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This article aim at reviewing recent empirical and theoretical developments usually grouped under the term
Econophysics. Since its name was coined in 1995 by merging the words “Economics” and “Physics”, this new
interdisciplinary field has grown in various directions: theoretical macroeconomics (wealth distributions),
microstructure of financial markets (order book modelling), econometrics of financial bubbles and crashes,
etc. In the first part of the review, we begin with discussions on the interactions between Physics, Math-
ematics, Economics and Finance that led to the emergence of Econophysics. Then we present empirical
studies revealing statistical properties of financial time series. We begin the presentation with the widely
acknowledged “stylized facts” which describe the returns of financial assets – fat tails, volatility clustering,
autocorrelation, etc. – and recall that some of these properties are directly linked to the way “time” is taken
into account. We continue with the statistical properties observed on order books in financial markets. For
the sake of illustrating this review, (nearly) all the stated facts are reproduced using our own high-frequency
financial database. Finally, contributions to the study of correlations of assets such as random matrix theory
and graph theory are presented. In the second part of the review, we deal with models in Econophysics
through the point of view of agent-based modelling. Amongst a large number of multi-agent-based models,
we have identified three representative areas. First, using previous work originally presented in the fields of
behavioural finance and market microstructure theory, econophysicists have developed agent-based models of
order-driven markets that are extensively presented here. Second, kinetic theory models designed to explain
some empirical facts on wealth distribution are reviewed. Third, we briefly summarize game theory models
by reviewing the now classic minority game and related problems.
Keywords: Econophysics; Stylized facts; Financial time series; Correlations; Order book models; Agent-

based models; Wealth distributions; Game Theory; Minority Games; Pareto Law; Entropy maximization;
Utility maximization.
PACS Nos.: 05.45.Tp, 02.50.Sk, 05.40.-a, 05.45.Ra, 89.75.Fb

Part I

I. INTRODUCTION

What is Econophysics? Fifteen years after the word
“Econophysics” was coined by H. E. Stanley by a merg-
ing of the words ‘Economics’ and ‘Physics’, at an interna-
tional conference on Statistical Physics held in Kolkata
in 1995, this is still a commonly asked question. Many
still wonder how theories aimed at explaining the phys-
ical world in terms of particles could be applied to un-
derstand complex structures, such as those found in the
social and economic behaviour of human beings. In fact,
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physics as a natural science is supposed to be precise
or specific; its predictive powers based on the use of a
few but universal properties of matter which are suffi-
cient to explain many physical phenomena. But in social
sciences, are there analogous precise universal properties
known for human beings, who, on the contrary of funda-
mental particles, are certainly not identical to each other
in any respect ? And what little amount of informa-
tion would be sufficient to infer some of their complex
behaviours ? There exists a positive strive in answer-
ing these questions. In the 1940’s, Majorana had taken
scientific interest in financial and economic systems. He
wrote a pioneering paper on the essential analogy be-
tween statistical laws in physics and in social sciences
(di Ettore Majorana (1942); Mantegna (2005, 2006)).
However, during the following decades, only few physi-
cists like Kadanoff (1971) or Montroll and Badger (1974)
had an explicit interest for research in social or eco-
nomic systems. It was not until the 1990’s that physicists
started turning to this interdisciplinary subject, and in
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the past years, they have made many successful attempts
to approach problems in various fields of social sciences
(e.g. de Oliveira et al. (1999); Stauffer et al. (2006);
Chakrabarti et al. (2006)). In particular, in Quantita-
tive Economics and Finance, physics research has begun
to be complementary to the most traditional approaches
such as mathematical (stochastic) finance. These various
investigations, based on methods imported from or also
used in physics, are the subject of the present paper.

A. Bridging Physics and Economics

Economics deals with how societies efficiently use
their resources to produce valuable commodities and dis-
tribute them among different people or economic agents
(Samuelson (1998); Keynes (1973)). It is a discipline
related to almost everything around us, starting from
the marketplace through the environment to the fate of
nations. At first sight this may seem a very different
situation from that of physics, whose birth as a well de-
fined scientific theory is usually associated with the study
of particular mechanical objects moving with negligible
friction, such as falling bodies and planets. However, a
deeper comparison shows many more analogies than dif-
ferences. On a general level, both economics and physics
deal with “everything around us”, despite with differ-
ent perspectives. On a practical level, the goals of both
disciplines can be either purely theoretical in nature or
strongly oriented toward the improvement of the quality
of life. On a more technical side, analogies often become
equivalences. Let us give here some examples.
Statistical mechanics has been defined as the

“branch of physics that combines the prin-
ciples and procedures of statistics with the
laws of both classical and quantum mechan-
ics, particularly with respect to the field of
thermodynamics. It aims to predict and ex-
plain the measurable properties of macro-
scopic systems on the basis of the properties
and behaviour of the microscopic constituents
of those systems.”1

The tools of statistical mechanics or statistical physics
(Reif (1985); Pathria (1996); Landau (1965)), that in-
clude extracting the average properties of a macroscopic
system from the microscopic dynamics of the systems, are
believed to prove useful for an economic system. Indeed,
even though it is difficult or almost impossible to write
down the “microscopic equations of motion” for an eco-
nomic system with all the interacting entities, economic
systems may be investigated at various size scales. There-
fore, the understanding of the global behaviour of eco-

1 In Encyclopædia Britannica. Retrieved June 11, 2010, from En-
cyclopædia Britannica Online.

nomic systems seems to need concepts such as stochas-
tic dynamics, correlation effects, self-organization, self-
similarity and scaling, and for their application we do
not have to go into the detailed “microscopic” descrip-
tion of the economic system.

Chaos theory has had some impact in Economics mod-
elling, e.g. in the work by Brock and Hommes (1998) or
Chiarella et al. (2006). The theory of disordered systems
has also played a core role in Econophysics and study of
“complex systems”. The term “complex systems” was
coined to cover the great variety of such systems which
include examples from physics, chemistry, biology and
also social sciences. The concepts and methods of sta-
tistical physics turned out to be extremely useful in ap-
plication to these diverse complex systems including eco-
nomic systems. Many complex systems in natural and
social environments share the characteristics of compe-
tition among interacting agents for resources and their
adaptation to dynamically changing environment (Parisi
(1999); Arthur (1999)). Hence, the concept of disordered
systems helps for instance to go beyond the concept of
representative agent, an approach prevailing in much of
(macro)economics and criticized by many economists (see
e.g. Kirman (1992); Gallegati and Kirman (1999)). Mi-
nority games and their physical formulations have been
exemplary.

Physics models have also helped bringing new theo-
ries explaining older observations in Economics. The
Italian social economist Pareto investigated a century
ago the wealth of individuals in a stable economy
(Pareto (1897a)) by modelling them with the distribu-
tion P (> x) ∼ x−α, where P (> x) is the number of peo-
ple having income greater than or equal to x and α is
an exponent (known now as the Pareto exponent) which
he estimated to be 1.5. To explain such empirical find-
ings, physicists have come up with some very elegant
and intriguing kinetic exchange models in recent times,
and we will review these developments in the compan-
ion article. Though the economic activities of the agents
are driven by various considerations like “utility maxi-
mization”, the eventual exchanges of money in any trade
can be simply viewed as money/wealth conserving two-
body scatterings, as in the entropy maximization based
kinetic theory of gases. This qualitative analogy seems
to be quite old and both economists and natural scien-
tists have already noted it in various contexts (Saha et al.

(1950)). Recently, an equivalence between the two maxi-
mization principles have been quantitatively established
(Chakrabarti and Chakrabarti (2010)).

Let us discuss another example of the similarities of in-
terests and tools in Physics and Economics. The friction-
less systems which mark the early history of physics were
soon recognized to be rare cases: not only at microscopic
scale – where they obviously represent an exception due
to the unavoidable interactions with the environment –
but also at the macroscopic scale, where fluctuations of
internal or external origin make a prediction of their
time evolution impossible. Thus equilibrium and non-
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equilibrium statistical mechanics, the theory of stochas-
tic processes, and the theory of chaos, became main tools
for studying real systems as well as an important part of
the theoretical framework of modern physics. Very inter-
estingly, the same mathematical tools have presided at
the growth of classic modelling in Economics and more
particularly in modern Finance. Following the works of
Mandelbrot, Fama of the 1960s, physicists from 1990 on-
wards have studied the fluctuation of prices and univer-
salities in context of scaling theories, etc. These links
open the way for the use of a physics approach in Fi-
nance, complementary to the widespread mathematical
one.

B. Econophysics and Finance

Mathematical finance has benefited a lot in the past
thirty years from modern probability theory – Brownian
motion, martingale theory, etc. Financial mathemati-
cians are often proud to recall the most well-known source
of the interactions between Mathematics and Finance:
five years before Einstein’s seminal work, the theory of
the Brownian motion was first formulated by the French
mathematician Bachelier in his doctoral thesis (Bachelier
(1900); Boness (1967); Haberman and Sibbett (1995)),
in which he used this model to describe price fluctuations
at the Paris Bourse. Bachelier had even given a course
as a “free professor” at the Sorbonne University with the
title: “Probability calculus with applications to finan-
cial operations and analogies with certain questions from
physics” (see the historical articles in Courtault et al.
(2000); Taqqu (2001); Forfar (2002)).
Then Itō, following the works of Bachelier, Wiener,

and Kolmogorov among many, formulated the presently
known Itō calculus (Itō and McKean (1996)). The ge-
ometric Brownian motion, belonging to the class of
Itō processes, later became an important ingredient
of models in Economics (Osborne (1959); Samuelson
(1965)), and in the well-known theory of option pric-
ing (Black and Scholes (1973); Merton (1973)). In
fact, stochastic calculus of diffusion processes combined
with classical hypotheses in Economics led to the devel-
opment of the arbitrage pricing theory (Duffie (1996),
Follmer and Schied (2004)). The deregulation of finan-
cial markets at the end of the 1980’s led to the expo-
nential growth of the financial industry. Mathematical
finance followed the trend: stochastic finance with diffu-
sion processes and exponential growth of financial deriva-
tives have had intertwined developments. Finally, this
relationship was carved in stone when the Nobel prize
was given to M.S. Scholes and R.C. Merton in 1997 (F.
Black died in 1995) for their contribution to the theory of
option pricing and their celebrated “Black-Scholes” for-
mula.
However, this whole theory is closely linked to clas-

sical economics hypotheses and has not been grounded
enough with empirical studies of financial time series.

The Black-Scholes hypothesis of Gaussian log-returns of
prices is in strong disagreement with empirical evidence.
Mandelbrot (1960, 1963) was one of the firsts to observe
a clear departure from Gaussian behaviour for these fluc-
tuations. It is true that within the framework of stochas-
tic finance and martingale modelling, more complex pro-
cesses have been considered in order to take into ac-
count some empirical observations: jump processes (see
e.g. Cont and Tankov (2004) for a textbook treatment)
and stochastic volatility (e.g. Heston (1993); Gatheral
(2006)) in particular. But recent events on financial
markets and the succession of financial crashes (see e.g.
Kindleberger and Aliber (2005) for a historical perspec-
tive) should lead scientists to re-think basic concepts of
modelling. This is where Econophysics is expected to
come to play. During the past decades, the financial
landscape has been dramatically changing: deregulation
of markets, growing complexity of products. On a tech-
nical point of view, the ever rising speed and decreasing
costs of computational power and networks have lead to
the emergence of huge databases that record all trans-
actions and order book movements up to the millisec-
ond. The availability of these data should lead to mod-
els that are better empirically founded. Statistical facts
and empirical models will be reviewed in this article and
its companion paper. The recent turmoil on financial
markets and the 2008 crash seem to plead for new mod-
els and approaches. The Econophysics community thus
has an important role to play in future financial market
modelling, as suggested by contributions from Bouchaud
(2008), Lux and Westerhoff (2009) or Farmer and Foley
(2009).

C. A growing interdisciplinary field

The chronological development of Econophysics has
been well covered in the book of Roehner (2002). Here
it is worth mentioning a few landmarks. The first ar-
ticle on analysis of finance data which appeared in a
physics journal was that of Mantegna (1991). The first
conference in Econophysics was held in Budapest in 1997
and has been since followed by numerous schools, work-
shops and the regular series of meetings: APFA (Appli-
cation of Physics to Financial Analysis), WEHIA (Work-
shop on Economic Heterogeneous Interacting Agents),
and Econophys-Kolkata, amongst others. In the recent
years the number of papers has increased dramatically;
the community has grown rapidly and several new direc-
tions of research have opened. By now renowned physics
journals like the Reviews of Modern Physics, Physical
Review Letters, Physical Review E, Physica A, Euro-
physics Letters, European Physical Journal B, Interna-
tional Journal of Modern Physics C, etc. publish papers
in this interdisciplinary area. Economics and mathemat-
ical finance journals, especially Quantitative Finance, re-
ceive contributions from many physicists. The interested
reader can also follow the developments quite well from
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the preprint server (www.arxiv.org). In fact, recently a
new section called quantitative finance has been added
to it. One could also visit the web sites of the Econo-
physics Forum (www.unifr.ch/econophysics) and Econo-

physics.Org (www.econophysics.org). The first textbook
in Econophysics (Sinha et al. (2010)) is also in press.

D. Organization of the review

This article aims at reviewing recent empirical and the-
oretical developments that use tools from Physics in the
fields of Economics and Finance. In section II of this
paper, empirical studies revealing statistical properties
of financial time series are reviewed. We present the
widely acknowledged “stylized facts” describing the dis-
tribution of the returns of financial assets. In section III
we continue with the statistical properties observed on
order books in financial markets. We reproduce most of
the stated facts using our own high-frequency financial
database. In the last part of this article (section IV),
we review contributions on correlation on financial mar-
kets, among which the computation of correlations using
high-frequency data, analyses based on random matrix
theory and the use of correlations to build economics
taxonomies. In the companion paper to follow, Econo-
physics models are reviewed through the point of view
of agent-based modelling. Using previous work origi-
nally presented in the fields of behavioural finance and
market microstructure theory, econophysicists have de-
veloped agent-based models of order-driven markets that
are extensively reviewed there. We then turn to models of
wealth distribution where an agent-based approach also
prevails. As mentioned above, Econophysics models help
bringing a new look on some Economics observations, and
advances based on kinetic theory models are presented.
Finally, a detailed review of game theory models and the
now classic minority games composes the final part.

II. STATISTICS OF FINANCIAL TIME SERIES: PRICE,
RETURNS, VOLUMES, VOLATILITY

Recording a sequence of prices of commodities or as-
sets produce what is called time series. Analysis of fi-
nancial time series has been of great interest not only
to the practitioners (an empirical discipline) but also to
the theoreticians for making inferences and predictions.
The inherent uncertainty in the financial time series and
its theory makes it specially interesting to economists,
statisticians and physicists (Tsay (2005)).
Different kinds of financial time series have been

recorded and studied for decades, but the scale changed
twenty years ago. The computerization of stock ex-
changes that took place all over the world in the mid
1980’s and early 1990’s has lead to the explosion of the
amount of data recorded. Nowadays, all transactions on
a financial market are recorded tick-by-tick, i.e. every

event on a stock is recorded with a timestamp defined up
to the millisecond, leading to huge amounts of data. For
example, as of today (2010), the Reuters Datascope Tick
History (RDTH) database records roughly 25 gigabytes
of data every trading day.
Prior to this improvement in recording market activ-

ity, statistics could be computed with daily data at best.
Now scientists can compute intraday statistics in high-
frequency. This allows to check known properties at new
time scales (see e.g. section II B below), but also implies
special care in the treatment (see e.g. the computation
of correlation on high-frequency in section IVA below).
It is a formidable task to make an exhaustive review

on this topic but we try to give a flavour of some of the
aspects in this section.

A. “Stylized facts” of financial time series

The concept of “stylized facts” was introduced in
macroeconomics around 1960 by Kaldor (1961), who ad-
vocated that a scientist studying a phenomenon “should
be free to start off with a stylized view of the facts”. In
his work, Kaldor isolated several statistical facts char-
acterizing macroeconomic growth over long periods and
in several countries, and took these robust patterns as a
starting point for theoretical modelling.
This expression has thus been adopted to describe em-

pirical facts that arose in statistical studies of financial
time series and that seem to be persistent across various
time periods, places, markets, assets, etc. One can find
many different lists of these facts in several reviews (e.g.
Bollerslev et al. (1994); Pagan (1996); Guillaume et al.

(1997); Cont (2001)). We choose in this article to present
a minimum set of facts now widely acknowledged, at least
for the prices of equities.

1. Fat-tailed empirical distribution of returns

Let pt be the price of a financial asset at time t. We
define its return over a period of time τ to be:

rτ (t) =
p(t+ τ) − p(t)

p(t)
≈ log(p(t+ τ))− log(p(t)) (1)

It has been largely observed – starting with Mandelbrot
(1963), see e.g. Gopikrishnan et al. (1999) for tests on
more recent data – and it is the first stylized fact, that
the empirical distributions of financial returns and log-
returns are fat-tailed. On figure 1 we reproduce the em-
pirical density function of normalized log-returns from
Gopikrishnan et al. (1999) computed on the S&P500 in-
dex. In addition, we plot similar distributions for unnor-
malized returns on a liquid French stock (BNP Paribas)
with τ = 5 minutes. This graph is computed by sampling
a set of tick-by-tick data from 9:05am till 5:20pm between
January 1st, 2007 and May 30th, 2008, i.e. 356 days of
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FIG. 1. (Top) Empirical probability density function of the
normalized 1-minute S&P500 returns between 1984 and 1996.
Reproduced from Gopikrishnan et al. (1999). (Bottom) Em-
pirical probability density function of BNP Paribas unnor-
malized log-returns over a period of time τ = 5 minutes.

trading. Except where mentioned otherwise in captions,
this data set will be used for all empirical graphs in this
section. On figure 2, cumulative distribution in log-log
scale from Gopikrishnan et al. (1999) is reproduced. We
also show the same distribution in linear-log scale com-
puted on our data for a larger time scale τ = 1 day,
showing similar behaviour.

Many studies obtain similar observations on different
sets of data. For example, using two years of data on
more than a thousand US stocks, Gopikrishnan et al.

(1998) finds that the cumulative distribution of returns

asymptotically follow a power law F (rτ ) ∼ |r|−α with
α > 2 (α ≈ 2.8 − 3). With α > 2, the second mo-
ment (the variance) is well-defined, excluding stable laws
with infinite variance. There has been various sugges-
tions for the form of the distribution: Student’s-t, hyper-
bolic, normal inverse Gaussian, exponentially truncated
stable, and others, but no general consensus exists on
the exact form of the tails. Although being the most
widely acknowledged and the most elementary one, this
stylized fact is not easily met by all financial modelling.
Gabaix et al. (2006) or Wyart and Bouchaud (2007) re-
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FIG. 2. Empirical cumulative distributions of S&P 500 daily
returns. (Top) Reproduced from Gopikrishnan et al. (1999),
in log-log scale. (Bottom) Computed using official daily close
price between January 1st, 1950 and June 15th, 2009, i.e.
14956 values, in linear-log scale.

call that efficient market theory have difficulties in ex-
plaining fat tails. Lux and Sornette (2002) have shown
that models known as “rational expectation bubbles”,
popular in economics, produced very fat-tailed distribu-
tions (α < 1) that were in disagreement with the statis-
tical evidence.

2. Absence of autocorrelations of returns

On figure 3, we plot the autocorrelation of log-returns
defined as ρ(T ) ∼ 〈rτ (t + T )rτ (t)〉 with τ =1 minute
and 5 minutes. We observe here, as it is widely known
(see e.g. Pagan (1996); Cont et al. (1997)), that there
is no evidence of correlation between successive returns,
which is the second “stylized-fact”. The autocorrelation
function decays very rapidly to zero, even for a few lags
of 1 minute.
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FIG. 4. Autocorrelation function of BNPP.PA absolute re-
turns.

3. Volatility clustering

The third “stylized-fact” that we present here is of pri-
mary importance. Absence of correlation between re-
turns must no be mistaken for a property of indepen-
dence and identical distribution: price fluctuations are
not identically distributed and the properties of the dis-
tribution change with time.
In particular, absolute returns or squared returns ex-

hibit a long-range slowly decaying auto correlation func-
tion. This phenomena is widely known as “volatility
clustering”, and was formulated by Mandelbrot (1963)
as “large changes tend to be followed by large changes –
of either sign – and small changes tend to be followed by
small changes”.
On figure 4, the autocorrelation function of absolute

returns is plotted for τ = 1 minute and 5 minutes. The
levels of autocorrelations at the first lags vary wildly with
the parameter τ . On our data, it is found to be maxi-
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FIG. 5. Distribution of log-returns of S&P 500 daily, weekly
and monthly returns. Same data set as figure 2 bottom.

mum (more than 70% at the first lag) for a returns sam-
pled every five minutes. However, whatever the sampling
frequency, autocorrelation is still above 10% after several
hours of trading. On this data, we can grossly fit a power
law decay with exponent 0.4. Other empirical tests re-
port exponents between 0.1 and 0.3 (Cont et al. (1997);
Liu et al. (1997); Cizeau et al. (1997)).

4. Aggregational normality

It has been observed that as one increases the time
scale over which the returns are calculated, the fat-tail
property becomes less pronounced, and their distribu-
tion approaches the Gaussian form, which is the fourth
“stylized-fact”. This cross-over phenomenon is docu-
mented in Kullmann et al. (1999) where the evolution
of the Pareto exponent of the distribution with the time
scale is studied. On figure 5, we plot these standardized
distributions for S&P 500 index between January 1st,
1950 and June 15th, 2009. It is clear that the larger the
time scale increases, the more Gaussian the distribution
is. The fact that the shape of the distribution changes
with τ makes it clear that the random process underlying
prices must have non-trivial temporal structure.

