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Motivation
Macroeconomics: density forecasts of output and inflation from

@ Statistical time series models (Clements & Smith, 2000)
@ Professional forecasters (Diebold ef al., 1999)
@ Central banks producing ‘fan charts’ (Mitchell & Hall, 2005)
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Finance: Basis for risk management:
@ Value-at-risk (VaR)
@ Expedcted shortfall (ES)



Density forecast evaluation

One or more available density forecast(s) for sequence of
random variables { Y}
Example: one-step-ahead predictive densities

@ {Y;} is a scalar time series process

@ Predictive pdf?t(y) of Yiiq

How to evaluate such predictive densities if the true densities
are never revealed?

Well-known measure of predictive ability: mean squared
prediction error. However, suitable for point predictors only.
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Approaches

@ Probability integral transforms (PITs)
U1 = Fi(Yerr)

should be a sequence of independent UNIF(0,1) random
variables for a correct specification. (Diebold et al., 1998,
1999)

Also for the multivariate case (Rosenblatt, 1952)

© Scoring rules: assign a score to the predictive density for
each realised value Y;1, high (low) if f;(Y;,1) is high (low).

The average score is a measure for the quality of the
predictive densities.



Tests for equal predictive ability
Giacomini & White (2006): score difference

0y = S*(Fi Y1) — S™(8t: Vi),
Null hypothesis of equal scores, on average:
Ho: E(df4) =0, forallt=mm+1,..., T —1.

Mean score difference:
B 1 T
dmn= Bde+1 with n=T-m
t=m
Diebold-Mariano (1995) type test statistic:

*

dm,n

tmn = —F/——
\/ Um,n/n

%, N(0, 1)



Properness

Rational users would prefer p; over any incorrect density
forecast (Diebold et al., 1998; Granger and Pesaran, 2000)

= Natural to focus on proper scoring rules:

Ee (S* (i Yiu1)) <Ee(S™(pii Yirn)),  forallt.
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Logarithmic scoring rule
Log-likelihood score:

S (i Y111) = log fi(¥r:1)

Based on a sequence of n density forecasts and realisations, f
and g can be ranked according to average scores

1 N 1 N
nzt:bg fi(yt+1) and nzt:loggt(}’m)-

Test of equal predictive ability
Ho: E (df) ~0,
where

df = S'(Fi yis1) — S'(@r: Yest) = 109 Fi(Yi41) — 109 Ge(Yi1).
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Kullback Leibler information criterion
E (d*) can be interpreted as a difference of the distance of f
and g to the true model.
Kullback-Leibler information criterion (KLIC)
(Vi)

Eq (log pr(Ye1) — 10g (Yes) )
> 0

KLIC(/f\t) = [ pi(Vir1)log <Pt(}’t+1)> Ay 1

measures divergence between 7t and the true conditional
density p;.



Weighted logarithmic scoring rules

Amisano and Giacomini (2007) suggest weighted logarithmic
(WL) score

S" (i Yis1) = W(¥er1)10g fi(¥rs1)-

and
dtW/ = wW(Ype1) (Iog ft(y1+1) — log at(YI-H)) .

For financial applications (VaR, ES, ...) accuracy of the
predictive density in the lower tail is of particular importance

= put most weight in left tail, e.g. choose

wi(y) =1y <n)



Example: normal v.s. fat-tailed
Competing densities: N(0, 1) and standardised (5)

f(y) = (2r) 2 exp(-y2/2),  g(y) =8(1 +y2/3)~%/(3/3)
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Weighted probability scores (Gneiting & Ranjan, 2008)

Continuous ranked probability score:
ORPS(r yio1) = [ PS(FUr).Iyess < 1),

where

PS(Fi(r). 1(Ves1 < 1)) = (10esr < 1) = F(r))?

(Brier probability score for the forecast)

Weighted version:

o0

CRPS(?‘r,ym):/ wi(r)PS(Fi(r), I(yes1 < 1)) o,

—00
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Conditional and censored likelihood

Idea: require scores to have an interpretation as a log-likelihood

Why? Likelihood-based scores are well-adapted to model
comparison.

