled thanks to asymetric kernels
- > Stationarity conditions related to the values of the Hawkes parameters

$$\left(E\left(\lambda^{j}\right)\right) = \left(Id - \left[\frac{\alpha_{jp}}{\beta_{jp}}\right]\right)^{-1} \left(\lambda_{0}^{j}\right)$$

 Stationarity conditions are found satisfied in empirical studies (Muni Toke, Hewlett, Large...)

Hawkes processes Spread distribution

> A consequence of better modelling: spread distribution

> Price dynamics depend on

- Events affecting the best limits
- The "first gap" process
- > A useful representation for the best Ask and Bid prices:

$$dP_{t}^{A} = \Delta P\left\{\left(\left(A_{t}^{-1}\left(\tau\right) - A_{t}^{-1}\left(0\right)\right)\left(dM_{t}^{+} + dC_{t}^{i_{A}+}\right)\right) - \sum_{i < B_{t}^{-1}\left(0\right)}\left(B_{t}^{-1}\left(0\right) - i\right)^{+} dL_{t}^{i_{A}+}\right)\right\}$$

$$dP_{t}^{B} = -\Delta P\left\{\left(\left(B_{t}^{-1}(\tau) - B_{t}^{-1}(0)\right)\left(dM_{t}^{-} + dC_{t}^{i_{B}-}\right)\right) + \sum_{i < A_{t}^{-1}(0)}\left(A_{t}^{-1}(0) - i\right)^{+} dL_{t}^{i_{B}-}\right\}$$

The expressions above provide a natural interpretation of the price changes: they are due to

- New limit orders that fall within the spread, for which one can safely assume some independence assumptions
- Events that modify the best quotes (either cancellations or market orders), for which the price changes depends on the first gaps $(A_t^{-1}(\tau) A_t^{-1}(0))$ and $(B_t^{-1}(\tau) B_t^{-1}(0))$

> The price process has the following representation

$$dP_t = \sum_i X_i^t dN_t^i$$

- A Bachelier market has a similar representation with i.i.d. marks
- The marks may be assumed to be identically distributed (under stationarity), but not independent.
- The long time dynamics is sensitive to the dependence structure of these processes

> A mathematical result

- The centered price process in a zero-intelligence model with proportional cancellation rate scales to a brownian motion in the long time limit
 - Not a surprise from the physicist's point of view...
 - A first general result relating order book models and classical price models
 - The "spurrious" randomness of the volatility due to the memory of the order book vanishes exponentially fast in this simple case
 - Extensions to state dependent intensities, Hawkes processes

- The case of local (endogenous) or stochastic (exogenous) intensities allows one to mimick some classical local and stochastic volatility models
- The "leaner" the order book, the closer the dynamics is to standard diffusion models
- Long memory may appear in the case of slow cancellation rates, slow decay kernel...

Conclusion

Empirical studies of the order book

- A large body of empirical results
- Conditional quantities contain a lot of relevant information
- The behaviour of market participants at the best limits tends to "control" the dynamics of price and spread

Mathematical modelling

- A general framework suitable for many extensions
- An approach bridging the gap between order book dynamics and price process