B. Getting the right “time”

1. Four ways to measure “time”

In the previous section, all “stylized facts” have been
presented in physical time, or calendar time, i.e. time
series were indexed, as we expect them to be, in hours,
minutes, seconds, milliseconds. Let us recall here that
tick-by-tick data available on financial markets all over
the world is time-stamped up to the millisecond, but the
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order of magnitude of the guaranteed precision is much
larger, usually one second or a few hundreds of millisec-
onds.
Calendar time is the time usually used to compute sta-

tistical properties of financial time series. This means
that computing these statistics involves sampling, which
might be a delicate thing to do when dealing for example
with several stocks with different liquidity. Therefore,
three other ways to keep track of time may be used.
Let us first introduce event time. Using this count,

time is increased by one unit each time one order is sub-
mitted to the observed market. This framework is nat-
ural when dealing with the simulation of financial mar-
kets, as it will be showed in the companion paper. The
main outcome of event time is its “smoothing” of data.
In event time, intraday seasonality (lunch break) or out-
burst of activity consequent to some news are smoothed
in the time series, since we always have one event per
time unit.
Now, when dealing with time series of prices, another

count of time might be relevant, and we call it trade time
or transaction time. Using this count, time is increased
by one unit each time a transaction happens. The advan-
tage of this count is that limit orders submitted far away
in the order book, and may thus be of lesser importance
with respect to the price series, do not increase the clock
by one unit.
Finally, going on with focusing on important events to

increase the clock, we can use tick time. Using this count,
time is increased by one unit each time the price changes.
Thus consecutive market orders that progressively “eat”
liquidity until the first best limit is removed in an order
book are counted as one unit time.
Let us finish by noting that with these definitions,

when dealing with mid prices, or bid and ask prices, a
time series in event time can easily be extracted from a
time series in calendar time. Furthermore, one can al-
ways extract a time series in trade time or in price time
from a time series in event time. However, one cannot
extract a series in price time from a series in trade time,
as the latter ignores limit orders that are submitted in-
side the spread, and thus change mid, bid or ask prices
without any transaction taking place.

2. Revisiting “stylized facts” with a new clock

Now, using the right clock might be of primary impor-
tance when dealing with statistical properties and esti-
mators. For example, Griffin and Oomen (2008) investi-
gates the standard realized variance estimator (see sec-
tion IVA) in trade time and tick time. Muni Toke (2010)
also recalls that the differences observed on a spread dis-
tribution in trade time and physical time are meaning-
ful. In this section we compute some statistics comple-
mentary to the ones we have presented in the previous
section IIA and show the role of the clock in the studied
properties.
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FIG. 6. Distribution of log-returns of stock BNPP.PA. This
empirical distribution is computed using data from 2007,
April 1st until 2008, May 31st.

a. Aggregational normality in trade time We have
seen above that when the sampling size increases, the dis-
tribution of the log-returns tends to be more Gaussian.
This property is much better seen using trade time. On
figure 6, we plot the distributions of the log-returns for
BNP Paribas stock using 2-month-long data in calendar
time and trade time. Over this period, the average num-
ber of trade per day is 8562, so that 17 trades (resp. 1049
trades) corresponds to an average calendar time step of
1 minute (resp. 1 hour). We observe that the distribu-
tion of returns sampled every 1049 trades is much more
Gaussian than the one sampled every 17 trades (aggre-
gational normality), and that it is also more Gaussian
that the one sampled every 1 hour (quicker convergence
in trade time).
Note that this property appears to be valid in a mul-

tidimensional setting, see Huth and Abergel (2009).
b. Autocorrelation of trade signs in tick time It is

well-known that the series of the signs of the trades on
a given stock (usual convention: +1 for a transaction
at the ask price, −1 for a transaction at the bid price)
exhibit large autocorrelation. It has been observed in
Lillo and Farmer (2004) for example that the autocorre-
lation function of the signs of trades (ǫn) was a slowly
decaying function in n−α, with α ≈ 0.5. We compute
this statistics for the trades on BNP Paribas stock from
2007, January 1st until 2008, May 31st. We plot the re-
sult in figure 7. We find that the first values for short
lags are about 0.3, and that the log-log plot clearly shows
some power-law decay with roughly α ≈ 0.7.
A very plausible explanation of this phenomenon re-

lies on the execution strategies of some major brokers on
a given markets. These brokers have large transaction
to execute on the account of some clients. In order to
avoid market making move because of an inconsiderably
large order (see below section III F on market impact),
they tend to split large orders into small ones. We think



8

10-2

10-1

100

 1  10  100  1000

A
u

to
co

rr
el

a
ti

o
n

Lag

BNPP.PA trade time
BNPP.PA tick time

FIG. 7. Auto-correlation of trade signs for stock BNPP.PA.

that these strategies explain, at least partly, the large
autocorrelation observed. Using data on markets where
orders are publicly identified and linked to a given bro-
ker, it can be shown that the autocorrelation function
of the order signs of a given broker, is even higher. See
Bouchaud et al. (2009) for a review of these facts and
some associated theories.
We present here another evidence supporting this ex-

planation. We compute the autocorrelation function of
order signs in tick time, i.e. taking only into account
transactions that make the price change. Results are
plotted on figure 7. We find that the first values for short
lags are about 0.10, which is much smaller than the val-
ues observed with the previous time series. This supports
the idea that many small transactions progressively “eat”
the available liquidity at the best quotes. Note however
that even in tick time, the correlation remains positive
for large lags also.

3. Correlation between volume and volatility

Investigating time series of cotton prices, Clark (1973)
noted that “trading volume and price change vari-
ance seem to have a curvilinear relationship”. Trade
time allows us to have a better view on this property:
Plerou et al. (2000) and Silva and Yakovenko (2007)
among others, show that the variance of log-returns after
N trades, i.e. over a time period of N in trade time, is
proprtional to N . We confirm this observation by plot-
ting the second moment of the distribution of log-returns
after N trades as a function of N for our data, as well as
the average number of trades and the average volatility
on a given time interval. The results are shown on figure
8 and 9.
This results are to be put in relation to the one pre-

sented in Gopikrishnan et al. (2000b), where the statis-
tical properties of the number of shares traded Q∆t for a
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trades for the stock BNPP.PA.
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given stock in a fixed time interval ∆t is studied. They
analyzed transaction data for the largest 1000 stocks
for the two-year period 1994-95, using a database that
recorded every transaction for all securities in three ma-
jor US stock markets. They found that the distribution
P (Q∆t) displayed a power-law decay as shown in Fig.
10, and that the time correlations in Q∆t displayed long-
range persistence. Further, they investigated the rela-
tion between Q∆t and the number of transactions N∆t

in a time interval ∆t, and found that the long-range
correlations in Q∆t were largely due to those of N∆t.
Their results are consistent with the interpretation that
the large equal-time correlation previously found between
Q∆t and the absolute value of price change |G∆t| (related
to volatility) were largely due to N∆t.
Therefore, studying variance of price changer in trade

time suggests that the number of trade is a good proxy
for the unobserved volatility.
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4. A link with stochastic processes: subordination

These empirical facts (aggregational normality in trade
time, relationship between volume and volatility) rein-
force the interest for models based on the subordination
of stochastic processes, which had been introduced in fi-
nancial modeling by Clark (1973).
Let us introduce it here. Assuming the proportionality

between the variance 〈x〉2τ of the centred returns x and
the number of trades Nτ over a time period τ , we can
write:

〈x〉2τ = αNτ . (2)

Therefore, assuming the normality in trade time, we can
write the density function of log-returns after N trades
as

fN(x) =
e

−x2

2αN√
2παN

, (3)

Finally, denoting Kτ (N) the probability density function
of having N trades in a time period τ , the distribution
of log returns in calendar time can be written

Pτ (x) =

∫ ∞

0

e
−x2

2αN√
2παN

Kτ (N)dN. (4)

This is the subordination of the Gaussian process xN
using the number of trades Nτ as the directing process,
i.e. as the new clock. With this kind of modelization,
it is expected, since PN is gaussian, the observed non-
gaussian behavior will come from Kτ (N). For exam-
ple, some specific choice of directing processes may lead

to a symmetric stable distribution (see Feller (1968)).
Clark (1973) tests empirically a log-normal subordina-
tion with time series of prices of cotton. In a similar
way, Silva and Yakovenko (2007) find that an exponen-
tial subordination with a kernel:

Kτ (N) =
1

ητ
e−

N
ητ . (5)

is in good agreement with empirical data. If the orders
were submitted to the market in a independent way and
at a constant rate η, then the distribution of the number
of trade per time period τ should be a Poisson process
with intensity ητ . Therefore, the empirical fit of equa-
tion (5) is inconsistent with such a simplistic hypothesis
of distribution of time of arrivals of orders. We will sug-
gest in the next section some possible distributions that
fit our empirical data.

III. STATISTICS OF ORDER BOOKS

The computerization of financial markets in the sec-
ond half of the 1980’s provided the empirical scientists
with easier access to extensive data on order books.
Biais et al. (1995) is an early study of the new data
flows on the newly (at that time) computerized Paris
Bourse. Variables crucial to a fine modeling of order
flows and dynamics of order books are studied: time
of arrival of orders, placement of orders, size of orders,
shape of order book, etc. Many subsequent papers of-
fer complementary empirical findings and modeling, e.g.
Gopikrishnan et al. (2000a), Challet and Stinchcombe
(2001), Maslov and Mills (2001), Bouchaud et al. (2002),
Potters and Bouchaud (2003). Before going further in
our review of available models, we try to summarize some
of these empirical facts.
For each of the enumerated properties, we present new

empirical plots. We use Reuters tick-by-tick data on the
Paris Bourse. We select four stocks: France Telecom
(FTE.PA) , BNP Paribas (BNPP.PA), Societe Générale
(SOGN.PA) and Renault (RENA.PA). For any given
stocks, the data displays time-stamps, traded quantities,
traded prices, the first five best-bid limits and the first
five best-ask limits. From now on, we will denote ai(t)
(resp. (bj(t)) the price of the i-th limit at ask (resp. j-
th limit at bid). Except when mentioned otherwise, all
statistics are computed using all trading days from Oct,
1st 2007 to May, 30th 2008, i.e. 168 trading days. On a
given day, orders submitted between 9:05am and 5:20pm
are taken into account, i.e. first and last minutes of each
trading days are removed.
Note that we do not deal in this section with the cor-

relations of the signs of trades, since statistical results on
this fact have already been treated in section II B 2. Note
also that although most of these facts are widely acknowl-
edged, we will not describe them as new “stylized facts
for order books” since their ranges of validity are still
to be checked among various products/stocks, markets
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and epochs, and strong properties need to be properly
extracted and formalized from these observations. How-
ever, we will keep them in mind as we go through the
new trend of “empirical modeling” of order books.

Finally, let us recall that the markets we are dealing
with are electronic order books with no official market
maker, in which orders are submitted in a double auc-
tion and executions follow price/time priority. This type
of exchange is now adopted nearly all over the world,
but this was not obvious as long as computerization was
not complete. Different market mechanisms have been
widely studied in the microstructure literature, see e.g.
Garman (1976); Kyle (1985); Glosten (1994); O’Hara
(1997); Biais et al. (1997); Hasbrouck (2007). We will
not review this literature here (except Garman (1976) in
our companion paper), as this would be too large a di-
gression. However, such a literature is linked in many
aspects to the problems reviewed in this paper.

A. Time of arrivals of orders

As explained in the previous section, the choice of the
time count might be of prime importance when dealing
with “stylized facts” of empirical financial time series.
When reviewing the subordination of stochastic processes
(Clark (1973); Silva and Yakovenko (2007)), we have
seen that the Poisson hypothesis for the arrival times
of orders is not empirically verified.

We compute the empirical distribution for interarrival
times – or durations – of market orders on the stock BNP
Paribas using our data set described in the previous sec-
tion. The results are plotted in figures 11 and 12, both in
linear and log scale. It is clearly observed that the expo-
nential fit is not a good one. We check however that the
Weibull distribution fit is potentially a very good one.
Weibull distributions have been suggested for example in
Ivanov et al. (2004). Politi and Scalas (2008) also obtain
good fits with q-exponential distributions.

In the Econometrics literature, these observations
of non-Poissonian arrival times have given rise to a
large trend of modelling of irregular financial data.
Engle and Russell (1997) and Engle (2000) have in-
troduced autoregressive condition duration or intensity
models that may help modelling these processes of or-
ders’ submission. See Hautsch (2004) for a textbook
treatment.

Using the same data, we compute the empirical dis-
tribution of the number of transactions in a given time
period τ . Results are plotted in figure 13. It seems that
the log-normal and the gamma distributions are both
good candidates, however none of them really describes
the empirical result, suggesting a complex structure of
arrival of orders. A similar result on Russian stocks was
presented in Dremin and Leonidov (2005).
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FIG. 11. Distribution of interarrival times for stock BNPP.PA
in log-scale.
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B. Volume of orders

Empirical studies show that the unconditional dis-
tribution of order size is very complex to character-
ize. Gopikrishnan et al. (2000a) and Maslov and Mills
(2001) observe a power law decay with an exponent
1 + µ ≈ 2.3− 2.7 for market orders and 1 + µ ≈ 2.0 for
limit orders. Challet and Stinchcombe (2001) empha-
size on a clustering property: orders tend to have a
“round” size in packages of shares, and clusters are ob-
served around 100’s and 1000’s. As of today, no consen-
sus emerges in proposed models, and it is plausible that
such a distribution varies very wildly with products and
markets.

In figure 14, we plot the distribution of volume of mar-
ket orders for the four stocks composing our benchmark.
Quantities are normalized by their mean. Power-law co-
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efficient is estimated by a Hill estimator (see e.g. Hill
(1975); de Haan et al. (2000)). We find a power law with
exponent 1 + µ ≈ 2.7 which confirms studies previously
cited. Figure 15 displays the same distribution for limit
orders (of all available limits). We find an average value
of 1 + µ ≈ 2.1, consistent with previous studies. How-
ever, we note that the power law is a poorer fit in the
case of limit orders: data normalized by their mean col-
lapse badly on a single curve, and computed coefficients
vary with stocks.
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C. Placement of orders

a. Placement of arriving limit orders
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FIG. 15. Distribution of normalized volumes of limit orders.
Quantities are normalized by their mean.

Bouchaud et al. (2002) observe a broad power-law
placement around the best quotes on French stocks,
confirmed in Potters and Bouchaud (2003) on US
stocks. Observed exponents are quite stable across
stocks, but exchange dependent: 1 + µ ≈ 1.6 on the
Paris Bourse, 1 + µ ≈ 2.0 on the New York Stock
Exchange, 1 + µ ≈ 2.5 on the London Stock Exchange.
Mike and Farmer (2008) propose to fit the empirical
distribution with a Student distribution with 1.3 degree
of freedom.

We plot the distribution of the following quantity
computed on our data set, i.e. using only the first
five limits of the order book: ∆p = b0(t−)− b(t) (resp.
a(t)− a0(t−)) if an bid (resp. ask) order arrives at price
b(t) (resp. a(t)), where b0(t−) (resp.a0(t−)) is the best
bid (resp. ask) before the arrival of this order. Results
are plotted on figures 16 (in semilog scale) and 17 (in
linear scale). These graphs being computed with in-
complete data (five best limits), we do not observe a
placement as broad as in Bouchaud et al. (2002). How-
ever, our data makes it clear that fat tails are observed.
We also observe an asymmetry in the empirical distribu-
tion: the left side is less broad than the right side. Since
the left side represent limit orders submitted inside the
spread, this is expected. Thus, the empirical distribution
of the placement of arriving limit orders is maximum at
zero (same best quote). We then ask the question: How
is it translated in terms of shape of the order book ?

b. Average shape of the order book Contrary to what
one might expect, it seems that the maximum of the av-
erage offered volume in an order book is located away
from the best quotes (see e.g. Bouchaud et al. (2002)).
Our data confirms this observation: the average quantity
offered on the five best quotes grows with the level. This
result is presented in figure 18. We also compute the av-
erage price of these levels in order to plot a cross-sectional
graph similar to the ones presented in Biais et al. (1995).
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Our result is presented for stock BNP.PA in figure 19 and
displays the expected shape. Results for other stocks are
similar. We find that the average gap between two levels
is constant among the five best bids and asks (less than
one tick for FTE.PA, 1.5 tick for BNPP.PA, 2.0 ticks for
SOGN.PA, 2.5 ticks for RENA.PA). We also find that
the average spread is roughly twice as large the aver-
age gap (factor 1.5 for FTE.PA, 2 for BNPP.PA, 2.2 for
SOGN.PA, 2.4 for RENA.PA).
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D. Cancelation of orders

Challet and Stinchcombe (2001) show that the dis-
tribution of the average lifetime of limit orders fits
a power law with exponent 1 + µ ≈ 2.1 for cancelled
limit orders, and 1 + µ ≈ 1.5 for executed limit orders.
Mike and Farmer (2008) find that in either case the ex-
ponential hypothesis (Poisson process) is not satisfied on
the market.

We compute the average lifetime of cancelled and exe-
cuted orders on our dataset. Since our data does not in-
clude a unique identifier of a given order, we reconstruct
life time orders as follows: each time a cancellation is
detected, we go back through the history of limit order
submission and look for a matching order with same price
and same quantity. If an order is not matched, we discard
the cancellation from our lifetime data. Results are pre-
sented in figure 20 and 21. We observe a power law decay
with coefficients 1 + µ ≈ 1.3− 1.6 for both cancelled and
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executed limit orders, with little variations among stocks.
These results are a bit different than the ones presented
in previous studies: similar for executed limit orders, but
our data exhibits a lower decay as for cancelled orders.
Note that the observed cut-off in the distribution for life-
times above 20000 seconds is due to the fact that we do
not take into account execution or cancellation of orders
submitted on a previous day.
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orders.

E. Intraday seasonality

Activity on financial markets is of course not constant
throughout the day. Figure 22 (resp. 23) plots the (nor-
malized) number of market (resp. limit) orders arriving
in a 5-minute interval. It is clear that a U-shape is ob-
served (an ordinary least-square quadratic fit is plotted):

the observed market activity is larger at the beginning
and the end of the day, and more quiet around mid-
day. Such a U-shaped curve is well-known, see Biais et al.
(1995), for example. On our data, we observe that the
number of orders on a 5-minute interval can vary with a
factor 10 throughout the day.
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Challet and Stinchcombe (2001) note that the average
number of orders submitted to the market in a period
∆T vary wildly during the day. The authors also observe
that these quantities for market orders and limit orders
are highly correlated. Such a type of intraday variation
of the global market activity is a well-known fact, already
observed in Biais et al. (1995), for example.
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F. Market impact

The statistics we have presented may help to under-
stand a phenomenon of primary importance for any fi-
nancial market practitioner: the market impact, i.e. the
relationship between the volume traded and the expected
price shift once the order has been executed. On a first
approximation, one understands that it is closely linked
with many items described above: the volume of mar-
ket orders submitted, the shape of the order book (how
much pending limit orders are hit by one large market
orders), the correlation of trade signs (one may assume
that large orders are splitted in order to avoid a large
market impact), etc.

Many empirical studies are available. An empirical
study on the price impact of individual transactions on
1000 stocks on the NYSE is conducted in Lillo et al.
(2003). It is found that proper rescaling make all the
curve collapse onto a single concave master curve. This
function increases as a power that is the order of 1/2 for
small volumes, but then increases more slowly for large
volumes. They obtain similar results in each year for the
period 1995 to 1998.
We will not review any further the large literature of

market impact, but rather refer the reader to the recent
exhaustive synthesis proposed in Bouchaud et al. (2009),
where different types of impacts, as well as some theoret-
ical models are discussed.

IV. CORRELATIONS OF ASSETS

The word “correlation” is defined as “a relation exist-
ing between phenomena or things or between mathemat-
ical or statistical variables which tend to vary, be associ-
ated, or occur together in a way not expected on the basis
of chance alone”2. When we talk about correlations in
stock prices, what we are really interested in are relations
between variables such as stock prices, order signs, trans-
action volumes, etc. and more importantly how these
relations affect the nature of the statistical distributions
and laws which govern the price time series. This sec-
tion deals with several topics concerning linear correla-
tion observed in financial data. The first part deals with
the important issue of computing correlations in high-
frequency. As mentioned earlier, the computerization of
financial exchanges has lead to the availability of huge
amount of tick-by-tick data, and computing correlation
using these intraday data raises lots of issues concern-
ing usual estimators. The second and third parts deals
with the use of correlation in order to cluster assets with
potential applications in risk management problems.

2 In Merriam-Webster Online Dictionary. Retrieved June 14, 2010,
from http://www.merriam-webster.com/dictionary/correlations

A. Estimating covariance on high-frequency data

Let us assume that we observe d time series of
prices or log-prices pi, i = 1, . . . , d, observed at times
tm,m = 0, . . . ,M . The usual estimator of the covari-
ance of prices i and j is the realized covariance estimator,
which is computed as:

Σ̂RV
ij (t) =

M∑

m=1

(pi(tm)− pi(tm−1))(pj(tm)− pj(tm−1)).

(6)
The problem is that high-frequency tick-by-tick data

record changes of prices when they happen, i.e. at ran-
dom times. Tick-by-tick data is thus asynchronous, con-
trary to daily close prices for example, that are recorded
at the same time for all the assets on a given exchange.
Using standard estimators without caution, could be
one cause for the “Epps effect”, first observed in Epps
(1979), which stated that “[c]orrelations among price
changes in common stocks of companies in one indus-
try are found to decrease with the length of the interval
for which the price changes are measured.” This has
largely been verified since, e.g. in Bonanno et al. (2001)
or Reno (2003). Hayashi and Yoshida (2005) shows that
non-synchronicity of tick-by-tick data and necessary sam-
pling of time series in order to compute the usual realized
covariance estimator partially explain this phenomenon.
We very briefly review here two covariance estimators
that do not need any synchronicity (hence, sampling) in
order to be computed.