Expected score difference have an interpretation as a KLIC.

A correct forecast will receive higher average score than any
competing model (properness)
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Scoring rules based on conditional and censored
likelihood

Region of interest: A;

Conditional log-likelihood:

- B (Y1)
sl fi: = | € Af)log | ——~—
(f; Yi+1) = 1(Vt+1 € Ar) log (fA, (5)ds

Censored log-likelihood:

S (Fiyei1) = (¥t € Ar)log fi(yes)
+1(yi+1 € A7) log (fA,c ft(s)ds)
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Smooth scoring rules

Conditional log-likelihood

S%(h: yir1) = we(¥e41) log <fft((}/tzL1)>

Censored log-likelihood:

S (Fiyee1) = wi(Yerr)log f(yest) )
+(1 = wilyea))log (1~ [ wi(s)h(s)as)
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Properness of the new scoring rules

Assumption 1: The density forecasts f, and O satisfy

KLIC(%) < oo and KLIC(Qt) < o0, where

KLIC(h:) = [ pt(y)log (p:(y)/hi(y)) dy is the Kullback-Leibler
divergence between the density forecast h; and the true
conditional density p;.

Assumption 2: The weight function w;(y) is such that (a) it is
determined by the information available at time t and hence a
function of 7, (b) 0 < wy(y) < 1, and (c) [ w:(y)pt(y)dy > 0.

Lemma 1: Under Assumptions 1 and 2, the generalized
conditional likelihood scoring rule and the generalized censored
likelihood scoring rule are proper.
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Proof of Lemma 1

Define P = [ wi(s)pe(s)ds and F; = [ wi(s)%(s)ds

E: (dﬂ1(Pta?t)) = /pt < Iog< Pp)
—/Pt y) (Wt y)log <ft/(g-}:)>> ay

= Pt/W’(y,)gt)t(y)log ("W) dy

Wt(,AV) t(y)/Ft
_ p .k [ mWely) wNEY) | <
t P, ) /:_t =



empirical CDF

Empirical CDFs of scores under the threshold weight function
w(y) = I(y < —2.5). n=1000, 1000 replications, Y; ~ N(0, 1)

Example: normal v.s. fat-tailed (continued)

Simulated score differences for N(0, 1) and standardised t(5)
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Simulations for smooth weight functions

Weight functions of the form
w(y) =1/(1+exp(a(y —r))).
Sigmoidal function of y with center r and slope parameter a.

Here ris fixed at r = —2.5. The slope parameter a varies. For
a — oo the threshold weight function is recovered.

Integrals F; = [ #(x)wi(x)dx and G; = [ Gr(x)ws(x)dx
determined numerlcally
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w(y)

Weight functions for increasing smoothing parameter
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Monte Carlo simulations for size/power

Properties of test statistics for each score: HAC-estimators of
the standard error of the sample mean score

E.g. for the type [ scoring rule, the test statistic is
Q! = v/nd'/5!, where

5 —70+223k7k

where 5 denotes the lag-k sample covariance of the sequence
{d/}. The weights are taken as ax = 1 — k/K with K = |n~1/4].

Under the null hypothesis of equal predictive ability each of the
test statistics is asymptotically standard normally distributed

21/35



Size, simulation setup

Data generating process: Y; ~ N(0,1) IID

Competing forecasts:

N(0,-0,2) versus N(0,0.2)

Weight function:
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Size, results
DGP: IID N(0, 1), forecasts IID N(—0.2,1), N(0.2,1)

Weight function wi(y) =I(—r <y <r)

rejection rate
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Power: Simulation Setup

Building on motivating example:
DGP: 1ID N(0, 1) or IID standardised #(5).

