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Financial markets as complex systems

A financial market can be described as a ‘'model’ complex system.

In a financial market there are many agents interacting to perform the collective task of
finding the best price for a financial asset.

There are many different types of financial markets

- Stock exchanges (New York, London, Tokyo)

- Foreign exchange markets (Global market)

- Derivative markets (Chicago, New York, Paris)
- Bond markets (London)

- Commodities



Financial market as a model complex system

« The study of financial markets has an obvious importance on
his own.
e However | believe that financial markets are an ideal model
system to study the interaction of many individuals taking
decisions under risk. The system is ideal because
e |t is an extremely competitive environment where the
fitness of an investor can often be identified with her ability
of generating profit
e The interaction mechanism is clearly defined
e The availability of very detailed and large datasets (down to
individual behavior) allows to perform careful empirical
analyses
e |n some cases the flow of external information can be
identified and monitored (news stream, financial analyst's
forecasts, etc)




Quantitative approach to financial
markets

Roughly speaking two types of approaches are possible in the
study of financial markets, and, more generally, of social
systems.

e Assume that agents in the system have a given amount
(homogeneous or heterogeneous) of rationality. The process of
price formation is based on the decision making of agents.

* Make use of a more pragmatic approach consisting in
analyzing the dynamical properties of financial variables
looking for statistical regularities



Perfect rationality

 The standard approach in financial economics consists in
assuming that agents in the market have perfect

rationality and perfect knowledge of other agents’
preferences

* In thisidealized market it is possible to investigate the

conditions allowing an equilibrium between supply and
demand

 Moreover the model is (sometimes) able to make
falsifiable prediction on the behavior of aggregate
quantities, such as price (e.g. Capital Asset Pricing Model)



Bounded rationality

* In recent years there has been an increasing interest
of scientific community on models of bounded
rationality (H. Simon), i.e. models where agents
have only limited cognitive and computational
abilities.

* An extreme approach consists in assuming that
agents have zero intelligence, i.e. they act randomly.
Surprisingly some empirical facts can be explained
by this kind of model, proving the importance of
interaction rules



Zero-intelligence model
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Efficient Market Hypothesis

Samuelson (1965) stated that in an informationally efficient
market, price changes must be unforecastable if they fully
incorporate the expectations and information of all market
participants

“The market 1s said to be efficient with respect to some
information set if prices would be unaffected by revealing that
information to all participants. Moreover, efficiency with
respect to an information set implies that it 1s impossible to
make economic profits by trading on the basis of that
information set”

(Malkiel, 1992) |



Efficient Market Hypothesis

 Therefore, under the efficient market hypothesis,
price changes must be unforecastable

 The more efficient the market, the more random
is the sequence of price changes

A widespread model of price that incorporates

the efficiency of the market is the Random Walk
Hypothesis
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Random Walk Hypothesis

* The Efficient Market Hypothesis suggests that a good framework to

describe price dynamics is continuous or discrete time stochastic
processes

* The price must be described by a martingale
E(Py1|Py Py, ...) = P,

i.e. the best forecast of tomorrow’s price is simply today’s price

The attempts to model the price of a financial asset as a
stochastic process go back to the 1900 pioneering work of
Louis Bachelier

The simplest model for price dynamics in discrete time is

Pt = b+ Pr—1 T €

where Pt = log Pt, M is a constant, and €¢ is a noise term
consistent with the Efficient Market Hypothesis
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Random walk hypothesis

Depending on the properties of €¢, we distinguish

* Independent Identically Distributed increments: for example
Gaussian distributed (stable laws)

* Independent increments

* Uncorrelated increments: the weaker form implies the
vanishing of the linear autocorrelation



In continuous time the geometric Brownian motion is considered the simplest
random process describing the price dynamics of a financial asset.

dP(t) = uP(t)dt + oP(t)dW

This equation is used as one of the fundamental assumptions of the so-called
Black and Scholes (B&S) model. The B&S

model allows to obtain the rational price for a simple financial contract (an
European option) issued on an underlying fluctuating financial asset.



Random walk hypothesis
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|deal vs real

An idealized model of stock market where the stock price
dynamics is described by a geometric Brownian motion exists

and provides the theoretical foundation for quantitative
finance.