1. The Fourier estimator

The Fourier estimator has been introduced by
Malliavin and Mancino (2002). Let us assume that we
have d time series of log-prices that are observations of
Brownian semi-martingales pi:

dpi =

K∑

j=1

σijdWj + µidt, i = 1, . . . , d. (7)

The coefficient of the covariance matrix are then writ-
ten Σij(t) =

∑K
k=1 σik(t)σjk(t). Malliavin and Mancino

(2002) show that the Fourier coefficient of Σij(t) are, with
n0 a given integer:

ak(Σij) = lim
N→∞

π

N + 1− n0

N∑

s=n0

1

2
[as(dpi)as+k(dpj)

+bs+k(dpi)bs(dpj)] , (8)

bk(Σij) = lim
N→∞

π

N + 1− n0

N∑

s=n0

1

2
[as(dpi)bs+k(dpj)

−bs(dpi)as+k(dpj)] , (9)
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where the Fourier coefficients ak(dpi) and bk(dpi) of dpi
can be directly computed on the time series. Indeed,
rescaling the time window on [0, 2π] and using integration
by parts, we have:

ak(dpi) =
p(2π)− p(0)

π
− k

π

∫ 2π

0

sin(kt)pi(t)dt. (10)

This last integral can be discretized and approximately
computed using the times tim of observations of the pro-
cess pi. Therefore, fixing a sufficiently large N , one
can compute an estimator ΣF

ij of the covariance of the
processes i and j. See Reno (2003) or Iori and Precup
(2007), for examples of empirical studies using this esti-
mator.

2. The Hayashi-Yoshida estimator

Hayashi and Yoshida (2005) have proposed a simple
estimator in order to compute covariance/correlation
without any need for synchronicity of time series. As
in the Fourier estimator, it is assumed that the observed
process is a Brownian semi-martingale. The time win-
dow of observation is easily partitioned into d family of
intervals Πi = (U i

m), i = 1, . . . , d, where tim = inf{U i
m+1}

is the time of the m-th observation of the process i. Let
us denote ∆pi(U

i
m) = pi(t

i
m) − pi(t

i
m−1). The cumula-

tive covariance estimator as the authors named it, or the
Hayashi-Yoshida estimator as it has been largely refered
to, is then built as follows:

Σ̂HY
ij (t) =

∑

m,n

∆pi(U
i
m)∆pj(U

j
n)1{Ui

m∩Uj
n 6=∅}. (11)

There is a large literature in Econometrics that
tackles the new challenges posed by high-frequency
data. We refer the reader, wishing to go be-
yond this brief presentation, to the econometrics re-
views by Barndorff-Nielsen and Shephard (2007) or
McAleer and Medeiros (2008), for example.

B. Correlation matrix and Random Matrix Theory

The stock market data being essentially a multivariate

time series data, we construct correlation matrix to study
its spectra and contrast it with the random multivariate
data from coupled map lattice. It is known from previous
studies that the empirical spectra of correlation matrices
drawn from time series data, for most part, follow ran-
dom matrix theory (RMT, see e.g. Gopikrishnan et al.

(2001)).

1. Correlation matrix and Eigenvalue density

a. Correlation matrix If there are N assets with
price Pi(t) for asset i at time t, then the logarithmic re-
turn of stock i is ri(t) = lnPi(t)− lnPi(t− 1), which for

a certain consecutive sequence of trading days forms the
return vector ri. In order to characterize the synchronous
time evolution of stocks, the equal time correlation coef-
ficients between stocks i and j is defined as

ρij =
〈rirj〉 − 〈ri〉〈rj〉√

[〈r2i 〉 − 〈ri〉2][〈r2j 〉 − 〈rj〉2]
, (12)

where 〈...〉 indicates a time average over the trading days
included in the return vectors. These correlation coef-
ficients form an N × N matrix with −1 ≤ ρij ≤ 1. If
ρij = 1, the stock price changes are completely corre-
lated; if ρij = 0, the stock price changes are uncorre-
lated, and if ρij = −1, then the stock price changes are
completely anti-correlated.
b. Correlation matrix of spatio-temporal series from

coupled map lattices Consider a time series of the form
z′(x, t), where x = 1, 2, ...n and t = 1, 2....p denote the
discrete space and time, respectively. In this, the time
series at every spatial point is treated as a different vari-
able. We define the normalised variable as

z(x, t) =
z′(x, t)− 〈z′(x)〉

σ(x)
, (13)

where the brackets 〈.〉 represent temporal averages and
σ(x) the standard deviation of z′ at position x. Then,
the equal-time cross-correlation matrix that represents
the spatial correlations can be written as

Sx,x′ = 〈z(x, t) z(x′, t)〉 , x, x′ = 1, 2, . . . , n . (14)

The correlation matrix is symmetric by construction. In
addition, a large class of processes are translation invari-
ant and the correlation matrix can contain that addi-
tional symmetry too. We will use this property for our
correlation models in the context of coupled map lat-
tice. In time series analysis, the averages 〈.〉 have to
be replaced by estimates obtained from finite samples.
As usual, we will use the maximum likelihood estimates,
〈a(t)〉 ≈ 1

p

∑p
t=1 a(t). These estimates contain statisti-

cal uncertainties, which disappears for p → ∞. Ideally,
one requires p ≫ n to have reasonably correct correla-
tion estimates. See Chakraborti et al. (2007) for details
of parameters.
c. Eigenvalue Density The interpretation of the

spectra of empirical correlation matrices should be done
carefully if one wants to be able to distinguish between
system specific signatures and universal features. The
former express themselves in the smoothed level den-
sity, whereas the latter usually are represented by the
fluctuations on top of this smooth curve. In time series
analysis, the matrix elements are not only prone to un-
certainty such as measurement noise on the time series
data, but also statistical fluctuations due to finite sam-
ple effects. When characterizing time series data in terms
of random matrix theory, one is not interested in these
trivial sources of fluctuations which are present on every
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data set, but one would like to identify the significant fea-
tures which would be shared, in principle, by an “infinite”
amount of data without measurement noise. The eigen-
functions of the correlation matrices constructed from
such empirical time series carry the information con-
tained in the original time series data in a “graded” man-
ner and they also provide a compact representation for it.
Thus, by applying an approach based on random matrix
theory, one tries to identify non-random components of
the correlation matrix spectra as deviations from random
matrix theory predictions (Gopikrishnan et al. (2001)).
We will look at the eigenvalue density that has been

studied in the context of applying random matrix the-
ory methods to time series correlations. Let N (λ) be the
integrated eigenvalue density which gives the number of
eigenvalues less than a given value λ. Then, the eigen-

value or level density is given by ρ(λ) = dN (λ)
dλ . This can

be obtained assuming random correlation matrix and is
found to be in good agreement with the empirical time se-
ries data from stock market fluctuations. From Random
Matrix Theory considerations, the eigenvalue density for
random correlations is given by

ρrmt(λ) =
Q

2πλ

√
(λmax − λ)(λ− λmin) , (15)

where Q = N/T is the ratio of the number of variables
to the length of each time series. Here, λmax and λmin,
representing the maximum and minimum eigenvalues of
the random correlation matrix respectively, are given by
λmax,min = 1+1/Q±2

√
1/Q. However, due to presence

of correlations in the empirical correlation matrix, this
eigenvalue density is often violated for a certain number
of dominant eigenvalues. They often correspond to sys-
tem specific information in the data. In Fig. 24 we show
the eigenvalue density for S&P500 data and also for the
chaotic data from coupled map lattice. Clearly, both
curves are qualitatively different. Thus, presence or ab-
sence of correlations in data is manifest in the spectrum
of the corresponding correlation matrices.

2. Earlier estimates and studies using Random Matrix
Theory

Laloux et al. (1999) showed that results from the ran-
dom matrix theory were useful to understand the statis-
tical structure of the empirical correlation matrices ap-
pearing in the study of price fluctuations. The empirical
determination of a correlation matrix is a difficult task.
If one considers N assets, the correlation matrix con-
tains N(N − 1)/2 mathematically independent elements,
which must be determined from N time series of length
T . If T is not very large compared to N , then gener-
ally the determination of the covariances is noisy, and
therefore the empirical correlation matrix is to a large
extent random. The smallest eigenvalues of the matrix
are the most sensitive to this ‘noise’. But the eigenvec-
tors corresponding to these smallest eigenvalues deter-
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FIG. 24. The upper panel shows spectral density for multi-
variate spatio-temporal time series drawn from coupled map
lattices. The lower panel shows the eigenvalue density for the
return time series of the S&P500 stock market data (8938
time steps).

mine the minimum risk portfolios in Markowitz theory.
It is thus important to distinguish “signal” from “noise”
or, in other words, to extract the eigenvectors and eigen-
values of the correlation matrix containing real informa-
tion (those important for risk control), from those which
do not contain any useful information and are unstable in
time. It is useful to compare the properties of an empiri-
cal correlation matrix to a “null hypothesis”— a random
matrix which arises for example from a finite time se-
ries of strictly uncorrelated assets. Deviations from the
random matrix case might then suggest the presence of
true information. The main result of their study was the
remarkable agreement between the theoretical prediction
(based on the assumption that the correlation matrix is
random) and empirical data concerning the density of
eigenvalues (shown in Fig. 25) associated to the time
series of the different stocks of the S&P 500 (or other
stock markets). Cross-correlations in financial data were
also studied by Plerou et al. (1999, 2002). They anal-
ysed cross-correlations between price fluctuations of dif-
ferent stocks using methods of RMT. Using two large
databases, they calculated cross-correlation matrices of
returns constructed from (i) 30-min returns of 1000 US
stocks for the 2-yr period 1994–95, (ii) 30-min returns
of 881 US stocks for the 2-yr period 1996–97, and (iii)
1-day returns of 422 US stocks for the 35-yr period 1962–
96. They also tested the statistics of the eigenvalues
λi of cross-correlation matrices against a “null hypoth-
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FIG. 25. Eigenvalue spectrum of the correlation matrices.
Adapted from Laloux et al. (1999).

esis”. They found that a majority of the eigenvalues
of the cross-correlation matrices were within the RMT
bounds [λmin, λmax], as defined above, for the eigenval-
ues of random correlation matrices. They also tested the
eigenvalues of the cross-correlation matrices within the
RMT bounds for universal properties of random matrices
and found good agreement with the results for the Gaus-
sian orthogonal ensemble (GOE) of random matrices —
implying a large degree of randomness in the measured
cross-correlation coefficients. Furthermore, they found
that the distribution of eigenvector components for the
eigenvectors corresponding to the eigenvalues outside the
RMT bounds displayed systematic deviations from the
RMT prediction and that these “deviating eigenvectors”
were stable in time. They analysed the components of the
deviating eigenvectors and found that the largest eigen-
value corresponded to an influence common to all stocks.
Their analysis of the remaining deviating eigenvectors
showed distinct groups, whose identities corresponded to
conventionally-identified business sectors.

C. Analyses of correlations and economic taxonomy

1. Models and theoretical studies of financial correlations

Podobnik et al. (2000) studied how the presence of cor-
relations in physical variables contributes to the form of
probability distributions. They investigated a process
with correlations in the variance generated by a Gaus-
sian or a truncated Levy distribution. For both Gaus-

sian and truncated Levy distributions, they found that
due to the correlations in the variance, the process “dy-
namically” generated power-law tails in the distributions,
whose exponents could be controlled through the way the
correlations in the variance were introduced. For a trun-
cated Levy distribution, the process could extend a trun-
cated distribution beyond the truncation cutoff, leading
to a crossover between a Levy stable power law and their
“dynamically-generated” power law. It was also shown
that the process could explain the crossover behavior ob-
served in the S&P 500 stock index.
Noh (2000) proposed a model for correlations in stock

markets in which the markets were composed of several
groups, within which the stock price fluctuations were
correlated. The spectral properties of empirical correla-
tion matrices (Plerou et al. (1999); Laloux et al. (1999))
were studied in relation to this model and the connection
between the spectral properties of the empirical corre-
lation matrix and the structure of correlations in stock
markets was established.
The correlation structure of extreme stock returns were

studied by Cizeau et al. (2001). It has been commonly
believed that the correlations between stock returns in-
creased in high volatility periods. They investigated how
much of these correlations could be explained within a
simple non-Gaussian one-factor description with time in-
dependent correlations. Using surrogate data with the
true market return as the dominant factor, it was shown
that most of these correlations, measured by a variety of
different indicators, could be accounted for. In partic-
ular, their one-factor model could explain the level and
asymmetry of empirical exceeding correlations. However,
more subtle effects required an extension of the one factor
model, where the variance and skewness of the residuals
also depended on the market return.
Burda et al. (2001) provided a statistical analysis of

three S&P 500 covariances with evidence for raw tail
distributions. They studied the stability of these tails
against reshuffling for the S&P 500 data and showed that
the covariance with the strongest tails was robust, with
a spectral density in remarkable agreement with random
Levy matrix theory. They also studied the inverse par-
ticipation ratio for the three covariances. The strong
localization observed at both ends of the spectral den-
sity was analogous to the localization exhibited in the
random Levy matrix ensemble. They showed that the
stocks with the largest scattering were the least suscepti-
ble to correlations and were the likely candidates for the
localized states.

2. Analyses using graph theory and economic taxonomy

Mantegna (1999) introduced a method for finding a hi-
erarchical arrangement of stocks traded in financial mar-
ket, through studying the clustering of companies by us-
ing correlations of asset returns. With an appropriate
metric – based on the earlier explained correlation ma-
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trix coefficients ρij ’s between all pairs of stocks i and
j of the portfolio, computed in Eq. 12 by considering
the synchronous time evolution of the difference of the
logarithm of daily stock price – a fully connected graph
was defined in which the nodes are companies, or stocks,
and the “distances” between them were obtained from
the corresponding correlation coefficients. The minimum
spanning tree (MST) was generated from the graph by
selecting the most important correlations and it was used
to identify clusters of companies. The hierarchical tree
of the sub-dominant ultrametric space associated with
the graph provided information useful to investigate the
number and nature of the common economic factors af-
fecting the time evolution of logarithm of price of well
defined groups of stocks. Several other attempts have
been made to obtain clustering from the huge correlation
matrix.

Bonanno et al. (2001) studied the high-frequency
cross-correlation existing between pairs of stocks traded
in a financial market in a set of 100 stocks traded in US
equity markets. A hierarchical organization of the inves-
tigated stocks was obtained by determining a metric dis-
tance between stocks and by investigating the properties
of the sub-dominant ultrametric associated with it. A
clear modification of the hierarchical organization of the
set of stocks investigated was detected when the time
horizon used to determine stock returns was changed.
The hierarchical location of stocks of the energy sector
was investigated as a function of the time horizon. The
hierarchical structure explored by the minimum spanning
tree also seemed to give information about the influential
power of the companies.

It also turned out that the hierarchical structure of
the financial market could be identified in accordance
with the results obtained by an independent cluster-
ing method, based on Potts super-paramagnetic transi-
tions as studied by Kullmann et al. (2000), where the
spins correspond to companies and the interactions are
functions of the correlation coefficients determined from
the time dependence of the companies’ individual stock
prices. The method is a generalization of the clus-
tering algorithm by Blatt et al. (1996) to the case of
anti-ferromagnetic interactions corresponding to anti-
correlations. For the Dow Jones Industrial Average, no
anti-correlations were observed in the investigated time
period and the previous results obtained by different tools
were well reproduced. For the S&P 500, where anti-
correlations occur, repulsion between stocks modified the
cluster structure of the N = 443 companies studied, as
shown in Fig. 26. The efficiency of the method is repre-
sented by the fact that the figure matches well with the
corresponding result obtained by the minimal spanning
tree method, including the specific composition of the
clusters. For example, at the lowest level of the hierarchy
(highest temperature in the super-paramagnetic phase)
the different industrial branches can be clearly identi-
fied: Oil, electricity, gold mining, etc. companies build
separate clusters. The network of influence was investi-
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FIG. 26. The hierarchical structure of clusters of the S&P
500 companies in the ferromagnetic case. In the boxes the
number of elements of the cluster are indicated. The clusters
consisting of single companies are not indicated. Adapted
from Kullmann et al. (2000).

gated by means of a time-dependent correlation method
by Kullmann et al. (2000). They studied the correlations
as the function of the time shift between pairs of stock
return time series of tick-by-tick data of the NYSE. They
investigated whether any “pulling effect” between stocks
existed or not, i.e. whether at any given time the re-
turn value of one stock influenced that of another stock
at a different time or not. They found that, in general,
two types of mechanisms generated significant correlation
between any two given stocks. One was some kind of ex-
ternal effect (say, economic or political news) that influ-
enced both stock prices simultaneously, and the change
for both prices appeared at the same time, such that
the maximum of the correlation was at zero time shift.
The second effect was that, one of the companies had an
influence on the other company indicating that one com-
pany’s operation depended on the other, so that the price
change of the influenced stock appeared latter because it
required some time to react on the price change of the
first stock displaying a “pulling effect”. A weak but sig-
nificant effect with the real data set was found, showing
that in many cases the maximum correlation was at non-
zero time shift indicating directions of influence between
the companies, and the characteristic time was of the
order of a few minutes, which was compatible with effi-
cient market hypothesis. In the pulling effect, they found
that in general, more important companies (which were
traded more) pulled the relatively smaller companies.

The time dependent properties of the minimum span-
ning tree (introduced by Mantegna), called a ‘dynamic
asset tree’, were studied by Onnela et al. (2003b). The
nodes of the tree were identified with stocks and the dis-
tance between them was a unique function of the corre-
sponding element of the correlation matrix. By using the
concept of a central vertex, chosen as the most strongly
connected node of the tree, the mean occupation layer
was defined, which was an important characteristic of
the tree. During crashes the strong global correlation in
the market manifested itself by a low value of the mean
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occupation layer. The tree seemed to have a scale free
structure where the scaling exponent of the degree dis-
tribution was different for ‘business as usual’ and ‘crash’
periods. The basic structure of the tree topology was
very robust with respect to time. Let us discuss in more
details how the dynamic asset tree was applied to studies
of economic taxonomy.

a. Financial Correlation matrix and constructing As-

set Trees Two different sets of financial data were used.
The first set from the Standard & Poor’s 500 index
(S&P500) of the New York Stock Exchange (NYSE)
from July 2, 1962 to December 31, 1997 contained 8939
daily closing values. The second set recorded the split-
adjusted daily closure prices for a total of N = 477 stocks
traded at the New York Stock Exchange (NYSE) over
the period of 20 years, from 02-Jan-1980 to 31-Dec-1999.
This amounted a total of 5056 prices per stock, indexed
by time variable τ = 1, 2, . . . , 5056. For analysis and
smoothing purposes, the data was divided time-wise into
M windows t = 1, 2, ..., M of width T , where T corre-
sponded to the number of daily returns included in the
window. Note that several consecutive windows over-
lap with each other, the extent of which is dictated by
the window step length parameter δT , which describes
the displacement of the window and is also measured in
trading days. The choice of window width is a trade-off
between too noisy and too smoothed data for small and
large window widths, respectively. The results presented
here were calculated frommonthly stepped four-year win-
dows, i.e. δT = 250/12 ≈ 21 days and T = 1000 days.
A large scale of different values for both parameters were
explored, and the cited values were found optimal(Onnela
(2000)). With these choices, the overall number of win-
dows is M = 195.

The earlier definition of correlation matrix, given by
Eq. 12 is used. These correlation coefficients form an
N×N correlation matrixCt, which serves as the basis for
trees discussed below. An asset tree is then constructed
according to the methodology by Mantegna (1999). For
the purpose of constructing asset trees, a distance is de-
fined between a pair of stocks. This distance is associated
with the edge connecting the stocks and it is expected to
reflect the level at which the stocks are correlated. A

simple non-linear transformation dtij =
√
2(1− ρtij) is

used to obtain distances with the property 2 ≥ dij ≥ 0,
forming an N × N symmetric distance matrix Dt. So,
if dij = 0, the stock price changes are completely cor-
related; if dij = 2, the stock price changes are com-
pletely anti-uncorrelated. The trees for different time
windows are not independent of each other, but form
a series through time. Consequently, this multitude of
trees is interpreted as a sequence of evolutionary steps
of a single dynamic asset tree. An additional hypothe-
sis is required about the topology of the metric space:
the ultrametricity hypothesis. In practice, it leads to
determining the minimum spanning tree (MST) of the
distances, denoted Tt. The spanning tree is a simply
connected acyclic (no cycles) graph that connects all N

nodes (stocks) with N − 1 edges such that the sum of
all edge weights,

∑
dt
ij
∈Tt dtij , is minimum. We refer to

the minimum spanning tree at time t by the notation
Tt = (V,Et), where V is a set of vertices and Et is a cor-
responding set of unordered pairs of vertices, or edges.
Since the spanning tree criterion requires all N nodes to
be always present, the set of vertices V is time indepen-
dent, which is why the time superscript has been dropped
from notation. The set of edges Et, however, does de-
pend on time, as it is expected that edge lengths in the
matrix Dt evolve over time, and thus different edges get
selected in the tree at different times.
b. Market characterization We plot the distribution

of (i) distance elements dtij contained in the distance ma-

trix Dt (Fig. 27), (ii) distance elements dij contained
in the asset (minimum spanning) tree Tt (Fig. 28). In
both plots, but most prominently in Fig. 27, there ap-
pears to be a discontinuity in the distribution between
roughly 1986 and 1990. The part that has been cut out,
pushed to the left and made flatter, is a manifestation of
Black Monday (October 19, 1987), and its length along
the time axis is related to the choice of window width
T Onnela et al. (2003a,b). Also, note that in the dis-

FIG. 27. Distribution of all N(N−1)/2 distance elements dij
contained in the distance matrix D

t as a function of time.

tribution of tree edges in Fig. 28 most edges included in
the tree seem to come from the area to the right of the
value 1.1 in Fig. 27, and the largest distance element is
dmax = 1.3549.