Test equal predictive ability, versus two alternatives:

@ N(0, 1) forecast outperforms #(5)
@ t(5) forecast outperforms t(5)

Weight function: wi(y) = I(y < r)

To control for loss of power in the tails, the expected number of
observations in the left tail, ¢, is fixed.
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Power, results forc =5
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Left: DGP 11D N(0.1), Right: DGP IID std. t(5). Top: test of std.
t(5) against N(0, 1), bottom: test of N(0, 1)-against std. {(5).
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Power, results for ¢ = 40
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Left: DGP N(0.1), right: DGP std. ¢(5). Top: std. t(5) against
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Mean WL score E (d}"') as a function of the threshold value r,

for the standard normal DGP.
27/35



rejection rate

rejection rate

Symmetric case, ¢ = 200. Left: DGP: i.i.d. N(0, 1). Competing
densities N(0, 1) and std. t(5), weight function I(—r < y <r).
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Parameter estimation uncertainty

m 100 250 500 1000 2500 5000

H.: E(dj4)>0 0.000 0.000 0.024 0.134 0.339 0.463
H.: E(dj4)<0 0982 0.239 0.026 0.004 0.001 0.000

One-sided rejection rates, wy(y) = 1
DGP: AR(2): Yt =0.8Y;_1 +0.05Y;_2 + ¢

Score differences: log-scores for AR(2), minus log-scores for
AR(1)

(Correct specification versus a more parsimonious incorrectly .
e %]
specified model)
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GARCH(1,1)-model, ¢ = 40, weight function
wi(y) =y <r) with =7yt

Time-varying weights

(empirical a-quantile)

rejection rate
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Correct N(0, 1) innovations versus std. ¢(5) innovations
Left: power, right: spurious power
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Comparing two models for log-returns

Data: daily S&P 500 daily log-returns X; = log(P:/P:_1), period
Jan. 1, 1980 — March 14, 2008 (7115 observations)

Comparison of two models, one of which is restricted

Xt = m+ htést, et ~ t(v),
pt = po+ > i1 peXt—e,

he = ¢+ a(Xi—1 — pe—1)? + Bhi_1.
Excess kurtosis 6/(v — 4)

Alternative innovation distribution: Laplace (excess kurt. = 3)

Aim: compare one-step-ahead predictive densities
Estimation window m = 2000
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Average score differences

Testing Laplace versus () innovations
df = t-score — Laplace score

wi(y) =1y <r) with rr=y¢

Scoring rule a =0.10 a = 0.05 a = 0.01
d” Test stat. d* Test stat. d* Test stat.
Threshold weight function
wl —0.000169 —0.14 —0.00512 —4.74 —0.0032 —3.75
wps 0.000000429 0.69 0.000000775 1.56 0.000000868 4.28
cl 0.00147 1.48 0.00158 2.32 0.000778 1.81
csl 0.00221 1.89 0.00163 1.53 0.00116 1.35

Average score differences and tests of equal predictive
accuracy
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Daily S&P 500 log-returns (black) and out-of-sample
95% and 99% VaR forecasts
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VaR and ES characteristics

a =0.10 a = 0.05 a = 0.01

t(v) Laplace t(v) Laplace t(v) Laplace
Average VaR —0.0110 —0.0112 —0.0149 —0.0162 —0.0243 —0.0279
Coverage (y; < VaR;) 0.1056 0.1001 0.0530 0.0405 0.0104 0.0055
CUC (p-value) 0.1876 0.9814 0.3324 0.0012 0.7961 0.0004
IND (p-value) 0.1082 0.2315 0.0465 0.3658 0.5809 0.5788
CCC (p-value) 0.1156 0.4887 0.0861 0.0036 0.8304 0.0015
Average ES —0.0168 —0.0185 —0.0209 —0.0235 —0.0312 —0.0351
McNeil-Frey (test stat.) —0.7538 3.1164 —0.8504 0.3639 —1.1899 —2.3174
McNeil-Frey (p-value) 0.4510 0.0018 0.3951 0.7159 0.2341 0.0205

Coverage:

observed fraction of returns below VaR

34/35



Summary

@ Existing weighing schemes for scoring rules have
demonstrable shortcomings

@ Proposed new scoring rules based on partial likelihood
@ Properness of the new scoring rules could be proved

@ Numerical study showed correct behaviour for new scoring
rules

@ lllustrated with an empirical application
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