What do real data say?

15



Financial data

Data are essential for the development and
testing of scientific theories

In the last years social sciences have
experienced a transition from a low rate of
data production to an high rate of data
production

This is due to the availability of datasets
combining an high resolution and a large size

New levels of resolution raise new issues in
data handling, visualization, and analysis



Financial data

* |[n the last thirty years the degree of resolution
of financial data has increased

— Daily data
— Tick by tick data
— Order book data

— “Agent” resolved data



Daily data

Daily financial data are available at least since nineteenth

century

Usually these data contains opening, closing, high, and low

price in the day to

gether with the daily volume

Standard time series methods to investigate these data
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Tick by tick data

* Financial high frequency data usually refer to
data sampled at a time horizon smaller than

the trading day
* The usage of such data in finance dates back
to the eighties of the last century
— Berkeley Option Data (CBOE)
— TORQ database (NYSE)
— HFDF93 by Olsen and Associates (FX)
— CFTC (Futures)



* Higher resolution means new problems

* data size: example of a year of a LSE stock
— 12kB (daily data)
— 15MB (tick by tick data)
— 100MB (order book data)

* irregular temporal spacing of events

* the discreteness of the financial variables under
investigation

* problems related to proper definition of financial variables
* intraday patterns

e strong temporal correlations

 specificity of the market structure and trading rules.



Data size

400
300F =
F / ]
A 200 / e
o0 ]
@) / i
100 K
0: rﬁ—"FT_—T‘T———l—' H |
1995 1996 1997 1998 1999 2000 2001 2002 2003
year
Periodicities
~ -5
Q_mj a mi<_"r b
s 424r N
ow M \53— -
2 =
5 05 —4=2- —
2 E ‘
5 S 1
2 > ]
T 12 14 16 "% 12 14 16
50
w0 ¢ n - d
3 180 - G40 _
el - o) L
g 160 T Exnfb —
B 140 4%
* 320 - u
120 . I
T 12 14 16 105 10 12 14 16
time of day

price (penny)

autocorrelation

Irregular temporal spacing

1920

1915

—
Nel
—_
(=)

1905

1900

.
100

.
200

[ 1 [ 1
300 400
time (second)

Temporal correlations

coooo9oo9o9
— N W R UL o

o

C’IIIIIIIIIIIIA‘IA

So b5
[SSI S I

lag (event time)

Lillo and Micciche, Encyclopedia of Quantitative Finance, 2010



More structured data require more sophisticated
statistical tools

e data size:
* more computational power
* better filtering procedures
* irregular temporal spacing of events
* point processes, ACD model, CTRW model...
* the discreteness of the financial variables under investigation
 discrete variable processes
* problems related to proper definition of financial variables
* intraday patterns
e strong temporal correlations
* market microstructure
 specificity of the market structure and trading rules.
* better understanding of the trading process



Order book data

* The next resolution of financial data contains
data on all the orders placed or canceled in the

market

* Many stock exchanges (NYSE, LSE, Paris) works
through a double auction mechanism

* Order book data are
fundamental to
investigate the price
formation mechanisms

a
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<= [l scll market order

|

Bl cancellation/expiration of a limit order



Representation of limit order book dynamics
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Figure 2. The order book of the stock GSK during the first 32 trading days of 2002. For all days during the period we
made five snapshots of the order book at the 5000°th, 10000°th, ..., 25000'th second of the day. The lack of orders is
indicated by black color, buy/sell orders by red/blue, and the bid-ask spread by white. For every price level we indicated
the total volume of limit orders by coloring as indicated on the right. The ends of the scale correspond to orders for 30000
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Agent resolved data

* |n the recent years there has been an
increasing availability and interest toward
databases allowing to distinguish, at least
partly, the trading activity of “agents” or
“classes of agents”.

* |In principle, this type of databases allows to
investigate empirically the agent’s behavior
and strategies, and to study the interaction
between agents.



Structure of a financial market
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Example: Momentum and contrarian strategies

Momentum investors are buying stocks that were past winners.

A contrarian strategy consists of buying stocks that have been
losers (or selling short stocks that have been winners).

The contrarian strategy is formulated on the assumption that the
stock market overreacts and a contrarian investor can exploit the
inefficiency related to market overreaction by reverting stock
prices to fundamental values.