Tree occupation and central vertex Let us focus
on characterizing the spread of nodes on the tree, by
introducing the quantity of mean occupation layer

l(t, vc) =
1

N

N∑

i=1

lev(vti) , (16)
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where lev(vi) denotes the level of vertex vi. The levels,
not to be confused with the distances dij between nodes,
are measured in natural numbers in relation to the central
vertex vc, whose level is taken to be zero. Here the mean
occupation layer indicates the layer on which the mass
of the tree, on average, is conceived to be located. The
central vertex is considered to be the parent of all other
nodes in the tree, and is also known as the root of the
tree. It is used as the reference point in the tree, against
which the locations of all other nodes are relative. Thus
all other nodes in the tree are children of the central
vertex. Although there is an arbitrariness in the choice
of the central vertex, it is proposed that the vertex is
central, in the sense that any change in its price strongly
affects the course of events in the market on the whole.
Three alternative definitions for the central vertex were
proposed in the studies, all yielding similar and, in most
cases, identical outcomes. The idea is to find the node
that is most strongly connected to its nearest neighbors.
For example, according to one definition, the central node
is the one with the highest vertex degree, i.e. the number
of edges which are incident with (neighbor of) the vertex.
Also, one may have either (i) static (fixed at all times) or
(ii) dynamic (updated at each time step) central vertex,
but again the results do not seem to vary significantly.
The study of the variation of the topological properties
and nature of the trees, with time were done.

Economic taxonomy Mantegna’s idea of linking
stocks in an ultrametric space was motivated a posteri-

ori by the property of such a space to provide a meaning-
ful economic taxonomy (Onnela et al. (2002)). Mantegna
examined the meaningfulness of the taxonomy, by com-
paring the grouping of stocks in the tree with a third

FIG. 28. Distribution of the (N−1) distance elements dij con-
tained in the asset (minimum spanning) tree T

t as a function
of time.

FIG. 29. Snapshot of a dynamic asset tree connecting the
examined 116 stocks of the S&P 500 index. The tree was
produced using four-year window width and it is centered on
January 1, 1998. Business sectors are indicated according
to Forbes (www.forbes.com). In this tree, General Electric
(GE) was used as the central vertex and eight layers can be
identified.

party reference grouping of stocks e.g. by their industry
classifications (Mantegna (1999)). In this case, the ref-
erence was provided by Forbes (www.forbes.com), which
uses its own classification system, assigning each stock
with a sector (higher level) and industry (lower level)
category. In order to visualize the grouping of stocks,
a sample asset tree is constructed for a smaller dataset
(shown in Fig. 29), which consists of 116 S&P 500 stocks,
extending from the beginning of 1982 to the end of
2000, resulting in a total of 4787 price quotes per stock
(Onnela et al. (2003b)). The window width was set at
T = 1000, and the shown sample tree is located time-
wise at t = t∗, corresponding to 1.1.1998. The stocks in
this dataset fall into 12 sectors, which are Basic Materi-
als, Capital Goods, Conglomerates, Consumer/Cyclical,
Consumer/Non-Cyclical, Energy, Financial, Healthcare,
Services, Technology, Transportation and Utilities. The
sectors are indicated in the tree (see Fig. 29) with differ-
ent markers, while the industry classifications are omit-
ted for reasons of clarity. The term sector is used ex-
clusively to refer to the given third party classification
system of stocks. The term branch refers to a subset of
the tree, to all the nodes that share the specified com-
mon parent. In addition to the parent, it is needed to
have a reference point to indicate the generational direc-
tion (i.e. who is who’s parent) in order for a branch to
be well defined. Without this reference there is abso-
lutely no way to determine where one branch ends and
the other begins. In this case, the reference is the central
node. There are some branches in the tree, in which most
of the stocks belong to just one sector, indicating that
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the branch is fairly homogeneous with respect to busi-
ness sectors. This finding is in accordance with those of
Mantegna (1999) , although there are branches that are
fairly heterogeneous, such as the one extending directly
downwards from the central vertex (see Fig. 29).

V. PARTIAL CONCLUSION

This first part of our review has shown statistical prop-
erties of financial data (time series of prices, order book
structure, assets correlations). Some of these properties,
such as fat tails of returns or volatility clustering, are
widely known and acknowledged as “financial stylized
facts”. They are now largely cited in order to compare
financial models, and reveal the lacks of many classical
stochastic models of financial assets. Some other prop-
erties are newer findings that are obtained by studying
high-frequency data of the whole order book structure.
Volume of orders, interval time between orders, intra-
day seasonality, etc. are essential phenomenons to be
understood when working in financial modelling. The
important role of studies of correlations has been em-
phasized. Beside the technical challenges raised by high-
frequency, many studies based for example on random
matrix theory or clustering algorithms help getting a bet-
ter grasp on some Economics problems. It is our belief
that future modelling in finance will have to be partly
based on Econophysics work on agent-based models in
order to incorporate these “stylized facts” in a compre-
hensive way. Agent-based reasoning for order book mod-
els, wealth exchange models and game theoretic models
will be reviewed in the following part of the review, to
appear in a following companion paper.

Part II

VI. INTRODUCTION

In the first part of the review, empirical developments
in Econophysics have been studied. We have pointed
out that some of these widely known “stylized facts”
are already at the heart of financial models. But many
facts, especially the newer statistical properties of or-
der books, are not yet taken into account. As advo-
cated by many during the financial crisis in 2007-2008
(see e.g. Bouchaud (2008); Lux and Westerhoff (2009);
Farmer and Foley (2009)), agent-based models should
have a great role to play in future financial modelling.
In economic models, there is usually the representative
agent, who is “perfectly rational” and uses the “utility
maximization” principle while taking actions. Instead
the multi-agent models that have originated from sta-
tistical physics considerations have allowed to go beyond
the prototype theories with the “representative” agent in
traditional economics. In this second part of our review,
we present recent developments of agent-based models in

Econophysics.
There are, of course, many reviews and

books already published in this areas (see e.g.
Bouchaud et al. (2009), Lux and Westerhoff (2009),
Samanidou et al. (2007), Yakovenko and Rosser (2009),
Chatterjee and Chakrabarti (2007), Challet et al.
(2004), Coolen (2005), etc.). We will present here our
perspectives in three representative areas.

VII. AGENT-BASED MODELLING OF ORDER BOOKS

A. Introduction

Although known, at least partly, for a long time –
Mandelbrot (1963) gives a reference for a paper dealing
with non-normality of price time series in 1915, followed
by several others in the 1920’s – “stylized facts” have
often been left aside when modelling financial markets.
They were even often referred to as “anomalous” charac-
teristics, as if observations failed to comply with theory.
Much has been done these past fifteen years in order to
address this challenge and provide new models that can
reproduce these facts. These recent developments have
been built on top of early attempts at modelling mech-
anisms of financial markets with agents. For example,
Stigler (1964), investigating some rules of the SEC3, or
Garman (1976), investigating double-auction microstruc-
ture, belong to those historical works. It seems that the
first modern attempts at that type of models were made
in the field of behavioural finance. This field aims at
improving financial modelling based on the psychology
and sociology of the investors. Models are built with
agents who can exchange shares of stocks according to
exogenously defined utility functions reflecting their pref-
erences and risk aversions. LeBaron (2006b) shows that
this type of modelling offers good flexibility for repro-
ducing some of the stylized facts and LeBaron (2006a)
provides a review of that type of model. However, al-
though achieving some of their goals, these models suf-
fer from many drawbacks: first, they are very complex,
and it may be a very difficult task to identify the role of
their numerous parameters and the types of dependence
to these parameters; second, the chosen utility functions
do not necessarily reflect what is observed on the mech-
anisms of a financial market.
A sensible change in modelling appears with much

simpler models implementing only well-identified and
presumably realistic “behaviour”: Cont and Bouchaud
(2000) uses noise traders that are subject to “herding”,
i.e. form random clusters of traders sharing the same
view on the market. The idea is used in Raberto et al.

(2001) as well. A complementary approach is to char-
acterize traders as fundamentalists, chartists or noise

3 Security Exchange Commission
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traders. Lux and Marchesi (2000) propose an agent-
based model in which these types of traders interact. In
all these models, the price variation directly results from
the excess demand: at each time step, all agents submit
orders and the resulting price is computed. Therefore,
everything is cleared at each time step and there is no
structure of order book to keep track of orders.

One big step is made with models really taking into
account limit orders and keeping them in an order book
once submitted and not executed. Chiarella and Iori
(2002) build an agent-based model where all traders sub-
mit orders depending on the three elements identified
in Lux and Marchesi (2000): chartists, fundamentalists,
noise. Orders submitted are then stored in a persistent
order book. In fact, one of the first simple models with
this feature was proposed in Bak et al. (1997). In this
model, orders are particles moving along a price line, and
each collision is a transaction. Due to numerous caveats
in this model, the authors propose in the same paper an
extension with fundamentalist and noise traders in the
spirit of the models previously evoked. Maslov (2000)
goes further in the modelling of trading mechanisms by
taking into account fixed limit orders and market orders
that trigger transactions, and really simulating the or-
der book. This model was analytically solved using a
mean-field approximation by Slanina (2001).

Following this trend of modelling, the more or less
“rational” agents composing models in economics tends
to vanish and be replaced by the notion of flows: or-
ders are not submitted any more by an agent follow-
ing a strategic behaviour, but are viewed as an arriv-
ing flow whose properties are to be determined by em-
pirical observations of market mechanisms. Thus, the
modelling of order books calls for more “stylized facts”,
i.e. empirical properties that could be observed on a
large number of order-driven markets. Biais et al. (1995)
is a thorough empirical study of the order flows in the
Paris Bourse a few years after its complete computer-
ization. Market orders, limit orders, time of arrivals
and placement are studied. Bouchaud et al. (2002) and
Potters and Bouchaud (2003) provide statistical features
on the order book itself. These empirical studies, that
have been reviewed in the first part of this review, are
the foundation for “zero-intelligence” models, in which
“stylized facts” are expected to be reproduced by the
properties of the order flows and the structure of order
book itself, without considering exogenous “rationality”.
Challet and Stinchcombe (2001) propose a simple model
of order flows: limit orders are deposited in the order
book and can be removed if not executed, in a simple
deposition-evaporation process. Bouchaud et al. (2002)
use this type of model with empirical distribution as in-
puts. As of today, the most complete empirical model
is to our knowledge Mike and Farmer (2008), where or-
der placement and cancellation models are proposed
and fitted on empirical data. Finally, new challenges
arise as scientists try to identify simple mechanisms
that allow an agent-based model to reproduce non-trivial

behaviours: herding behaviour inCont and Bouchaud
(2000), dynamic price placement in Preis et al. (2007),
threshold behaviour in Cont (2007), etc.
In this part we review some of these models. This sur-

vey is of course far from exhaustive, and we have just
selected models that we feel are representative of a spe-
cific trend of modelling.

B. Early order-driven market modelling: Market
microstructure and policy issues

The pioneering works in simulation of financial mar-
kets were aimed to study market regulations. The very
first one, Stigler (1964), tries to investigate the effect of
regulations of the SEC on American stock markets, using
empirical data from the 20’s and the 50’s. Twenty years
later, at the start of the computerization of financial mar-
kets, Hakansson et al. (1985) implements a simulator in
order to test the feasibility of automated market making.
Instead of reviewing the huge microstructure literature,
we refer the reader to the well-known books by O’Hara
(1995) or Hasbrouck (2007), for example, for a panorama
of this branch of finance. However, by presenting a small
selection of early models, we here underline the ground-
ing of recent order book modelling.

1. A pioneer order book model

To our knowledge, the first attempt to simulate a finan-
cial market was by Stigler (1964). This paper was a bit-
ing and controversial reaction to the Report of the Spe-
cial Study of the Securities Markets of the SEC (Cohen
(1963a)), whose aim was to “study the adequacy of rules
of the exchange and that the New York stock exchange
undertakes to regulate its members in all of their activ-
ities” (Cohen (1963b)). According to Stigler, this SEC
report lacks rigorous tests when investigating the effects
of regulation on financial markets. Stating that “de-
mand and supply are [...] erratic flows with sequences
of bids and asks dependent upon the random circum-
stances of individual traders”, he proposes a simple sim-
ulation model to investigate the evolution of the market.
In this model, constrained by simulation capability in
1964, price is constrained within L = 10 ticks. (Limit)
orders are randomly drawn, in trade time, as follows:
they can be bid or ask orders with equal probability, and
their price level is uniformly distributed on the price grid.
Each time an order crosses the opposite best quote, it is
a market order. All orders are of size one. Orders not
executed N = 25 time steps after their submission are
cancelled. Thus, N is the maximum number of orders
available in the order book.
In the original paper, a run of a hundred trades was

manually computed using tables of random numbers.
Of course, no particular results concerning the “styl-
ized facts” of financial time series was expected at that



23

time. However, in his review of some order book mod-
els, Slanina (2008) makes simulations of a similar model,
with parameters L = 5000 and N = 5000, and shows
that price returns are not Gaussian: their distribution
exhibits power law with exponent 0.3, far from empirical
data. As expected, the limitation L is responsible for a
sharp cut-off of the tails of this distribution.

2. Microstructure of the double auction

Garman (1976) provides an early study of the double
auction market with a point of view that does not ignore
temporal structure, and really defines order flows. Price
is discrete and constrained to be within {p1, pL}. Buy
and sell orders are assumed to be submitted according to
two Poisson processes of intensities λ and µ. Each time
an order crosses the best opposite quote, it is a market
order. All quantities are assumed to be equal to one. The
aim of the author was to provide an empirical study of
the market microstructure. The main result of its Poisson
model was to support the idea that negative correlation
of consecutive price changes is linked the microstructure
of the double auction exchange. This paper is very in-
teresting because it can be seen as precursor that clearly
sets the challenges of order book modelling. First, the
mathematical formulation is promising. With its fixed
constrained prices, Garman (1976) can define the state of
the order book at a given time as the vector (ni)i=1,...,L of
awaiting orders (negative quantity for bid orders, positive
for ask orders). Future analytical models will use similar
vector formulations that can be cast it into known math-
ematical processes in order to extract analytical results
– see e.g. Cont et al. (2008) reviewed below. Second,
the author points out that, although the Poisson model
is simple, analytical solution is hard to work out, and he
provides Monte Carlo simulation. The need for numerical
and empirical developments is a constant in all following
models. Third, the structural question is clearly asked in
the conclusion of the paper: “Does the auction-market
model imply the characteristic leptokurtosis seen in em-
pirical security price changes?”. The computerization of
markets that was about to take place when this research
was published – Toronto’s CATS4 opened a year later in
1977 – motivated many following papers on the subject.
As an example, let us cite here Hakansson et al. (1985),
who built a model to choose the right mechanism for set-
ting clearing prices in a multi-securities market.

3. Zero-intelligence

In the models by Stigler (1964) and Garman (1976),
orders are submitted in a purely random way on the

4 Computer Assisted Trading System

grid of possible prices. Traders do not observe the mar-
ket here and do not act according to a given strat-
egy. Thus, these two contributions clearly belong to
a class of “zero-intelligence” models. To our knowl-
edge, Gode and Sunder (1993) is the first paper to in-
troduce the expression “zero-intelligence” in order to de-
scribe non-strategic behaviour of traders. It is applied
to traders that submit random orders in a double auc-
tion market. The expression has since been widely used
in agent-based modelling, sometimes in a slightly differ-
ent meaning (see more recent models described in this
review). In Gode and Sunder (1993), two types of zero-
intelligence traders are studied. The first are uncon-
strained zero-intelligence traders. These agents can sub-
mit random order at random prices, within the allowed
price range {1, . . . , L}. The second are constrained zero-
intelligence traders. These agents submit random or-
ders as well, but with the constraint that they cannot
cross their given reference price pRi : constrained zero-
intelligence traders are not allowed to buy or sell at loss.
The aim of the authors was to show that double auction
markets exhibit an intrinsic “allocative efficiency” (ratio
between the total profit earned by the traders divided by
the maximum possible profit) even with zero-intelligence
traders. An interesting fact is that in this experiment,
price series resulting from actions by zero-intelligence
traders are much more volatile than the ones obtained
with constrained traders. This fact will be confirmed in
future models where “fundamentalists” traders, having
a reference price, are expected to stabilize the market
(see Wyart and Bouchaud (2007) or Lux and Marchesi
(2000) below). Note that the results have been criticized
by Cliff and Bruten (1997), who show that the observed
convergence of the simulated price towards the theoret-
ical equilibrium price may be an artefact of the model.
More precisely, the choice of traders’ demand carry a lot
of constraints that alone explain the observed results.

Modern works in Econophysics owe a lot to these early
models or contributions. Starting in the mid-90’s, physi-
cists have proposed simple order book models directly
inspired from Physics, where the analogy “order ≡ par-
ticle” is emphasized. Three main contributions are pre-
sented in the next section.

C. Order-driven market modelling in Econophysics

1. The order book as a reaction-diffusion model

A very simple model directly taken from Physics was
presented in Bak et al. (1997). The authors consider a
market with N noise traders able to exchange one share
of stock at a time. Price p(t) at time t is constrained to
be an integer (i.e. price is quoted in number of ticks) with
an upper bound p̄: ∀t, p(t) ∈ {0, . . . , p̄}. Simulation is
initiated at time 0 with half of the agents asking for one
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share of stock (buy orders, bid) with price:

pjb(0) ∈ {0, p̄/2}, j = 1, . . . , N/2, (17)

and the other half offering one share of stock (sell orders,
ask) with price:

pjs(0) ∈ {p̄/2, p̄}, j = 1, . . . , N/2. (18)

At each time step t, agents revise their offer by exactly
one tick, with equal probability to go up or down. There-
fore, at time t, each seller (resp. buyer) agent chooses his
new price as:

pjs(t+ 1) = pjs(t)± 1 (resp. pjb(t+ 1) = pjb(t)± 1 ).
(19)

A transaction occurs when there exists (i, j) ∈
{1, . . . , N/2}2 such that pib(t + 1) = pjs(t+ 1). In such a
case the orders are removed and the transaction price is
recorded as the new price p(t). Once a transaction has
been recorded, two orders are placed at the extreme po-
sitions on the grid: pib(t+1) = 0 and pjs(t+1) = p̄. As a
consequence, the number of orders in the order book re-
mains constant and equal to the number of agents. In fig-
ure 30, an illustration of these moving particles is given.

As pointed out by the authors, this process of simula-
tion is similar the reaction-diffusion model A + B → ∅
in Physics. In such a model, two types of particles are
inserted at each side of a pipe of length p̄ and move ran-
domly with steps of size 1. Each time two particles col-
lide, they’re annihilated and two new particles are in-
serted. The analogy is summarized in table I. Following

TABLE I. Analogy between the A + B → ∅ reaction model
and the order book in Bak et al. (1997).

Physics Bak et al. (1997)

Particles Orders

Finite Pipe Order book

Collision Transaction

this analogy, it thus can be showed that the variation
∆p(t) of the price p(t) verifies :

∆p(t) ∼ t1/4(ln(
t

t0
))1/2. (20)

FIG. 30. Illustration of the Bak, Paczuski and Shubik model:
white particles (buy orders, bid) moving from the left, black
particles (sell orders, ask) moving from the right. Reproduced
from Bak et al. (1997).

FIG. 31. Snapshot of the limit order book in the Bak,
Paczuski and Shubik model. Reproduced from Bak et al.
(1997).

Thus, at long time scales, the series of price incre-
ments simulated in this model exhibit a Hurst exponent
H = 1/4. As for the stylized fact H ≈ 0.7, this sub-
diffusive behavior appears to be a step in the wrong direc-
tion compared to the random walk H = 1/2. Moreover,
Slanina (2008) points out that no fat tails are observed in
the distribution of the returns of the model, but rather
fits the empirical distribution with an exponential de-
cay. Other drawbacks of the model could be mentioned.
For example, the reintroduction of orders at each end
of the pipe leads to unrealistic shape of the order book,
as shown on figure 31. Actually here is the main draw-
back of the model: “moving” orders is highly unrealistic
as for modelling an order book, and since it does not
reproduce any known financial exchange mechanism, it
cannot be the base for any larger model. Therefore, at-
tempts by the authors to build several extensions of this
simple framework, in order to reproduce “stylized facts”
by adding fundamental traders, strategies, trends, etc.
are not of interest for us in this review. However, we feel
that the basic model as such is very interesting because
of its simplicity and its “particle” representation of an
order-driven market that has opened the way for more
realistic models.
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FIG. 32. Empirical probability density functions of the price
increments in the Maslov model. In inset, log-log plot of the
positive increments. Reproduced from Maslov (2000).

2. Introducing market orders

Maslov (2000) keeps the zero-intelligence structure of
the Bak et al. (1997) model but adds more realistic fea-
tures in the order placement and evolution of the mar-
ket. First, limit orders are submitted and stored in the
model, without moving. Second, limit orders are sub-
mitted around the best quotes. Third, market orders are
submitted to trigger transactions. More precisely, at each
time step, a trader is chosen to perform an action. This
trader can either submit a limit order with probability ql
or submit a market order with probability 1 − ql. Once
this choice is made, the order is a buy or sell order with
equal probability. All orders have a one unit volume.

As usual, we denote p(t) the current price. In case the
submitted order at time step t + 1 is a limit ask (resp.
bid) order, it is placed in the book at price p(t) + ∆
(resp. p(t) − ∆), ∆ being a random variable uniformly
distributed in ]0;∆M = 4]. In case the submitted order
at time step t + 1 is a market order, one order at the
opposite best quote is removed and the price p(t + 1) is
recorded. In order to prevent the number of orders in
the order book from large increase, two mechanisms are
proposed by the author: either keeping a fixed maximum
number of orders (by discarding new limit orders when
this maximum is reached), or removing them after a fixed
lifetime if they have not been executed.

Numerical simulations show that this model exhibits
non-Gaussian heavy-tailed distributions of returns. On
figure 32, the empirical probability density of the price
increments for several time scales are plotted. For a time
scale δt = 1, the author fit the tails distribution with a
power law with exponent 3.0, i.e. reasonable compared
to empirical value. However, the Hurst exponent of the
price series is still H = 1/4 with this model. It should
also be noted that Slanina (2001) proposed an analytical

study of the model using a mean-field approximation (See
below section VII E).

This model brings very interesting innovations in or-
der book simulation: order book with (fixed) limit or-
ders, market orders, necessity to cancel orders waiting
too long in the order book. These features are of prime
importance in any following order book model.

3. The order book as a deposition-evaporation process

Challet and Stinchcombe (2001) continue the work of
Bak et al. (1997) and Maslov (2000), and develop the
analogy between dynamics of an order book and an in-
finite one dimensional grid, where particles of two types
(ask and bid) are subject to three types of events: de-

position (limit orders), annihilation (market orders) and
evaporation (cancellation). Note that annihilation oc-
curs when a particle is deposited on a site occupied by
a particle of another type. The analogy is summarized
in table II. Hence, the model goes as follows: At each

TABLE II. Analogy between the deposition-evaporation pro-
cess and the order book in Challet and Stinchcombe (2001).

Physics Challet and Stinchcombe (2001)

Particles Orders

Infinite lattice Order book

Deposition Limit orders submission

Evaporation Limit orders cancellation

Annihilation Transaction

time step, a bid (resp. ask) order is deposited with prob-
ability λ at a price n(t) drawn according to a Gaussian
distribution centred on the best ask a(t) (resp. best bid
b(t)) and with variance depending linearly on the spread
s(t) = a(t)− b(t): σ(t) = Ks(t)+C. If n(t) > a(t) (resp.
n(t) < b(t)), then it is a market order: annihilation takes
place and the price is recorded. Otherwise, it is a limit
order and it is stored in the book. Finally, each limit or-
der stored in the book has a probability δ to be cancelled
(evaporation).

Figure 33 shows the average return as a function of the
time scale. It appears that the series of price returns sim-
ulated with this model exhibit a Hurst exponentH = 1/4
for short time scales, and that tends toH = 1/2 for larger
time scales. This behaviour might be the consequence of
the random evaporation process (which was not modelled
in Maslov (2000), where H = 1/4 for large time scales).
Although some modifications of the process (more than
one order per time step) seem to shorten the sub-diffusive
region, it is clear that no over-diffusive behaviour is ob-
served.
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FIG. 33. Average return 〈r∆t〉 as a function of ∆t for differ-
ent sets of parameters and simultaneous depositions allowed
in the Challet and Stinchcombe model. Reproduced from
Challet and Stinchcombe (2001).

D. Empirical zero-intelligence models

The three models presented in the previous section
VIIC have successively isolated essential mechanisms
that are to be used when simulating a “realistic” mar-
ket: one order is the smallest entity of the model; the
submission of one order is the time dimension (i.e. event
time is used, not an exogenous time defined by mar-
ket clearing and “tatonnement” on exogenous supply
and demand functions); submission of market orders
(as such in Maslov (2000), as “crossing limit orders” in
Challet and Stinchcombe (2001)) and cancellation of or-
ders are taken into account. On the one hand, one may
try to describe these mechanisms using a small number
of parameters, using Poisson process with constant rates
for order flows, constant volumes, etc. This might lead to
some analytically tractable models, as will be described
in section VII E. On the other hand, one may try to
fit more complex empirical distributions to market data
without analytical concern.

This type of modelling is best represented by
Mike and Farmer (2008). It is the first model that pro-
poses an advanced calibration on the market data as
for order placement and cancellation methods. As for
volume and time of arrivals, assumptions of previous
models still hold: all orders have the same volume, dis-
crete event time is used for simulation, i.e. one order
(limit or market) is submitted per time step. Following
Challet and Stinchcombe (2001), there is no distinction
between market and limit orders, i.e. market orders are
limit orders that are submitted across the spread s(t).
More precisely, at each time step, one trading order is
simulated: an ask (resp. bid) trading order is randomly
placed at n(t) = a(t) + δa (resp. n(t) = b(t) + δb)
according to a Student distribution with scale and de-

FIG. 34. Lifetime of orders for simulated data in the Mike
and Farmer model, compared to the empirical data used for
fitting. Reproduced from Mike and Farmer (2008).

grees of freedom calibrated on market data. If an ask
(resp. bid) order satisfies δa < −s(t) = b(t)− a(t) (resp.
δb > s(t) = a(t)− b(t)), then it is a buy (resp. sell) mar-
ket order and a transaction occurs at price a(t) (resp.
b(t).
During a time step, several cancellations of orders may

occur. The authors propose an empirical distribution for
cancellation based on three components for a given order:

• the position in the order book, measured as the

ratio y(t) = ∆(t)
∆(0) where ∆(t) is the distance of the

order from the opposite best quote at time t,

• the order book imbalance, measured by the in-

dicator Nimb(t) = Na(t)
Na(t)+Nb(t)

(resp. Nimb(t) =
Nb(t)

Na(t)+Nb(t)
) for ask (resp. bid) orders, where Na(t)

and Nb(t) are the number of orders at ask and bid
in the book at time t,

• the total number N(t) = Na(t)+Nb(t) of orders in
the book.

Their empirical study leads them to assume that the
cancellation probability has an exponential dependance
on y(t), a linear one in Nimb and finally decreases ap-
proximately as 1/Nt(t) as for the total number of orders.
Thus, the probability P (C|y(t), Nimb(t), Nt(t)) to cancel
an ask order at time t is formally written :

P (C|y(t), Nimb(t), Nt(t)) = A(1−e−y(t))(Nimb(t)+B)
1

Nt(t)
,

(21)
where the constants A and B are to be fitted on mar-
ket data. Figure 34 shows that this empirical formula
provides a quite good fit on market data.
Finally, the authors mimic the observed long memory

of order signs by simulating a fractional Brownian mo-
tion. The auto-covariance function Γ(t) of the increments
of such a process exhibits a slow decay :

Γ(k) ∼ H(2H − 1)t2H−2 (22)
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FIG. 35. Cumulative distribution of returns in the Mike and
Farmer model, compared to the empirical data used for fit-
ting. Reproduced from Mike and Farmer (2008).

and it is therefore easy to reproduce exponent β of the
decay of the empirical autocorrelation function of order
signs observed on the market with H = 1− β/2.
The results of this empirical model are quite satisfying

as for return and spread distribution. The distribution
of returns exhibit fat tails which are in agreement with
empirical data, as shown on figure 35. The spread distri-
bution is also very well reproduced. As their empirical
model has been built on the data of only one stock, the
authors test their model on 24 other data sets of stocks
on the same market and find for half of them a good
agreement between empirical and simulated properties.
However, the bad results of the other half suggest that
such a model is still far from being “universal”.
Despite these very nice results, some drawbacks have

to be pointed out. The first one is the fact that the sta-
bility of the simulated order book is far from ensured.
Simulations using empirical parameters in the simula-
tions may bring situations where the order book is emp-
tied by large consecutive market orders. Thus, the au-
thors require that there is at least two orders in each
side of the book. This exogenous trick might be impor-
tant, since it is activated precisely in the case of rare
events that influence the tails of the distributions. Also,
the original model does not focus on volatility clustering.
Gu and Zhou (2009) propose a variant that tackles this
feature. Another important drawback of the model is the
way order signs are simulated. As noted by the authors,
using an exogenous fractional Brownian motion leads to
correlated price returns, which is in contradiction with
empirical stylized facts. We also find that at long time
scales it leads to a dramatic increase of volatility. As we
have seen in the first part of the review, the correlation
of trade signs can be at least partly seen as an artefact
of execution strategies. Therefore this element is one of
the numerous that should be taken into account when
“programming” the agents of the model. In order to do
so, we have to leave the (quasi) “zero-intelligence” world

and see how modelling based on heterogeneous agents
might help to reproduce non-trivial behaviours. Prior to
this development below in VII F, we briefly review some
analytical works on the “zero-intelligence” models.

E. Analytical treatments of zero-intelligence models

In this section we present some analytical results ob-
tained on zero-intelligence models where processes are
kept sufficiently simple so that a mean-field approxima-
tion may be derived (Slanina (2001)) or probabilities con-
ditionaly to the state of the order book may be computed
(Cont et al. (2008)). The key assumptions here are such
that the process describing the order book is stationary.
This allows either to write a stable density equation, or
to fit the model into a nice mathematical framework such
as ergodic Markov chains.

1. Mean-field theory

Slanina (2001) proposes an analytical treatment of the
model introduced by Maslov (2000) and reviewed above.
Let us briefly described the formalism used. The main
hypothesis is the following: on each side of the current
price level, the density of limit orders is uniform and con-
stant (and ρ+ on the ask side, ρ− on the bid side). In
that sense, this is a “mean-field” approximation since the
individual position of a limit order is not taken into ac-
count. Assuming we are in a stable state, the arrival of
a market order of size s on the ask (resp. bid) side will
make the price change by x+ = s/ρ+ (resp. x− = s/ρ−).
It is then observed that the transformations of the vector
X = (x+, x−) occurring at each event (new limit order,
new buy market order, new sell market order) are linear
transformation that can easily and explicitly be written.
Therefore, an equation satisfied by the probability dis-
tribution P of the vector X of price changes can be ob-
tained. Finally, assuming further simplifications (such as
ρ+ = ρ−), one can solve this equation for a tail exponent
and find that the distribution behaves as P (x) ≈ x−2 for
large x. This analytical result is slightly different from
the one obtained by simulation in Maslov (2000). How-
ever, the numerous approximations make the comparison
difficult. The main point here is that some sort of mean-
field approximation is natural if we assume the existence
of a stationary state of the order book, and thus may
help handling order book models.
Smith et al. (2003) also propose some sort of mean-

field approximation for zero-intelligence models. In a
similar model (but including a cancellation process),
mean field theory and dimensional analysis produces in-
teresting results. For example, it is easy to see that the
book depth (i.e. number of orders) Ne(p) at a price p far
away from the best quotes is given byNe(p) = λ/δ, where
λ is the rate of arrival of limit orders per unit of time and
per unit of price, and δ the probability for an order to
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be cancelled per unit of time. Indeed, far from the best
quotes no market orders occurs, so that if a steady-state
exists, the number of limit orders par time step λ must
be balanced by the number of cancellation δNe(p) per
unit of time, hence the result.

2. Explicit computation of probabilities conditionally on
the state of the order book

Cont et al. (2008) is an original attempt at analyti-
cal treatments of limit order books. In their model, the
price is contrained to be on a grid {1, . . . , N}. The state
of the order book can then be described by a vector
X(t) = (X1(t), . . . , XN(t)) where |Xi(t)| is the quan-
tity offered in the order book at price i. Conventionaly,
Xi(t), i = 1, . . . , N is positive on the ask side and neg-
ative on the bid side. As usual, limit orders arrive at
level i at a constant rate λi, and market orders arrive
at a constant rate µ. Finally, at level i, each order can
be cancelled at a rate θi. Using this setting, Cont et al.
(2008) show that each event (limit order, market order,
cancellation) transforms the vector X in a simple linear
way. Therefore, it is shown that under reasonable con-
ditions, X is an ergodic Markov chain, and thus admits
a stationary state. The original idea is then to use this
formalism to compute conditional probabilities on the
processes. More precisely, it is shown that using Laplace
transform, one may explicitly compute the probability of
an increase of the mid price conditionally on the current
state of the order book.
This original contribution could allow explicit evalu-

ation of strategies and open new perspectives in high-
frequency trading. However, it is based on a simple
model that does not reproduce empirical observations
such as volatility clustering. Complex models trying to
include market interactions will not fit into these analyt-
ical frameworks. We review some of these models in the
next section.

F. Towards non-trivial behaviours: modelling market
interactions

In all the models we have reviewed until now, flows
of orders are treated as independent processes. Under
some (strong) modelling constraints, we can see the or-
der book as a Markov chain and look for analytical re-
sults (Cont et al. (2008)). In any case, even if the process
is empirically detailed and not trivial (Mike and Farmer
(2008)), we work with the assumption that orders are in-
dependent and identically distributed. This very strong
(and false) hypothesis is similar to the “representative
agent” hypothesis in Economics: orders being succes-
sively and independently submitted, we may not expect
anything but regular behaviours. Following the work of
economists such as Kirman (1992, 1993, 2002), one has
to translate the heterogeneous property of the markets

into the agent-based models. Agents are not identical,
and not independent.
In this section we present some toy models imple-

menting mechanisms that aim at bringing heterogeneity:
herding behaviour on markets in Cont and Bouchaud
(2000), trend following behaviour in Lux and Marchesi
(2000) or in Preis et al. (2007), threshold behaviour Cont
(2007). Most of the models reviewed in this section are
not order book models, since a persistent order book is
not kept during the simulations. They are rather price
models, where the price changes are determined by the
aggregation of excess supply and demand. However, they
identify essential mechanisms that may clearly explain
some empirical data. Incorporating these mechanisms in
an order book model is not yet achieved but is certainly
a future prospective.

1. Herding behaviour

The model presented in Cont and Bouchaud (2000)
considers a market with N agents trading a given stock
with price p(t). At each time step, agents choose to
buy or sell one unit of stock, i.e. their demand is
φi(t) = ±1, i = 1, . . . , N with probability a or are idle
with probability 1−2a. The price change is assumed to be

linearly linked with the excess demandD(t) =
∑N

i=1 φi(t)
with a factor λ measuring the liquidity of the market :

p(t+ 1) = p(t) +
1

λ

N∑

i=1

φi(t). (23)

λ can also be interpreted as a market depth, i.e. the ex-
cess demand needed to move the price by one unit. In
order to evaluate the distribution of stock returns from
Eq.(23), we need to know the joint distribution of the
individual demands (φi(t))1≤i≤N . As pointed out by the
authors, if the distribution of the demand φi is indepen-
dent and identically distributed with finite variance, then
the Central Limit Theorem stands and the distribution
of the price variation ∆p(t) = p(t+1)−p(t) will converge
to a Gaussian distribution as N goes to infinity.
The idea here is to model the diffusion of the informa-

tion among traders by randomly linking their demand
through clusters. At each time step, agents i and j can
be linked with probability pij = p = c

N , c being a param-
eter measuring the degree of clustering among agents.
Therefore, an agent is linked to an average number of
(N − 1)p other traders. Once clusters are determined,
the demand are forced to be identical among all members
of a given cluster. Denoting nc(t) the number of cluster
at a given time step t, Wk the size of the k-th cluster,
k = 1, . . . , nc(t) and φk = ±1 its investement decision,
the price variation is then straightforwardly written :

∆p(t) =
1

λ

nc(t)∑

k=1

Wkφk. (24)
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This modelling is a direct application to the field of
finance of the random graph framework as studied in
Erdos and Renyi (1960). Kirman (1983) previously sug-
gested it in economics. Using these previous theoretical
works, and assuming that the size of a clusterWk and the
decision taken by its members φk(t) are independent, the
author are able to show that the distribution of the price
variation at time t is the sum of nc(t) independent identi-
cally distributed random variables with heavy-tailed dis-
tributions :

∆p(t) =
1

λ

nc(t)∑

k=1

Xk, (25)

where the density f(x) of Xk =Wkφk is decaying as :

f(x) ∼|x|→∞
A

|x|5/2 e
−(c−1)|x|

W0 . (26)

Thus, this simple toy model exhibits fat tails in the dis-
tribution of prices variations, with a decay reasonably
close to empirical data. Therefore, Cont and Bouchaud
(2000) show that taking into account a naive mechanism
of communication between agents (herding behaviour) is
able to drive the model out of the Gaussian convergence
and produce non-trivial shapes of distributions of price
returns.

2. Fundamentalists and trend followers

Lux and Marchesi (2000) proposed a model very much
in line with agent-based models in behavioural finance,
but where trading rules are kept simple enough so that
they can be identified with a presumably realistic be-
haviour of agents. This model considers a market with N
agents that can be part of two distinct groups of traders:
nf traders are “fundamentalists”, who share an exoge-
nous idea pf of the value of the current price p; and nc

traders are “chartists” (or trend followers), who make as-
sumptions on the price evolution based on the observed
trend (mobile average). The total number of agents is
constant, so that nf +nc = N at any time. At each time
step, the price can be moved up or down with a fixed
jump size of ±0.01 (a tick). The probability to go up or
down is directly linked to the excess demand ED through
a coefficient β. The demand of each group of agents is
determined as follows :

• Each fundamentalist trades a volume Vf propor-
tional, with a coefficient γ, to the deviation of
the current price p from the perceived fundamental
value pf : Vf = γ(pf − p).

• Each chartist trades a constant volume Vc. Denot-
ing n+ the number of optimistic (buyer) chartists
and n− the number of pessimistic (seller) chartists,
the excess demand by the whole group of chartists
is written (n+ − n−)Vc.

Therefore, assuming that there exists some noise traders
on the market with random demand µ, the global excess
demand is written :

ED = (n+ − n−)Vc + nfγ(pf − p) + µ. (27)

The probability that the price goes up (resp. down) is
then defined to be the positive (resp. negative) part of
βED.
As observed in Wyart and Bouchaud (2007), funda-

mentalists are expected to stabilize the market, while
chartists should destabilize it. In addition, following
Cont and Bouchaud (2000), the authors expect non-
trivial features of the price series to results from herding
behaviour and transitions between groups of traders. Re-
ferring to Kirman’s work as well, a mimicking behaviour
among chartists is thus proposed. The nc chartists can
change their view on the market (optimistic, pessimistic),
their decision being based on a clustering process mod-
elled by an opinion index x = n+−n−

nc
representing the

weight of the majority. The probabilities π+ and π− to
switch from one group to another are formally written :

π± = v
nc

N
e±U , U = α1x+ α2p/v, (28)

where v is a constant, and α1 and α2 reflect respectively
the weight of the majority’s opinion and the weight of
the observed price in the chartists’ decision. Transi-
tions between fundamentalists and chartists are also al-
lowed, decided by comparison of expected returns (see
Lux and Marchesi (2000) for details).
The authors show that the distribution of returns gen-

erated by their model have excess kurtosis. Using a
Hill estimator, they fit a power law to the fat tails of
the distribution and observe exponents grossly ranging
from 1.9 to 4.6. They also check hints for volatility clus-
tering: absolute returns and squared returns exhibit a
slow decay of autocorrelation, while raw returns do not.
It thus appears that such a model can grossly fit some
“stylized facts”. However, the number of parameters in-
volved, as well as the complicated rules of transition be-
tween agents, make clear identification of sources of phe-
nomenons and calibration to market data difficult and
intractable.
Alfi et al. (2009a,b) provide a somewhat simplifying

view on the Lux-Marchesi model. They clearly identify
the fundamentalist behaviour, the chartist behaviour, the
herding effect and the observation of the price by the
agents as four essential effects of an agent-based finan-
cial model. They show that the number of agents plays
a crucial role in a Lux-Marchesi-type model: more pre-
cisely, the stylized facts are reproduced only with a finite
number of agents, not when the number of agents grows
asymptotically, in which case the model stays in a fun-
damentalist regime. There is a finite-size effect that may
prove important for further studies.
The role of the trend following mechanism in produc-

ing non-trivial features in price time series is also studied
in Preis et al. (2007). The starting point is an order book
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FIG. 36. Hurst exponent found in the Preis model for different
number of agents when including random demand perturba-
tion and dynamic limit order placement depth. Reproduced
from Preis et al. (2007).

model similar to Challet and Stinchcombe (2001) and
Smith et al. (2003): at each time step, liquidity providers
submit limit orders at rate λ and liquidity takers sub-
mit market orders at rate µ. As expected, this zero-
intelligence framework does not produce fat tails in the
distribution of (log-)returns nor an over-diffusive Hurst
exponent. Then, a stochastic link between order place-
ment and market trend is added: it is assumed that liq-
uidity providers observing a trend in the market will act
consequently and submit limit orders at a wider depth in
the order book. Although the assumption behind such
a mechanism may not be empirically confirmed (a ques-
tionable symmetry in order placement is assumed) and
should be further discussed, it is interesting enough that
it directly provides fat tails in the log-return distribu-
tions and an over-diffusive Hurst exponent H ≈ 0.6− 0.7
for medium time-scales, as shown in figure 36.

3. Threshold behaviour

We finally review a model focusing primarily on repro-
ducing the stylized fact of volatility clustering, while most
of the previous models we have reviewed were mostly fo-
cused on fat tails of log returns. Cont (2007) proposes a
model with a rather simple mechanism to create volatil-
ity clustering. The idea is that volatility clustering char-
acterizes several regimes of volatility (quite periods vs
bursts of activity). Instead of implementing an exoge-
nous change of regime, the author defines the following
trading rules.
At each period, an agent i ∈ {1, . . . , N} can issue a buy

or a sell order: φi(t) = ±1. Information is represented
by a series of i.i.d Gaussian random variables. (ǫt). This
public information ǫt is a forecast for the value rt+1 of
the return of the stock. Each agent i ∈ {1, . . . , N} de-

cides whether to follow this information according to a
threshold θi > 0 representing its sensibility to the public
information:

φi(t) =





1 if ǫi(t) > θi(t)

0 if |ǫi(t)| < θi(t)

−1 if ǫi(t) < −θi(t)
(29)

Then, once every choice is made, the price evolves accord-

ing to the excess demand D(t) =
∑N

i=1 φi(t), in a way
similar to Cont and Bouchaud (2000). At the end of each
time step t, threshold are asynchronously updated. Each
agent has a probability s to update its threshold θi(t).
In such a case, the new threshold θi(t + 1) is defined to
be the absolute value |rt|of the return just observed. In
short:

θi(t+ 1) = 1{ui(t)<s}|rt|+ 1{ui(t)>s}θi(t). (30)

The author shows that the time series simulated with
such a model do exhibit some realistic facts on volatility.
In particular, long range correlations of absolute returns
is observed. The strength of this model is that it di-
rectly links the state of the market with the decision of
the trader. Such a feedback mechanism is essential in
order to obtain non trivial characteristics. Of course, the
model presented in Cont (2007) is too simple to be fully
calibrated on empirical data, but its mechanism could be
used in a more elaborate agent-based model in order to
reproduce the empirical evidence of volatility clustering.