* |s it possible to detect empirically such strategies?
* Are there classes of agents using preferentially these strategies?
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Grinblatt, Titman and Wermers (1995)

They investigated the trading pattern of fund managers by examining the quarterly
holdings of 155 mutual funds (information from CDA Investment Technologies and
CRSP data) over the 1975-1984 period.

* The large majority of funds (77%) had a momentum investment profile.
* Authors found relatively weak evidence that funds tended to
buy and sell the same stocks at the same time (herding).

ndividual TR EED
q - : : o / /
M.Grinblatt et al, American Economic -
Review 85, 1088-1105 (1995) ( ] ~ member ber ‘ ]

~ e
. /‘/ member (\{—J

I i \
o A
member

4

/1 \

o | |

~

... cxm 3
.., mm

N7

29



Grinblatt and Keloharju (2000)

Grinblatt and Keloharju" investigated the central register of shareholdings for
Finnish Central Securities Depository, a comprehensive data source. This data set reports
individual and institutional holdings and stock trades on a daily basis. Data consists of each

owner’s stock exchange trades from Dec 27, 1994 through Dec 30, 1996

* Foreign investors tend to be momentum investors

* Individual investors tend to be contrarian
* Domestic institutional investor tend to present a mixed behavior.
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Example: profitability of classes of agents

Studies performed by Barber, Lee, Liu and Odean have the performance of individual and
institutional investors at the Taiwan Stock Exchange. Data allow authors to identify trades
made by individuals and by institutions, which fall into one of four categories

(corporations, dealers, foreigners, or mutual funds).

* Individual investor trading results in systematic and, more importantly, economically

large losses
* In contrast, institutions enjoy an annual performance boost of 1.5 percentage points
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What do the data say?

Statistical regularities or stylized facts



Random walk hypothesis

Depending on the properties of €4 , we distinguish

* Independent Identically Distributed increments: for example
Gaussian distributed (stable laws)

* Independent increments

* Uncorrelated increments: the weaker form implies the
vanishing of the linear autocorrelation

10°
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Linear efficiency
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Example: S&P 500
sampled at 1 min
time horizon
1983 - 2004

Characteristic decay time:
378s (1983-1988)
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Volatility
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Are higher order correlation present?

trading time (day)

Example: General Electric
Co. 1995-1998

The volatility, i.e. the
standard deviation
of returns, is itself
a stochastic process.



autocorrelation function

Volatility autocorrelation

The volatility autocorrelation is a slow-decaying function

10° e The decay is compatible
with a power-law decay
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Empirical properties of return pdf

Leptokurtosis increases at short time horizons

Example: Xerox Co.

10 minutes data
1994-1995




The return variance is finite

Several empirical studies have shown that the variance
of return pdfs is finite

2.0""""""""I""""I""I""

High-frequency
investigation of the
S&P 500 index

(1 minute time
horizon 1984-1989)

(Mantegna and Stanley 1995)



Rare events

Rare events are described by a power-law tail with an
exponent o = 3 in the cumulative probability F =1-F(x)

AT=20 min
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(Gopikrishnan et al 2000)



Can we understand the
microscopic origin of these stylized
facts?



Market microstructure

 Market microstructure “is devoted to
theoretical, empirical, and experimental
research on the economics of securities
markets, including the role of information in
the price discovery process, the definition,
measurement, control, and determinants of
liquidity and transactions costs, and their
implications for the efficiency, welfare, and
regulation of alternative trading mechanisms
and market structures” (NBER Working Group)



Strategic model: Kyle (1985)

The model describes a case of information
asymmetry and the way in which information
is incorporated into price.

It is an equilibrium model

There are several variants: single period,
multiple period, continuous time

The model postulates three (types of) agents:
an informed trader, a noise trader, and a
market maker (MM)



The terminal (liquidation) value of the asset is
v, normally distributed with mean p, and
variance 2.,.

The informed trader knows v and enters a
demand x

Noise traders submit a net order flow u,
normally distributed with mean 0 and variance
OZU.

The MM observes the total demand y=x+u and

then sets a price p. All the trades are cleared
at p, any imbalance is exchanged by the MM.



 The informed trader wants to trade as much
as possible to exploit her informational
advantage

* However the MM knows that there is an
informed trader and if the total demand is
large (in absolute value) she is likely to incur in
a loss. Thus the MM protects herself by setting
a price that is increasing in the net order flow.

 The solution to the model is an expression of
this trade-off



Informed trader

 The informed trader conjectures that the MM
uses a linear price adjustment rule p=Ay+u,
where A is inversely related to liquidity.

 The informed trader’s profit is
m=(v-p)x =x[v-A(u+x)-u]
and the expected profit is
E[mt]=x(v-Ax-n)
 The informed traders maximizes the expected
profit, i.e.
x=(v-u)/2\

* |n Kyle’s model the informed trader can loose
money, but on average she makes a profit



Market maker

* The MM conjectures that the informed trader’s
demandis linearinyv, i.e. x=0+pv

* Knowing the optimization process of the
informed trader, the MM solves

(v-u)/ 2 =0.+pv
o=—W/2\ B=1/2A
* As liquidity drops the informed agent trades less
* The MM observes y and sets

p=E[v|y]



Solution

e [f Xand Y are bivariate normal variables, it is

E[Y | X=X]=MY+(Oxy/0x2)(X'Mx)
 This can be used to find

E[v|y]=E[v|u+o+pV]
e The solution is

o, o,
a=-p _§ U= Py = Z_;
0



Solution (I1)

The impact is linear and the liquidity increases

with the amount of noise traders

1 |2,
p=po+5 ?y

The informed agent trades more when she can
hide her demand in the noise traders demand

0,2

== py)y 5

The expected profit of the informed agent
depends on the amount of noise traders

£l 2

The noise traders loose money and the MM
breaks even (on average)



Kyle model - summary

* The model can be extended to multiple
periods in discrete or in continuous time

 The main predictions of the model are

— The informed agent “slices and dices” her order
flow in order to hide in the noise trader order flow

— Linear price impact
— Uncorrelated total order flow
— Permanent and fixed impact



Price formation and random walk

- Random walk ———— :
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Current paradigm

 There are two types of traders: informed and uninformed

 |Informed traders have access to valuable information about
the future price of the asset (fundamental value)

* Informed traders sell (buy) over- (under-)priced stocks
making profit AND, through their own impact, drive quickly
back the price toward its fundamental value

* In this way information is incorporated into prices,
markets are efficient, and prices are unpredictable
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s this the right explanation?
Orders of magnitude

* Information
— How large is the relative uncertainty on the fundamental value? 103

or 1 (Black 1986)
— Financial experts are on the whole pretty bad in forecasting earnings
and target prices

* Time
— Time scale for news: 1 hour-1day (?)
— Time scale for trading: 10-1s:100s
— Time scale for market events: 10-2:101s
— Time scale for “large” price fluctuations: 10 per day

* Volume
— Daily volume: 103:102 of the market capitalization of a stock

— Volume available in the book at a given time: 104:10 of the market

capitalization
— Volume investment funds want to buy: up to 1% of a company




Consequences

* Financial markets are in a state of latent liquidity,
meaning that the displayed liquidity is a tiny fraction
of the true (hidden) liquidity supplied/demanded

* Delayed market clearing: traders are forced to split

their large orders in pieces traded incrementally as
the liquidity becomes available

* Market participants forms a kind of ecology, where

different species act on different sides of liquidity
demand/supply and trade with very different time
scales



Price (or market) impact

* Price impact is the correlation between an
incoming order and the subsequent price
change

* For traders impact is a cost -> Controlling
Impact

* Volume vs temporal dependence of the
Impact




Why price impact?

* Given that in any transaction there is a buyer and a
seller, why is there price impact?
— Agents successfully forecast short term price movements

and trade accordingly (i.e. trade has no effect on price
and noise trades have no impact)

— The impact of trades reveals some private information
(but if trades are anonymous, how is it possible to
distinguish informed trades?)