G. Remarks

Let us attempt to make some concluding remarks
on these developments of agent-based models for order
books. In table III, we summarize some key features of
some of the order book models reviewed in this section.
Among important elements for future modelling, we may
mention the cancellation of orders, which is the less real-
istic mechanism implemented in existing models ; the or-
der book stability, which is always exogenously enforced
(see our review of Mike and Farmer (2008) above) ; and
the dependence between order flows (see e.g. Muni Toke
(2010) and reference therein). Empirical estimation of
these mechanisms is still challenging.
Emphasis has been put in this section on order book

modelling, a field that is at the crossroad of many larger
disciplines (market microstructure, behavioural finance
and physics). Market microstructure is essential since
it defines in many ways the goal of the modelling. We
pointed out that it is not a coincidence if the work by
Garman (1976) was published when computerization of
exchanges was about to make the electronic order book
the key of all trading. Regulatory issues that pushed
early studies are still very important today. Realistic
order book models could be a invaluable tool in testing
and evaluating the effects of regulations such as the 2005
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Regulation NMS5 in the USA, or the 2007 MiFID6 in
Europe.

VIII. AGENT-BASED MODELLING FOR WEALTH
DISTRIBUTIONS: KINETIC THEORY MODELS

The distributions of money, wealth or income, i.e., how
such quantities are shared among the population of a
given country and among different countries, is a topic
which has been studied by economists for a long time.
The relevance of the topic to us is twofold: From the
point of view of the science of Complex Systems, wealth
distributions represent a unique example of a quantita-
tive outcome of a collective behavior which can be di-
rectly compared with the predictions of theoretical mod-
els and numerical experiments. Also, there is a basic
interest in wealth distributions from the social point of
view, in particular in their degree of (in)equality. To this
aim, the Gini coefficient (or the Gini index, if expressed
as a percentage), developed by the Italian statistician
Corrado Gini, represents a concept commonly employed
to measure inequality of wealth distributions or, more
in general, how uneven a given distribution is. For a
cumulative distribution function F (y), that is piecewise
differentiable, has a finite mean µ, and is zero for y < 0,
the Gini coefficient is defined as

G = 1− 1

µ

∫ ∞

0

dy (1− F (y))2

=
1

µ

∫ ∞

0

dy F (y)(1− F (y)) . (31)

It can also be interpreted statistically as half the relative
mean difference. Thus the Gini coefficient is a number
between 0 and 1, where 0 corresponds with perfect equal-
ity (where everyone has the same income) and 1 corre-
sponds with perfect inequality (where one person has all
the income, and everyone else has zero income). Some
values of G for some countries are listed in Table IV.
Let us start by considering the basic economic quanti-

ties: money, wealth and income.

A. Money, wealth and income

A common definition of money suggests that money is
the “[c]ommodity accepted by general consent as medium
of economics exchange”7. In fact, money circulates from
one economic agent (which can represent an individual,
firm, country, etc.) to another, thus facilitating trade. It
is “something which all other goods or services are traded

5 National Market System
6 Markets in Financial Instruments Directive
7 In Encyclopædia Britannica. Retrieved June 17, 2010, from En-
cyclopædia Britannica Online

for” (for details see Shostak (2000)). Throughout history
various commodities have been used as money, for these
cases termed as “commodity money”, which include for
example rare seashells or beads, and cattle (such as cow
in India). Recently, “commodity money” has been re-
placed by other forms referred to as “fiat money”, which
have gradually become the most common ones, such as
metal coins and paper notes. Nowadays, other forms of
money, such as electronic money, have become the most
frequent form used to carry out transactions. In any case
the most relevant points about money employed are its
basic functions, which according to standard economic
theory are

• to serve as a medium of exchange, which is univer-
sally accepted in trade for goods and services;

• to act as a measure of value, making possible the
determination of the prices and the calculation of
costs, or profit and loss;

• to serve as a standard of deferred payments, i.e., a
tool for the payment of debt or the unit in which
loans are made and future transactions are fixed;

• to serve as a means of storing wealth not immedi-
ately required for use.

A related feature relevant for the present investigation is
that money is the medium in which prices or values of all
commodities as well as costs, profits, and transactions
can be determined or expressed. Wealth is usually un-
derstood as things that have economic utility (monetary
value or value of exchange), or material goods or prop-
erty; it also represents the abundance of objects of value
(or riches) and the state of having accumulated these ob-
jects; for our purpose, it is important to bear in mind
that wealth can be measured in terms of money. Also
income, defined in Case and Fair (2008) as “the sum of
all the wages, salaries, profits, interests payments, rents
and other forms of earnings received... in a given period
of time”, is a quantity which can be measured in terms
of money (per unit time).

B. Modelling wealth distributions

It was first observed by Pareto (1897b) that in an econ-
omy the higher end of the distribution of income f(x)
follows a power-law,

f(x) ∼ x−1−α , (32)

with α, now known as the Pareto exponent, estimated
by him to be α ≈ 3/2. For the last hundred years
the value of α ∼ 3/2 seems to have changed little in
time and across the various capitalist economies (see
Yakovenko and Rosser (2009) and references therein).
Gibrat (1931) clarified that Pareto’s law is valid only

for the high income range, whereas for the middle in-
come range he suggested that the income distribution is
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Model Stigler (1961) Garman (1976) Bak, Paczuski
and Shubik
(1997)

Maslov (2000) Challet and
Stinchcombe
(2001)

Mike and Farmer
(2008)

Price
range

Finite grid Finite grid Finite grid Unconstrained Unconstrained Unconstrained

Clock Trade time Physical Time Aggregated time Event time Aggregated time Aggregated time

Flows /
Agents

One zero-
intelligence agent
/ One flow

One zero-
intelligence
agent / Two flows
(buy/sell)

N agents owning
each one limit or-
der

One zero-
intelligence flow
(limit order with
fixed probability,
else market order)

One zero-
intelligence agent
/ One flow

One zero-
intelligence agent
/ One flow

Limit
orders

Uniform distribu-
tion on the price
grid

Two Poisson pro-
cesses for buy and
sell orders

Moving at each
time step by one
tick

Uniformly dis-
tributed in a
finite interval
around last price

Normally dis-
tributed around
best quote

Student-
distributed
around best
quote

Market
orders

Defined as cross-
ing limit orders

Defined as cross-
ing limit orders

Defined as cross-
ing limit orders

Submitted as such Defined as cross-
ing limit orders

Defined as cross-
ing limit orders

Cancel-
lation
orders

Pending orders
are cancelled after
a fixed number of
time steps

None None (constant
number of pend-
ing orders)

Pending orders
are cancelled after
a fixed number of
time steps

Pending orders
can be cancelled
with fixed prob-
ability at each
time step

Pending orders
can be cancelled
with 3-parameter
conditional prob-
ability at each
time step

Volume Unit Unit Unit Unit Unit Unit

Order
signs

Independent Independent Independent Independent Independent Correlated with a
fractional Brown-
ian motion

Claimed
results

Return distribu-
tion is power-law
0.3 / Cut-off be-
cause finite grid

Microstructure
is responsible
for negative
correlation of
consecutive price
changes

No fat tails for re-
turns / Hurst ex-
ponent 1/4 for
price increments

Fat tails for distri-
butions of returns
/ Hurst exponent
1/4

Hurst exponent
1/4 for short time
scales, tending
to 1/2 for larger
time scales

Fat tails distribu-
tions of returns
/ Realistic spread
distribution / Un-
stable order book

TABLE III. Summary of the characteristics of the reviewed limit order book models.

described by a log-normal probability density

f(x) ∼ 1

x
√
2πσ2

exp

{
− log2(x/x0)

2σ2

}
, (33)

where log(x0) = 〈log(x)〉 is the mean value of the loga-
rithmic variable and σ2 = 〈[log(x) − log(x0)]

2〉 the cor-

responding variance. The factor β = 1/
√
2σ2, also know

an as Gibrat index, measures the equality of the distri-
bution.

More recent empirical studies on income distribu-
tion have been carried out by physicists, e.g. those
by Dragulescu and Yakovenko (2001b,a) for UK and
US, by Fujiwara et al. (2003) for Japan, and by
Nirei and Souma (2007) for US and Japan. For an
overview see Yakovenko and Rosser (2009). The distri-
butions obtained have been shown to follow either the
log-normal (Gamma like) or power-law types, depending
on the range of wealth, as shown in Fig. 37.
One of the current challenges is to write down the

“microscopic equation” which governs the dynamics of
the evolution of wealth distributions, possibly predict-
ing the observed shape of wealth distributions, in-
cluding the exponential law at intermediate values of
wealth as well as the century-old Pareto law. To this
aim, several studies have been made to investigate the

FIG. 37. Income distributions in the US (left)and
Japan (right). Reproduced and adapted from
Chakrabarti and Chatterjee (2003), available at
arXiv:cond-mat/0302147.

characteristics of the real income distribution and pro-
vide theoretical models or explanations (see e.g. re-
views by Lux (2005), Chatterjee and Chakrabarti (2007),
Yakovenko and Rosser (2009)).

The model of Gibrat (1931) and other models
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TABLE IV. Gini indices (in percent) of some countries
(from Human Development Indicators of the United Na-
tions Human Development Report 2004, pp.50-53, available at
http://hdr.undp.org/en/reports/global/hdr2004. More
recent data are also available from their website.)

Denmark 24.7

Japan 24.9

Sweden 25.0

Norway 25.8

Germany 28.3

India 32.5

France 32.7

Australia 35.2

UK 36.0

USA 40.8

Hong Kong 43.4

China 44.7

Russia 45.6

Mexico 54.6

Chile 57.1

Brazil 59.1

South Africa 59.3

Botswana 63.0

Namibia 70.7

formulated in terms of a Langevin equation for a
single wealth variable, subjected to multiplicative
noise (Mandelbrot (1960); Levy and Solomon (1996);
Sornette (1998); Burda et al. (2003)), can lead to
equilibrium wealth distributions with a power law tail,
since they converge toward a log-normal distribution.
However, the fit of real wealth distributions does not
turn out to be as good as that obtained using e.g. a
Γ- or a β-distribution, in particular due to too large
asymptotic variances (Angle (1986)). Other models use
a different approach and describe the wealth dynamics
as a wealth flow due to exchanges between (pairs of)
basic units. In this respect, such models are basically
different from the class of models formulated in terms
of a Langevin equation for a single wealth variable.
For example, Solomon and Levy (1996) studied the
generalized Lotka-Volterra equations in relation to
power-law wealth distribution. Ispolatov et al. (1998)
studied random exchange models of wealth distri-
butions. Other models describing wealth exchange
have been formulated using matrix theory (Gupta
(2006)), the master equation (Bouchaud and Mezard
(2000); Dragulescu and Yakovenko (2000);
Ferrero (2004)), the Boltzmann equation approach
(Dragulescu and Yakovenko (2000); Slanina (2004);
Repetowicz et al. (2005); Cordier et al. (2005);
Matthes and Toscani (2007); Düring and Toscani
(2007); Düring et al. (2008)), or Markov chains
(Scalas et al. (2006, 2007); Garibaldi et al. (2007)).

It should be mentioned that one of the earliest mod-
elling efforts were made by Champernowne (1953).
Since then many economists, Gabaix (1999) and
Benhabib and Bisin (2009) amongst others, have also
studied mechanisms for power laws, and distributions of
wealth.
In the two following sections we consider in greater

detail a class of models usually referred to as ki-
netic wealth exchange models (KWEM), formulated
through finite time difference stochastic equations (Angle
(1986, 2002, 2006); Chakraborti and Chakrabarti
(2000); Dragulescu and Yakovenko (2000); Chakraborti
(2002); Hayes (2002); Chatterjee et al. (2003);
Das and Yarlagadda (2003); Scafetta et al. (2004);
Iglesias et al. (2003, 2004); Ausloos and Pekalski
(2007)). From the studies carried out using wealth-
exchange models, it emerges that it is possible to use
them to generate power law distributions.

C. Homogeneous kinetic wealth exchange models

Here and in the next section we consider KWEMs,
which are statistical models of closed economy. Their
goal, rather then describing the market dynamics in
terms of intelligent agents, is to predict the time evo-
lution of the distribution of some main quantity, such
as wealth, by studying the corresponding flow process
among individuals. The underlying idea is that however
complicated the detailed rules of wealth exchanges can
be, their average behaviour can be described in a rel-
atively more simple way and will share some universal
properties with other transport processes, due to general
conservation constraints and the effect of the fluctuations
due to the environment or associated to the individual be-
haviour. In this, there is a clear analogy with the general
theory of transport phenomena (e.g. of energy).
In these models the states of agents are defined in terms

of the wealth variables {xn}, n = 1, 2, . . . , N . The evo-
lution of the system is carried out according to a trading
rule between agents which, for obtaining the final equilib-
rium distribution, can be interpreted as the actual time
evolution of the agent states as well as a Monte Carlo
optimization. The algorithm is based on a simple update
rule performed at each time step t, when two agents i
and j are extracted randomly and an amount of wealth
∆x is exchanged,

x′i = xi −∆x ,

x′j = xj +∆x . (34)

Notice that the quantity x is conserved during single
transactions, x′i + x′j = xi + xj , where xi = xi(t)
and xj = xj(t) are the agent wealth before, whereas
x′i = xi(t + 1) and x′j = xj(t + 1) are the final ones
after the transaction. Several rules have been studied
for the model defined by Eqs. (34). It is noteworthy,
that though this theory has been originally derived from
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the entropy maximization principle of statistical mechan-
ics, it has recently been shown that the same could be
derived from the utility maximization principle as well,
following a standard exchange-model with Cobb-Douglas
utility function (as explained later), which bridge physics
and economics together.

1. Exchange models without saving

In a simple version of KWEM considered in the
works by Bennati (1988a,b, 1993) and also studied by
Dragulescu and Yakovenko (2000) the money difference
∆x in Eqs. (34) is assumed to have a constant value,
∆x = ∆x0. Together with the constraint that transac-
tions can take place only if x′i > 0 and x′j > 0, this leads
to an equilibrium exponential distribution, see the curve
for λ = 0 in Fig. 38.
Various other trading rules were studied by

Dragulescu and Yakovenko (2000), choosing ∆x as
a random fraction of the average money between the
two agents, ∆x = ǫ(xi + xj)/2, corresponding to a
∆x = (1− ǫ)xi − ǫxj in (34), or of the average money of
the whole system, ∆x = ǫ〈x〉.
The models mentioned, as well as more complicated

ones (Dragulescu and Yakovenko (2000)), lead to an
equilibrium wealth distribution with an exponential tail

f(x) ∼ β exp(−βx) , (35)

with the effective temperature 1/β of the order of the
average wealth, β−1 = 〈x〉. This result is largely inde-
pendent of the details of the models, e.g. the multi-agent
nature of the interaction, the initial conditions, and the
random or consecutive order of extraction of the interact-
ing agents. The Boltzmann distribution is characterized
by a majority of poor agents and a few rich agents (due
to the exponential tail), and has a Gini coefficient of 0.5.

2. Exchange models with saving

As a generalization and more realistic version of the
basic exchange models, a saving criterion can be intro-
duced. Angle (1983), motivated by the surplus theory,
introduced a unidirectional model of wealth exchange, in
which only a fraction of wealth smaller than one can pass
from one agent to the other, with a ∆x = ǫxi or (−ωxj),
where the direction of the flow is determined by the agent
wealth (Angle (1983, 1986)). Later Angle introduced the
One-Parameter Inequality Process (OPIP) where a con-
stant fraction 1−ω is saved before the transaction (Angle
(2002)) by the agent whose wealth decreases, defined by
an exchanged wealth amount ∆x = ωxi or −ωxj , again
with the direction of the transaction determined by the
relative difference between the agent wealth.
A “saving parameter” 0 < λ < 1 representing the

fraction of wealth saved, was introduced in the model
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FIG. 38. Probability density for wealth x. The curve for
λ = 0 is the Boltzmann function f(x) = 〈x〉−1 exp(−x/〈x〉) for
the basic model of Sec. VIIIC 1. The other curves correspond
to a global saving propensity λ > 0, see Sec. VIIIC 2.

by Chakraborti and Chakrabarti (2000). In this model
(CC) wealth flows simultaneously toward and from each
agent during a single transaction, the dynamics being
defined by the equations

x′i = λxi + ǫ(1− λ)(xi + xj) ,

x′j = λxj + (1− ǫ)(1− λ)(xi + xj) , (36)

or, equivalently, by a ∆x in (34) given by

∆x = (1− λ)[(1 − ǫ)xi − ǫxj ] . (37)

These models, apart from the OPIP model of Angle
which has the remarkable property of leading to a power
law in a suitable range of ω, can be well fitted by a Γ-
distribution. The Γ-distribution is characterized by a
mode xm > 0, in agreement with real data of wealth
and income distributions (Dragulescu and Yakovenko
(2001a); Ferrero (2004); Silva and Yakovenko (2005);
Sala-i Martin and Mohapatra (2002); Sala-i Martin
(2002); Aoyama et al. (2003)). Furthermore, the limit



35

TABLE V. Analogy between kinetic the theory of gases and
the kinetic exchange model of wealth

Kinetic model Economy model

variable K (kinetic energy) x (wealth)

units N particles N agents

interaction collisions trades

dimension integer D real number Dλ

temperature definition kBT = 2〈K〉/D Tλ = 2〈x〉/Dλ

reduced variable ξ = K/kBT ξ = x/Tλ

equilibrium distribution f(ξ) = γD/2(ξ) f(ξ) = γDλ/2(ξ)

for small x is zero, i.e. P (x → 0) → 0, see the exam-
ple in Fig. 38. In the particular case of the model by
Chakraborti and Chakrabarti (2000), the explicit distri-
bution is well fitted by

f(x) = n〈x〉−1γn(nx/〈x〉)

=
1

Γ(n)

n

〈x〉

(
nx

〈x〉

)n−1

exp

(
− nx

〈x〉

)
, (38)

n(λ) ≡ Dλ

2
= 1 +

3λ

1− λ
. (39)

where γn(ξ) is the standard Γ-distribution. This par-
ticular functional form has been conjectured on the base
of the excellent fitting provided to numerical data (Angle
(1983, 1986); Patriarca et al. (2004b,a, 2009)). For more
information and a comparison of similar fittings for dif-
ferent models see Patriarca et al. (2010). Very recently,
Lallouache et al. (2010) have shown using the distribu-
tional form of the equation and moment calculations
that strictly speaking the Gamma distribution is not
the solution of Eq. (36), confirming the earlier results
of Repetowicz et al. (2005). However, the Gamma dis-
tribution is a very very good approximation.
The ubiquitous presence of Γ-functions in the solutions

of kinetic models (see also below heterogeneous models)
suggests a close analogy with kinetic theory of gases. In
fact, interpreting Dλ = 2n as an effective dimension,
the variable x as kinetic energy, and introducing the ef-
fective temperature β−1 ≡ Tλ = 〈x〉/2Dλ according to
the equipartition theorem, Eqs. (38) and (39) define the
canonical distribution βγn(βx) for the kinetic energy of
a gas in Dλ = 2n dimensions, see Patriarca et al. (2004a)
for details. The analogy is illustrated in Table V and the
dependences of Dλ = 2n and of β−1 = Tλ on the saving
parameter λ are shown in Fig. 39.
The exponential distribution is recovered as a special

case, for n = 1. In the limit λ → 1, i.e. for n → ∞, the
distribution f(x) above tends to a Dirac δ-function, as
shown in Patriarca et al. (2004a) and qualitatively illus-
trated by the curves in Fig. 38. This shows that a large
saving criterion leads to a final state in which economic
agents tend to have similar amounts of money and, in
the limit of λ→ 1, exactly the same amount 〈x〉.
The equivalence between a kinetic wealth-exchange

model with saving propensity λ ≥ 0 and an N -particle

 1

 10

 100

 0.01  0.1  1

D
λ

λ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

T
λ/

〈 x
 〉

λ

FIG. 39. Effective dimension Dλ and temperature T as a
function of the saving parameter λ.

system in a space with dimension Dλ ≥ 2 is suggested by
simple considerations about the kinetics of collision pro-
cesses between two molecules. In one dimension, particles
undergo head-on collisions in which the whole amount
of kinetic energy can be exchanged. In a larger num-
ber of dimensions the two particles will not travel in
general exactly along the same line, in opposite verses,
and only a fraction of the energy can be exchanged.
It can be shown that during a binary elastic collision
in D dimensions only a fraction 1/D of the total ki-
netic energy is exchanged on average for kinematic rea-
sons, see Chakraborti and Patriarca (2008) for details.
The same 1/D dependence is in fact obtained inverting
Eq. (39), which provides for the fraction of exchanged
wealth 1− λ = 6/(Dλ + 4).

Not all homogeneous models lead to distributions with
an exponential tail. For instance, in the model studied in
Chakraborti (2002) an agent i can lose all his wealth, thus
becoming unable to trade again: after a sufficient number
of transactions, only one trader survives in the market
and owns the entire wealth. The equilibrium distribution
has a very different shape, as explained below:
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In the toy model it is assumed that both the economic
agents i and j invest the same amount xmin, which is
taken as the minimum wealth between the two agents,
xmin = min{xi, xj}. The wealth after the trade are x′i =
xi + ∆x and x′j = xj − ∆x, where ∆x = (2ǫ − 1)xmin.
We note that once an agent has lost all his wealth, he
is unable to trade because xmin has become zero. Thus,
a trader is effectively driven out of the market once he
loses all his wealth. In this way, after a sufficient number
of transactions only one trader survives in the market
with the entire amount of wealth, whereas the rest of the
traders have zero wealth. In this toy model, only one
agent has the entire money of the market and the rest
of the traders have zero money, which corresponds to a
distribution with Gini coefficient equal to unity.

Now, a situation is said to be Pareto-optimal “if by
reallocation you cannot make someone better off without
making someone else worse off”. In Pareto’s own words:

“We will say that the members of a collectiv-
ity enjoy maximum ophelimity in a certain
position when it is impossible to find a way
of moving from that position very slightly in
such a manner that the ophelimity enjoyed
by each of the individuals of that collectiv-
ity increases or decreases. That is to say, any
small displacement in departing from that po-
sition necessarily has the effect of increasing
the ophelimity which certain individuals en-
joy, and decreasing that which others enjoy,
of being agreeable to some, and disagreeable
to others.”

— Vilfredo Pareto, Manual of Political Econ-
omy (1906), p.261.

However, as Sen (1971) notes, an economy can be Pareto-
optimal, yet still “perfectly disgusting” by any ethi-

cal standards . It is important to note that Pareto-
optimality, is merely a descriptive term, a property of an
“allocation”, and there are no ethical propositions about
the desirability of such allocations inherent within that
notion. Thus, in other words there is nothing inherent in
Pareto-optimality that implies the maximization of social
welfare.

This simple toy model thus also produces a Pareto-
optimal state (it will be impossible to raise the well-being
of anyone except the winner, i.e., the agent with all the
money, and vice versa ) but the situation is economically
undesirable as far as social welfare is concerned!

Note also, as mentioned above, the OPIP model of
Angle (2006, 2002), for example, depending on the model
parameters, can also produce a power law tail. Another
general way to produce a power law tail in the equilibrium
distribution seems to diversify the agents, i.e. to consider
heterogeneous models, discussed below.

FIG. 40. Results for randomly assigned saving parameters.
Reproduced and adapted from Chakrabarti and Chatterjee
(2003), available at arXiv:cond-mat/0302147.

D. Heterogeneous kinetic wealth exchange models

1. Random saving propensities

The models considered above assume the all agents
have the same statistical properties. The corresponding
equilibrium wealth distribution has in most of the cases
an exponential tail, a form which well interpolates real
data at small and intermediate values of wealth. How-
ever, it is possible to conceive generalized models which
lead to even more realistic equilibrium wealth distribu-
tions. This is the case when agents are diversified by
assigning different values of the saving parameter. For
instance, Angle (2002) studied a model with a trading
rule where diversified parameters {ωi} occur,

∆x = ωiǫxi or − ωjǫxj , (40)

with the direction of wealth flow determined by the
wealth of agents i and j. Diversified saving parame-
ters were independently introduced by Chatterjee et al.

(2003, 2004) by generalizing the model introduced in
Chakraborti and Chakrabarti (2000):

x′i = λixi + ǫ[(1− λi)xi + (1− λj)xj ] ,

x′j = λxj + (1− ǫ)[(1− λi)xi + (1− λj)xj ] , (41)

corresponding to a

∆x = (1− ǫ)(1− λi)xi − ǫ(1− λj)xj . (42)

The surprising result is that if the parameters {λi} are
suitably diversified, a power law appears in the equilib-
rium wealth distribution, see Fig. 40. In particular if the
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λi are uniformly distributed in (0, 1) the wealth distribu-
tion exhibits a robust power-law tail,

f(x) ∝ x−α−1 , (43)

with the Pareto exponent α = 1 largely independent of
the details of the λ-distribution. It may be noted that
the exponent value unity is strictly for the tail end of
the distribution and not for small values of the income
or wealth (where the distribution remains exponential).
Also, for finite number N of agents, there is always an
exponential (in N) cut off at the tail end of the distri-
bution. This result is supported by independent theoret-
ical considerations based on different approaches, such
as a mean field theory approach (Mohanty (2006), see
below for further details) or the Boltzmann equation
(Das and Yarlagadda (2003, 2005); Repetowicz et al.

(2005); Chatterjee et al. (2005a)). For derivation of the
Pareto law from variational principles, using the KWEM
context, see Chakraborti and Patriarca (2009).

2. Power-law distribution as an overlap of Gamma
distributions

A remarkable feature of the equilibrium wealth dis-
tribution obtained from heterogeneous models, noticed
in Chatterjee et al. (2004), is that the individual wealth
distribution fi(x) of the generic i-th agent with saving pa-
rameter λi has a well defined mode and exponential tail,
in spite of the resulting power-law tail of the marginal
distribution f(x) =

∑
i fi(x). In fact, Patriarca et al.

(2005) found by numerical simulation that the marginal
distribution f(x) can be resolved as an overlap of individ-
ual Gamma distributions with λ-dependent parameters;
furthermore, the mode and the average value of the distri-
butions fi(x) both diverge for λ→ 1 as 〈x(λ)〉 ∼ 1/(1−λ)
(Chatterjee et al. (2004); Patriarca et al. (2005)). This
fact was justified theoretically by Mohanty (2006). Con-
sider the evolution equations (41). In the mean field ap-
proximation one can consider that each agents i has an
(average) wealth 〈xi〉 = yi and replace the random num-
ber ǫ with its average value 〈ǫ〉 = 1/2. Indicating with
yij the new wealth of agent i, due to the interaction with
agent j, from Eqs. (41) one obtains

yij = (1/2)(1 + λi)yi + (1/2)(1− λj)yj . (44)

At equilibrium, for consistency, average over all the in-
teraction must give back yi,

yi =
∑

j

yij/N . (45)

Then summing Eq. (44) over j and dividing by the num-
ber of agents N , one has

(1 − λi)yi = 〈(1− λ)y〉 , (46)

where 〈(1 − λ)y〉 =
∑

j(1 − λj)yj/N . Since the right
hand side is independent of i and this relation holds for
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FIG. 41. Wealth distribution in a system of 1000 agents
with saving propensities uniformly distributed in the inter-
val 0 < λ < 1. Top left: marginal distribution. Top right:
marginal distribution (dotted line) and distributions of wealth
of agents with λ ∈ (j∆λ, (j + 1)∆λ), ∆λ = 0.1, j = 0, . . . , 9
(continuous lines). Bottom-left: the distribution of wealth of
agents with λ ∈ (0.9, 1) has been further resolved into contri-
butions from subintervals λ ∈ (0.9 + j∆λ, 0.9 + (j + 1)∆λ),
∆λ = 0.01. Bottom-right: the partial distribution of wealth
of agents with λ ∈ (0.99, 1) has been further resolved into
those from subintervals λ ∈ (0.99 + j∆λ, 0.99 + (j + 1)∆λ),
∆λ = 0.001.

arbitrary distributions of λi, the solution is

yi =
C

1− λi
, (47)

where C is a constant. Besides proving the dependence
of yi = 〈xi〉 on λi, this relation also demonstrates the
existence of a power law tail in the equilibrium distribu-
tion. If, in the continuous limit, λ is distributed in (0, 1)
with a density φ(λ), (0 ≤ λ < 1), then using (47) the
(average) wealth distribution is given

f(y) = φ(λ)
dλ

dy
= φ(1 − C/x)

C

y2
. (48)

Figure 41 illustrates the phenomenon for a system of
N = 1000 agents with random saving propensities uni-
formly distributed between 0 and 1. The figure confirms
the importance of agents with λ close to 1 for producing
a power-law probability distribution (Chatterjee et al.

(2004); Patriarca et al. (2009)).
However, when considering values of λ close enough to

1, the power law can break down at least for two reasons.
The first one, illustrated in Fig. 41-bottom right, is that
the power-law can be resolved into almost disjoint con-
tributions representing the wealth distributions of single
agents. This follows from the finite number of agents used
and the fact that the distance between the average val-
ues of the distributions corresponding to two consecutive
values of λ grows faster than the corresponding widths
(Patriarca et al. (2005); Chatterjee et al. (2005b)). The
second reason is due to the finite cutoff λM, always
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FIG. 42. Wealth distribution obtained for the uniform saving
propensity distributions of 105 agents in the interval (0, λM).

present in a numerical simulation. However, to study
this effect, one has to consider a system with a number
of agents large enough that it is not possible to resolve the
wealth distributions of single agents for the sub-intervals
of λ considered. This was done in by Patriarca et al.

(2006) using a system with N = 105 agents with sav-
ing parameters distributed uniformly between 0 and λM.
Results are shown in Fig. 42, in which curves from left
to right correspond to increasing values of the cutoff λM
from 0.9 to 0.9997. The transition from an exponential
to a power-law tail takes place continuously as the cut-off
λM is increased beyond a critical value λM ≈ 0.9 toward
λM = 1, through the enlargement of the x-interval in
which the power-law is observed.

3. Relaxation process

Relaxation in systems with constant λ had already
been studied by Chakraborti and Chakrabarti (2000),
where a systematic increase of the relaxation time with
λ, and eventually a divergence for λ → 1, was found.
In fact, for λ = 1 no exchanges occurs and the system
is frozen. The relaxation time scale of a heterogeneous
system had been studied by Patriarca et al. (2007). The
system is observed to relax toward the same equilibrium
wealth distribution from any given arbitrary initial dis-
tribution of wealth. If time is measured by the number of
transactions nt, the time scale is proportional to the num-
ber of agents N , i.e. defining time t as the ratio t = nt/N
between the number of trades and the total number of
agents N (corresponding to one Monte Carlo cycle or one
sweep in molecular dynamics simulations) the dynam-
ics and the relaxation process become independent of N .
The existence of a natural time scale independent of the
system size provides a foundation for using simulations
of systems with finite N in order to infer properties of

systems with continuous saving propensity distributions
and N → ∞.
In a system with uniformly distributed λ, the wealth

distributions of each agent i with saving parameter λi
relaxes toward different states with characteristic shapes
fi(x) (Patriarca et al. (2005); Chatterjee et al. (2005b);
Patriarca et al. (2006)) with different relaxation times
τi (Patriarca et al. (2007)). The differences in the re-
laxation process can be related to the different relative
wealth exchange rates, that by direct inspection of the
evolution equations appear to be proportional to 1− λi.
Thus, in general, higher saving propensities are expected
to be associated to slower relaxation processes with a
relaxation time ∝ 1/(1− λ).
It is also possible to obtain the relaxation time distri-

bution. If the saving parameters are distributed in (0, 1)
with a density φ(λ), it follows from probability conser-

vation that f̃(x̄)dx̄ = φ(λ)dλ, where x̄ ≡ 〈x〉λ and f̃(x̄)
the corresponding density of average wealth values. In
the case of uniformly distributed saving propensities, one
obtains

f̃(x̄) = φ(λ)
dλ(x̄)

dx̄
= φ

(
1− k

x̄

)
k

x̄2
, (49)

showing that a uniform saving propensity distribution
leads to a power law f̃(x̄) ∼ 1/x̄2 in the (average) wealth
distribution. In a similar way it is possible to obtain the
associated distribution of relaxation times ψ(τ) for the
global relaxation process from the relation τi ∝ 1/(1−λi),

ψ(τ) = φ(λ)
dλ(τ)

dτ
∝ φ

(
1− τ ′

τ

)
τ ′

τ2
, (50)

where τ ′ is a proportionality factor. Therefore ψ(τ) and

f̃(x̄) are characterized by power law tails in τ and x̄ re-
spectively with the same Pareto exponent.
In conclusion, the role of the λ-cut-off is also related to

the relaxation process. This means that the slowest con-
vergence rate is determined by the cut-off and is∝ 1−λM.
In numerical simulations of heterogeneous KWEMs, as
well as in real wealth distributions, the cut-off is necessar-
ily finite, so that the convergence is fast (Gupta (2008)).
On the other hand, if considering a hypothetical wealth
distribution with a power law extending to infinite values
of x, one cannot find a fast relaxation, due to the infinite
time scale of the system, due to the agents with λ = 1.

E. Microeconomic formulation of Kinetic theory models

Very recently, Chakrabarti and Chakrabarti (2009)
have studied the framework based on microeconomic the-
ory from which the kinetic theory market models could
be addressed. They derived the moments of the model
by Chakraborti and Chakrabarti (2000) and reproduced
the exchange equations used in the model (with fixed
savings parameter). In the framework considered, the
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utility function deals with the behaviour of the agents in
an exchange economy.

They start by considering two exchange economy,
where each agent produces a single perishable commod-
ity. Each of these goods is different and money exists
in the economy to simply facilitate transactions. Each of
these agents are endowed with an initial amount of money
M1 = m1(t) and M2 = m2(t). Let agent 1 produce Q1

amount of commodity 1 only, and agent 2 produce Q2

amount of commodity 2 only. At each time step t, two
agents meet randomly to carry out transactions accord-
ing to their utility maximization principle.

The utility functions as defined as follows: For
agent 1, U1(x1, x2,m1) = xα1

1 xα2
2 mαm

1 and for agent 2,
U2(y1, y2,m2) = yα1

1 yα2

2 mαm

2 where the arguments in
both of the utility functions are consumption of the first
(i.e. x1 and y1) and second good (i.e. x2 and y2) and
amount of money in their possession respectively. For
simplicity, they assume that the utility functions are of
the above Cobb-Douglas form with the sum of the powers
normalized to 1 i.e. α1 + α2 + αm = 1.

Let the commodity prices to be determined in the mar-
ket be denoted by p1 and p2. Now, the budget con-
straints are as follows: For agent 1 the budget constraint
is p1x1+p2x2+m1 ≤M1+p1Q1 and similarly, for agent
2 the constraint is p1y1+ p2y2+m2 ≤M2+ p2Q2, which
mean that the amount that agent 1 can spend for con-
suming x1 and x2 added to the amount of money that he
holds after trading at time t+ 1 (i.e. m1) cannot exceed
the amount of money that he has at time t (i.e. M1)
added to what he earns by selling the good he produces
(i.e. Q1), and the same is true for agent 2.

Then the basic idea is that both of the agents try to
maximize their respective utility subject to their respec-
tive budget constraints and the invisible hand of the mar-
ket that is the price mechanism works to clear the market
for both goods (i.e. total demand equals total supply for
both goods at the equilibrium prices), which means that
agent 1’s problem is to maximize his utility subject to
his budget constraint i.e. maximize U1(x1, x2,m1) sub-
ject to p1.x1 + p2.x2 + m1 = M1 + p1.Q1. Similarly
for agent 2, the problem is to maximize U1(y1, y2,m2)
subject to p1.y1 + p2.y2 + m2 = M2 + p2.Q2. Solv-
ing those two maximization exercises by Lagrange multi-
plier and applying the condition that the market remains
in equilibrium, the competitive price vector (p̂1, p̂2) as
p̂i = (αi/αm)(M1 + M2)/Qi for i = 1, 2 is found
(Chakrabarti and Chakrabarti (2009)).

The outcomes of such a trading process are then:

1. At optimal prices (p̂1, p̂2), m1(t) +m2(t) = m1(t+
1) +m2(t + 1), i.e., demand matches supply in all
market at the market-determined price in equilib-
rium. Since money is also treated as a commod-
ity in this framework, its demand (i.e. the total
amount of money held by the two persons after
trade) must be equal to what was supplied (i.e. the
total amount of money held by them before trade).

2. If a restrictive assumption is made such that α1

in the utility function can vary randomly over time
with αm remaining constant. It readily follows that
α2 also varies randomly over time with the restric-
tion that the sum of α1 and α2 is a constant (1-αm).
Then in the money demand equations derived, if we
suppose αm is λ and α1/(α1 + α2) is ǫ, it is found
that money evolution equations become

m1(t+ 1) = λm1(t) + ǫ(1− λ)(m1(t) +m2(t))

m2(t+ 1) = λm2(t) + (1− ǫ)(1− λ)(m1(t) +m2(t)).

For a fixed value of λ, if α1 (or α2) is a ran-
dom variable with uniform distribution over the
domain [0, 1 − λ], then ǫ is also uniformly dis-
tributed over the domain [0, 1]. This limit corre-
sponds to the Chakraborti and Chakrabarti (2000)
model, discussed earlier.

3. For the limiting value of αm in the utility function
(i.e. αm → 0 which implies λ → 0), the money
transfer equation describing the random sharing
of money without saving is obtained, which was
studied by Dragulescu and Yakovenko (2000) men-
tioned earlier.

This actually demonstrates the equivalence of the two
maximizations principles of entropy (in physics) and util-
ity (in economics), and is certainly noteworthy.

IX. AGENT-BASED MODELLING BASED ON GAMES

A. Minority Game models

1. El Farol Bar Problem

Arthur (1994) introduced the ‘El Farol Bar’ problem as
a paradigm of complex economic systems. In this prob-
lem, a population of agents have to decide whether to go
to the bar opposite Santa Fe, every Thursday night. Due
to a limited number of seats, the bar cannot entertain
more than X% of the population. If less than X% of the
population go to the bar, the time spent in the bar is
considered to be satisfying and it is better to attend the
bar rather than staying at home. But if more than X%
of the population go to the bar, then it is too crowded
and people in the bar have an unsatisfying time. In this
second case, staying at home is considered to be better
choice than attending the bar. So, in order to optimise
its own utility, each agent has to predict what everybody
else will do.
In particular Arthur was also interested in agents who

have bounds on “rationality”, i.e. agents who:

• do not have perfect information about their envi-
ronment, in general they will only acquire infor-
mation through interaction with the dynamically
changing environment;
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• do not have a perfect model of their environment;

• have limited computational power, so they can’t
work out all the logical consequences of their knowl-
edge;

• have other resource limitations (e.g. memory).

In order to take these limitations into account, each agent
is randomly given a fixed menu of models potentially suit-
able to predict the number of people who will go the bar
given past data (e.g. the same as two weeks ago, the av-
erage of the past few weeks, etc.). Each week, each agent
evaluates these models against the past data. He chooses
the one that was the best predictor on this data and then
uses it to predict the number of people who will go to the
bar this time. If this prediction is less than X , then the
agent decides to go to the bar as well. If its prediction
is more than X , the agent stays home. Thus, in order to
make decisions on whether to attend the bar, all the indi-
viduals are equipped with certain number of “strategies”,
which provide them the predictions of the attendance in
the bar next week, based on the attendance in the past
few weeks. As a result the number who go to the bar
oscillates in an apparently random manner around the
critical X% mark.
This was one of the first models that led a way different

from traditional economics.

2. Basic Minority game

The Minority Games (abbreviated MGs)
(Challet et al. (2004)) refer to the multi-agent models
of financial markets with the original formulation
introduced by Challet and Zhang (1997), and all other
variants (Coolen (2005); Lamper et al. (2002)), most
of which share the principal features that the models
are repeated games and agents are inductive in nature.
The original formulation of the Minority Game by
Challet and Zhang (1997) is sometimes referred as
the “Original Minority Game” or the “Basic Minority
Game”.
The basic minority game consists of N (odd natural

number) agents, who choose between one of the two de-
cisions at each round of the game, using their own sim-
ple inductive strategies. The two decisions could be, for
example, “buying” or “selling” commodities/assets, de-
noted by 0 or 1, at a given time t. An agent wins the
game if it is one of the members of the minority group,
and thus at each round, the minority group of agents
win the game and rewards are given to those strategies
that predict the winning side. All the agents have ac-
cess to finite amount of public information, which is a
common bit-string “memory” of the M most recent out-
comes, composed of the winning sides in the past few
rounds. Thus the agents with finite memory are said to
exhibit “bounded rationality” (Arthur (1994)).
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FIG. 43. Attendance fluctuation and performances of players
in Basic Minority Game. Plots of (a) attendance and (b)
performance of the players (five curves are: the best, the worst
and three randomly chosen) for the basic minority game with
N = 801; M = 6; k = 10 and T = 5000. Reproduced from
Sysi-Aho et al. (2003b).

Consider for example, memory M = 2; then there are
P = 2M = 4 possible “history” bit strings: 00, 01, 10
and 11. A “strategy” consists of a response, i.e., 0 or 1,
to each possible history bit strings; therefore, there are

G = 2P = 22
M

= 16 possible strategies which consti-
tute the “strategy space”. At the beginning of the game,
each agent randomly picks k strategies, and after the
game, assigns one “virtual” point to a strategy which
would have predicted the correct outcome. The actual
performance r of the player is measured by the number
of times the player wins, and the strategy, using which
the player wins, gets a “real” point. A record of the
number of agents who have chosen a particular action,
say, “selling” denoted by 1, A1(t) as a function of time
is kept (see Fig. 43). The fluctuations in the behaviour
of A1(t) actually indicate the system’s total utility. For
example, we can have a situation where only one player
is in the minority and all the other players lose. The
other extreme case is when (N − 1)/2 players are in the
minority and (N + 1)/2 players lose. The total utility
of the system is obviously greater for the latter case and
from this perspective, the latter situation is more desir-
able. Therefore, the system is more efficient when there
are smaller fluctuations around the mean than when the
fluctuations are larger.

As in the El Farol bar problem, unlike most traditional
economics models which assume agents are “deductive”
in nature, here too a “trial-and-error” inductive thinking
approach is implicitly implemented in process of decision-
making when agents make their choices in the games.



41

0.0 20000.0 40000.0 60000.0 80000.0 100000.0
t

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

1000.0

A

FIG. 44. Temporal attendance of A for the genetic ap-
proach showing a learning process. Reproduced from
Challet and Zhang (1997)

3. Evolutionary minority games

Challet generalized the basic minority game (see
Challet and Zhang (1997, 1998)) mentioned above to in-
clude the Darwinian selection: the worst player is re-
placed by a new one after some time steps, the new player
is a “clone” of the best player, i.e. it inherits all the
strategies but with corresponding virtual capitals reset
to zero (analogous to a new born baby, though having
all the predispositions from the parents, does not inherit
their knowledge). To keep a certain diversity they intro-
duced a mutation possibility in cloning. They allowed
one of the strategies of the best player to be replaced by
a new one. Since strategies are not just recycled among
the players any more, the whole strategy phase space is
available for selection. They expected this population to
be capable of “learning” since bad players are weeded
out with time, and fighting is among the so-to-speak the
“best” players. Indeed in Fig. 44, they observed that the
learning emerged in time. Fluctuations are reduced and
saturated, this implies the average gain for everybody is
improved but never reaches the ideal limit.

Li et al. (2000a,b) also studied the minority game in
the presence of “evolution”. In particular, they exam-
ined the behaviour in games in which the dimension of
the strategy space, m, is the same for all agents and fixed
for all time. They found that for all values of m, not too
large, evolution results in a substantial improvement in
overall system performance. They also showed that after
evolution, results obeyed a scaling relation among games
played with different values ofm and different numbers of
agents, analogous to that found in the non-evolutionary,
adaptive games (see remarks on section IXA5). Best

system performance still occurred, for a given number of
agents, at mc, the same value of the dimension of the
strategy space as in the non-evolutionary case, but sys-
tem performance was nearly an order of magnitude bet-
ter than the non-evolutionary result. For m < mc, the
system evolved to states in which average agent wealth
was better than in the random choice game. As m be-
came large, overall systems performance approached that
of the random choice game.
Li et al. (2000a,b) continued the study of evolution in

minority games by examining games in which agents with
poorly performing strategies can trade in their strategies
for new ones from a different strategy space, which meant
allowing for strategies that use information from different
numbers of time lags, m. They found, in all the games,
that after evolution, wealth per agent is high for agents
with strategies drawn from small strategy spaces (small
m), and low for agents with strategies drawn from large
strategy spaces (large m). In the game played with N
agents, wealth per agent as a function of m was very
nearly a step function. The transition was found to be
at m = mt, where mt ≃ mc − 1, and mc is the critical
value of m at which N agents playing the game with
a fixed strategy space (fixed m) have the best emer-
gent coordination and the best utilization of resources.
They also found that overall system-wide utilization of
resources is independent of N . Furthermore, although
overall system-wide utilization of resources after evolu-
tion varied somewhat depending on some other aspects of
the evolutionary dynamics, in the best cases, utilization
of resources was on the order of the best results achieved
in evolutionary games with fixed strategy spaces.

4. Adaptive minority games

Sysi-Aho et al. (2003a,c,b, 2004) presented a simple
modification of the basic minority game where the play-
ers modify their strategies periodically after every time
interval τ , depending on their performances: if a player
finds that he is among the fraction n (where 0 < n < 1)
who are the worst performing players, he adapts him-
self and modifies his strategies. They proposed that the
agents use hybridized one-point genetic crossover mecha-
nism (as shown in Fig. 45), inspired by genetic evolution
in biology, to modify the strategies and replace the bad
strategies. They studied the performances of the agents
under different conditions and investigate how they adapt
themselves in order to survive or be the best, by find-
ing new strategies using the highly effective mechanism.
They also studied the measure of total utility of the sys-
tem U(xt), which is the number of players in the minority
group; the total utility of the system is maximum Umax as
the highest number of players win is equal to (N − 1)/2.
The system is more efficient when the deviations from
the maximum total utility Umax are smaller, or in other
words, the fluctuations in A1(t) around the mean become
smaller.
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FIG. 45. Schematic diagram to illustrate the mechanism of
one-point genetic crossover for producing new strategies. The
strategies si and sj are the parents. We choose the breaking
point randomly and through this one-point genetic crossover,
the children sk and sl are produced and substitute the par-
ents. Reproduced from Sysi-Aho et al. (2003b).
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FIG. 46. Plot to show the time variations of the number of
players A1 who choose action 1, with the parameters N =
1001, m = 5, s = 10 and t = 4000 for (a) basic minority
game and (b) adaptive game, where τ = 25 and n = 0.6.
Reproduced from Sysi-Aho et al. (2003b).

Interestingly, the fluctuations disappear totally and
the system stabilizes to a state where the total utility
of the system is at maximum, since at each time step the
highest number of players win the game (see Fig. 46).
As expected, the behaviour depends on the parameter
values for the system (see Sysi-Aho et al. (2003b, 2004)).
They used the utility function to study the efficiency and
dynamics of the game as shown in Fig. 47. If the par-
ents are chosen randomly from the pool of strategies then
the mechanism represents a “one-point genetic crossover”
and if the parents are the best strategies then the mech-
anism represents a “hybridized genetic crossover”. The
children may replace parents or two worst strategies and
accordingly four different interesting cases arise: (a) one-
point genetic crossover with parents “killed”, i.e. par-
ents are replaced by the children, (b) one-point genetic
crossover with parents “saved”, i.e. the two worst strate-
gies are replaced by the children but the parents are
retained, (c) hybridized genetic crossover with parents
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FIG. 47. Plot to show the variation of total utility of the
system with time for the basic minority game for N = 1001,
m = 5, s = 10, t = 5000, and adaptive game, for the same
parameters but different values of τ and n. Each point rep-
resents a time average of the total utility for separate bins of
size 50 time-steps of the game. The maximum total utility
(= (N − 1)/2) is shown as a dashed line. The data for the
basic minority game is shown in circles. The plus signs are
for τ = 10 and n = 0.6; the asterisk marks are for τ = 50 an
n = 0.6; the cross marks for τ = 10 and n = 0.2 and trian-
gles for τ = 50 and n = 0.2. The ensemble average over 70
different samples was taken in each case. Reproduced from
Sysi-Aho et al. (2003b).

“killed” and (d) hybridized genetic crossover with par-
ents “saved”.

In order to determine which mechanism is the most
efficient, we have made a comparative study of the four
cases, mentioned above. We plot the attendance as a
function of time for the different mechanisms in Fig. 48.
In Fig. 49 we show the total utility of the system in each
of the cases (a)-(d), where we have plotted results of the
average over 100 runs and each point in the utility curve
represents a time average taken over a bin of length 50
time-steps. The simulation time is doubled from those
in Fig. 48, in order to expose the asymptotic behaviour
better. On the basis of Figs. 48 and 49, we find that
the case (d) is the most efficient. In order to investi-
gate what happens in the level of an individual agent,
we created a competitive surrounding– “test” situation
where after T = 3120 time-steps, six players begin to
adapt and modify their strategies such that three are us-
ing hybridized genetic crossovermechanism and the other
three one point genetic crossover, where children replace
the parents. The rest of the players play the basic mi-
nority game. In this case it turns out that in the end
the best players are those who use the hybridized mech-
anism, second best are those using the one-point mecha-
nism, and the bad players those who do not adapt at all.
In addition it turns out that the competition amongst the
players who adapt using the hybridized genetic crossover
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FIG. 48. Plots of the attendances by choosing parents ran-
domly (a) and (b), and using the best parents in a player’s
pool (c) and (d). In (a) and (c) case parents are replaced
by children and in (b) and (d) case children replace the two
worst strategies. Simulations have been done with N = 801,
M = 6, k = 16, t = 40, n = 0.4 and T = 10000.

FIG. 49. Plots of the scaled utilities of the four different
mechanisms in comparison with that of the basic minority
game. Each curve represents an ensemble average over 100
runs and each point in a curve is a time average over a bin
of length 50 time-steps. In the inset, the quantity (1− U) is
plotted against scaled time in the double logarithmic scale.
Simulations are done with N = 801, M = 6, k = 16, t = 40,
n = 0.4 and T = 20000. Reproduced from Sysi-Aho et al.
(2003b).

mechanism is severe.
It should be noted that the mechanism of evolution of

strategies is considerably different from earlier attempts
such as Challet and Zhang (1997) or Li et al. (2000a,b).
This is because in this mechanism the strategies are
changed by the agents themselves and even though the
strategy space evolves continuously, its size and dimen-
sionality remain the same.
Due to the simplicity of these models (Sysi-Aho et al.

(2003a,c,b, 2004)), a lot of freedom is found in modi-
fying the models to make the situations more realistic
and applicable to many real dynamical systems, and not
only financial markets. Many details in the model can
be fine-tuned to imitate the real markets or behaviour of
other complex systems. Many other sophisticated mod-
els based on these games can be setup and implemented,
which show a great potential over the commonly adopted
statistical techniques in analyses of financial markets.

5. Remarks

For modelling purposes, the minority game mod-
els were meant to serve as a class of simple models
which could produce some macroscopic features observed
in the real financial markets, which included the fat-
tail price return distribution and volatility clustering
(Challet et al. (2004); Coolen (2005)). Despite the hec-
tic activity (Challet and Zhang (1998); Challet et al.
(2000)) they have failed to capture or reproduce most
important stylized facts of the real markets. However, in
the physicists’ community, they have become an interest-
ing and established class of models where the physics of
disordered systems (Cavagna et al. (1999); Challet et al.
(2000)), lending a large amount of physical insights
(Savit et al. (1999); Martino et al. (2004)). Since in the
BMGmodel a Hamiltonian function could be defined and
analytic solutions could be developed in some regimes of
the model, the model was viewed with a more physical
picture. In fact, it is characterized by a clear two-phase
structure with very different collective behaviours in the
two phases, as in many known conventional physical sys-
tems (Savit et al. (1999); Cavagna et al. (1999)).
Savit et al. (1999) first found that the macroscopic be-

haviour of the system does not depend independently on
the parameters N and M , but instead depends on the
ratio

α ≡ 2M

N
=
P

N
(51)

which serves as the most important control parameter
in the game. The variance in the attendance (see also
Sysi-Aho et al. (2003c)) or volatility σ2/N , for different
values of N and M depend only on the ratio α. Fig. 50
shows a plot of σ2/N against the control parameter α,
where the data collapse of σ2/N for different values of
N and M is clearly evident. The dotted line in Fig. 50
corresponds to the “coin-toss” limit (random choice or
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FIG. 50. The simulation results of the variance in attendance
σ2/N as a function of the control parameter α = 2M/N for
games with k = 2 strategies for each agent, ensemble averaged
over 100 sample runs. Dotted line shows the value of volatility
in random choice limit. Solid line shows the critical value
of α = αc ≈ 0.3374. Reproduced from Yeung and Zhang
arxiv:0811.1479.

pure chance limit), in which agents play by simply mak-
ing random decisions (by coin-tossing) at every rounds
of the game. This value of σ2/N in coin-toss limit can
be obtained by simply assuming a binomial distribution
of the agents’ binary actions, with probability 0.5, such
that σ2/N = 0.5(1 − 0.5) · 4 = 1. When α is small, the
value of σ2/N of the game is larger than the coin-toss
limit which implies the collective behaviours of agents are
worse than the random choices. In the early literature, it
was popularly called as the worse-than-random regime.
When α increases, the value of σ2/N decreases and en-
ters a region where agents are performing better than
the random choices, which was popularly called as the
better-than-random regime. The value of σ2/N reaches
a minimum value which is substantially smaller than the
coin-toss limit. When α further increases, the value of
σ2/N increases again and approaches the coin-toss limit.
This allowed one to identify two phases in the Minority
Game, as separated by the minimum value of σ2/N in
the graph. The value of α where the rescaled volatility
attended its minimum was denoted by αc, which repre-
sented the phase transition point; αc has been shown to
have a value of 0.3374 . . . (for k = 2) by analytical calcu-
lations Challet et al. (2000).

Besides these collective behaviours, physicists became
also interested in the dynamics of the games such as
crowd vs anti-crowd movement of agents, periodic attrac-
tors, etc. (Johnson et al. (1999b,a); Hart et al. (2001)).
In this way, the Minority Games serve as a useful tool
and provide a new direction for physicists in viewing and
analysing the underlying dynamics of complex evolving
systems such as the financial markets.

B. The Kolkata Paise Restaurant (KPR) problem

The KPR problem (Chakrabarti et al. (2009);
Ghosh and Chakrabarti (2009); Ghosh et al. (2010a,b))
is a repeated game, played between a large number N
of agents having no interaction amongst themselves. In
KPR problem, prospective customers (agents) choose
from N restaurants each evening simultaneously (in
parallel decision mode); N is fixed. Each restaurant
has the same price for a meal but a different rank
(agreed upon by all customers) and can serve only
one customer any evening. Information regarding the
customer distributions for earlier evenings is available
to everyone. Each customer’s objective is to go to the
restaurant with the highest possible rank while avoiding
the crowd so as to be able to get dinner there. If more
than one customer arrives at any restaurant on any
evening, one of them is randomly chosen (each of them
are anonymously treated) and is served. The rest do not
get dinner that evening.

In Kolkata, there were very cheap and fixed rate “Paise
Restaurants” that were popular among the daily labour-
ers in the city. During lunch hours, the labourers used to
walk (to save the transport costs) to one of these restau-
rants and would miss lunch if they got to a restaurant
where there were too many customers. Walking down to
the next restaurant would mean failing to report back to
work on time! Paise is the smallest Indian coin and there
were indeed some well-known rankings of these restau-
rants, as some of them would offer tastier items compared
to the others. A more general example of such a problem
would be when the society provides hospitals (and beds)
in every locality but the local patients go to hospitals
of better rank (commonly perceived) elsewhere, thereby
competing with the local patients of those hospitals. Un-
availability of treatment in time may be considered as
lack of the service for those people and consequently as
(social) wastage of service by those unattended hospitals.

A dictator’s solution to the KPR problem is the follow-
ing: the dictator asks everyone to form a queue and then
assigns each one a restaurant with rank matching the se-
quence of the person in the queue on the first evening.
Then each person is told to go to the next ranked restau-
rant in the following evening (for the person in the last
ranked restaurant this means going to the first ranked
restaurant). This shift proceeds then continuously for
successive evenings. This is clearly one of the most effi-
cient solution (with utilization fraction f̄ of the services
by the restaurants equal to unity) and the system arrives
at this this solution immediately (from the first evening
itself). However, in reality this cannot be the true solu-
tion of the KPR problem, where each agent decides on his
own (in parallel or democratically) every evening, based
on complete information about past events. In this game,
the customers try to evolve a learning strategy to even-
tually get dinners at the best possible ranked restaurant,
avoiding the crowd. It is seen, the evolution these strate-
gies take considerable time to converge and even then the
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eventual utilization fraction f̄ is far below unity.
Let the symmetric stochastic strategy chosen by each

agent be such that at any time t, the probability pk(t) to
arrive at the k-th ranked restaurant is given by

pk(t) =
1

z

[
kα exp

(
−nk(t− 1)

T

)]
,

z =

N∑

k=1

[
kα exp

(
−nk(t− 1)

T

)]
, (52)

where nk(t) denotes the number of agents arriving at the
k-th ranked restaurant in period t, T > 0 is a scaling
factor and α ≥ 0 is an exponent.
For any natural number α and T → ∞, an agent goes

to the k-th ranked restaurant with probability pk(t) =
kα/

∑
kα; which means in the limit T → ∞ in (52) gives

pk(t) = kα/
∑
kα.

If an agent selects any restaurant with equal probabil-
ity p then probability that a single restaurant is chosen
by m agents is given by

∆(m) =

(
N

m

)
pm(1− p)N−m. (53)

Therefore, the probability that a restaurant with rank k
is not chosen by any of the agents will be given by

∆k(m = 0) =

(
N

0

)
(1− pk)

N
; pk =

kα∑
kα

≃ exp

(−kαN
Ñ

)
as N → ∞, (54)

where Ñ =
∑N

k=1 k
α ≃

∫ N

0
kαdk = Nα+1

(α+1) . Hence

∆k(m = 0) = exp

(
−k

α (α+ 1)

Nα

)
. (55)

Therefore the average fraction of agents getting dinner in
the k-th ranked restaurant is given by

f̄k = 1−∆k (m = 0) . (56)

Naturally for α = 0, the problem corresponding to
random choice f̄k = 1 − e−1, giving f̄ =

∑
f̄k/N ≃ 0.63

and for α = 1, f̄k = 1 − e−2k/N giving f̄ =
∑
f̄k/N ≃

0.58.
In summary, in the KPR problem where the decision

made by each agent in each evening t is independent
and is based on the information about the rank k of
the restaurants and their occupancy given by the num-
bers nk(t − 1) . . . nk(0). For several stochastic strate-
gies, only nk(t− 1) is utilized and each agent chooses the
k-th ranked restaurant with probability pk(t) given by
Eq. (52). The utilization fraction fk of the k-th ranked
restaurants on every evening is studied and their aver-
age (over k) distributions D(f) are studied numerically,
as well as analytically, and one finds (Chakrabarti et al.

(2009); Ghosh and Chakrabarti (2009); Ghosh et al.
(2010a)) their distributions to be Gaussian with the most
probable utilization fraction f̄ ≃ 0.63, 0.58 and 0.46 for
the cases with α = 0, T → ∞; α = 1, T → ∞; and α = 0,
T → 0 respectively. For the stochastic crowd-avoiding
strategy discussed in Ghosh et al. (2010b), where pk(t+
1) = 1

nk(t)
for k = k0 the restaurant visited by the agent

last evening, and = 1/(N − 1) for all other restaurants
(k 6= k0), one gets the best utilization fraction f̄ ≃ 0.8,
and the analytical estimates for f̄ in these limits agree
very well with the numerical observations. Also, the time
required to converge to the above value of f̄ is indepen-
dent of N .
The KPR problem has similarity with the Minority

Game Problem (Arthur (1994); Challet et al. (2004)) as
in both the games, herding behaviour is punished and di-
versity’s encouraged. Also, both involves learning of the
agents from the past successes etc. Of course, KPR has
some simple exact solution limits, a few of which are dis-
cussed here. The real challenge is, of course, to design al-
gorithms of learning mixed strategies (e.g., from the pool
discussed here) by the agents so that the fair social norm
emerges eventually (in N0 or lnN order time) even when
every one decides on the basis of their own information
independently. As we have seen, some naive strategies
give better values of f̄ compared to most of the “smarter”
strategies like strict crowd-avoiding strategies, etc. This
observation in fact compares well with earlier observa-
tion in minority games (see e.g. Satinover and Sornette
(2007)).
It may be noted that all the stochastic strategies, being

parallel in computational mode, have the advantage that
they converge to solution at smaller time steps (∼ N0 or
lnN) while for deterministic strategies the convergence
time is typically of order of N , which renders such strate-
gies useless in the truly macroscopic (N → ∞) limits.
However, deterministic strategies are useful when N is
small and rational agents can design appropriate punish-
ment schemes for the deviators (see Kandori (2008)).
The study of the KPR problem shows that while a

dictated solution leads to one of the best possible solution
to the problem, with each agent getting his dinner at the
best ranked restaurant with a period of N evenings, and
with best possible value of f̄ (= 1) starting from the first
evening itself. The parallel decision strategies (employing
evolving algorithms by the agents, and past informations,
e.g., of n(t)), which are necessarily parallel among the
agents and stochastic (as in democracy), are less efficient
(f̄ ≪ 1; the best one discussed in Ghosh et al. (2010b),
giving f̄ ≃ 0.8 only). Note here that the time required
is not dependent on N . We also note that most of the
“smarter” strategies lead to much lower efficiency.

X. CONCLUSIONS AND OUTLOOK

Agent-based models of order books are a good ex-
ample of interactions between ideas and methods that
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are usually linked either to Economics and Finance (mi-
crostructure of markets, agent interaction) or to Physics
(reaction-diffusion processes, deposition-evaporation pro-
cess, kinetic theory of gases). As of today, existing mod-
els exhibit a trade-off between “realism” and calibration
in its mechanisms and processes (empirical models such
as Mike and Farmer (2008)), and explanatory power of
simple observed behaviours (Cont and Bouchaud (2000);
Cont (2007) for example). In the first case, some of the
“stylized facts” may be reproduced, but using empiri-
cal processes that may not be linked to any behaviour
observed on the market. In the second case, these are
only toy models that cannot be calibrated on data. The
mixing of many features, as in Lux and Marchesi (2000)
and as is usually the case in behavioural finance, leads
to poorly tractable models where the sensitivity to one
parameter is hardly understandable. Therefore, no em-
pirical model can tackle properly empirical facts such as
volatility clustering. Importing toy model features ex-
plaining volatility clustering or market interactions in or-
der book models is yet to be done. Finally, let us also
note that to our knowledge, no agent-based model of or-
der books deals with the multidimensional case. Imple-
menting agents trading simultaneously several assets in
a way that reproduces empirical observations on correla-
tion and dependence remains an open challenge.
We believe this type of modelling is crucial for future

developments in finance. The financial crisis that oc-
curred in 2007-2008 is expected to create a shock in clas-
sic modelling in Economics and Finance. Many scientists
have expressed their views on this subject (e.g. Bouchaud
(2008); Lux and Westerhoff (2009); Farmer and Foley
(2009)) and we believe as well that agent-based models
we have presented here will be at the core of future mod-
elling. As illustrations, let us mention Iori et al. (2006),
which models the interbank market and investigates sys-
temic risk, Thurner et al. (2009), which investigates the
effects of use of leverage and margin calls on the stabil-
ity of a market and Yakovenko and Rosser (2009), which
provides a brief overview of the study of wealth distribu-
tions and inequalities. No doubt these will be followed
by many other contributions.
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