— Impact is a statistical effect due to order flow fluctuations
(zero-intelligence models, self-fulfilling prophecy)

“Orders do not impact prices. It is more accurate to say that
orders forecast prices” (Hasbrouck 2007)



Market impact

 Market impact is the price reaction to trades
 However it may indicate many different quantities

— Price reaction to individual trades
— Price reaction to an aggregate number of trades

— Price reaction to a set of orders of the same sign placed
consecutively by the same trader (hidden order)

— Price reaction in a market to a trade in another market
(e.g. electronic market and block market)



Volume and temporal component o
market impact of individual trades

 Market impact is the expected price change
due to a transaction of a given volume. The
response function is the expected price
change at a future time
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Master curve for individual impact
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Master curve for individual impact

(Lillo et al. Nature 2003)

GROUP A -> |least capitalized group
GROUP T -> most capitalized group
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Fluctuations of the impact

Let us decompose the conditional probability of a
return r conditioned to an order of volume V as

p(r|V) = (1 =g(V))o(r) + g(V)f(r|V)

and we investigate the cumulative probability

F(r>X|V) = /Xoof(r\V) dr

for several different value of V.

This is the cumulative probability of a price return r
conditioned to the volume and to the fact that price moves
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* The role of the transaction volume is negligible. The volume is important in
determining whether the price moves or not

* The fluctuations in market impact are important




e The impact function is NOT deterministic and the
fluctuations of price impact are very large.

e These results show that the picture of the book as
an approximately constant object is substantially

-

* Central role of fluctuations in the state of the book

* How can small volume transactions create large
price changes ?
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Continuous double auction

* Many stock exchanges (NYSE, LSE, Paris) works
through a double auction mechanism

1]
pids b mjd I] I I
a offers price
<= [l scil market order

Bl cancellation/expiration of a limit order

Limit order book



Representation of limit order book dynamics
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 Large price changes are due to the granularity of
supply and demand

* The granularity is quantified by the size of gaps in
the Limit Order Book =



Origin of large price returns

* First gap
distribution (red)
and return
distribution (black)
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Large price returns are caused by the
presence of large gaps in the order book



Tail exponents (rarmer etal 2004)
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Tail exponent of return distribution
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A similar exponent describes also the probability density of the
successive gaps



Walking up the book?

- The analysis of transactions in both large and small tick size LSE
stocks reveal that the “walking up” of the book, i.e. a trades that
involves more than one price level in the limit order book, is an
extremely rare event

_-____-

44% 49% 5.8% 0.80% 0.15% 0.026% 0.22%
VOD 64% 34% 1.7% 0.094% 0.010% 0.0002% 0.19%

* This again strengthens the idea that market order traders strongly
condition their order size to the best available volume

* Thus the use of the instantaneous shape of the limit order book for
computing the market liquidity risk can be very misleading



Financial markets are sometimes found in a
state of temporary liquidity crisis, given by
a sparse state of the book. Even small
transactions can trigger large spread and
market instabilities.

* Are these crises persistent?
e How does the market react to these crises?

 What is the permanent effect of the crises
on prices?
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DFA of spread (Plerou et al 2005)

Detrended fluctuation

Persistence of spread and gap size

1

10 F

Typical stock

= = bids
— offers

autocorrelation

0 1 2 3

10 10 10 10
lag (number of trades)
(b) Fig. 4. Autocorrelation function of the first gap size for bids (g—1(t)) and offers (g1(t)) in a log-log
10-2 = s = - s plot. The data refer to Astrazeneca.
10 10 10 10
Time lag T (min)
Table 1. Correlation coefficient of the first three gap size g; on the buy side (i = —3, -2, —1) and

on the sell side (z = 1,2, 3) of the limit order book. The data shown refer to the stock Astrazeneca.

p g3 92 91| o g2 g3
g5 | 100 035 024010 008 0.08
g |l 035 1.00 027|011 008 0.08
g1 024 027 100|015 015 0.13
g1 010 0.11 0.15 | 1.00 0.33 0.30
g2 | 008 008 015|033 1.00 0.41
gs | 0.08 008 013030 041 1.00




Market reaction to temporary liquidity crises

« We quantify the market reaction to large spread changes.

e The presence of large spread poses challenging questions to the
traders on the optimal way to trade.

e Liquidity takers have a strong disincentive for submitting market
orders given that the cost,
the bid-ask spread, is large N
e Liquidity provider can |
profit of a large spread by
placing limit orders and
obtaining the best position. Am,
However the optimal order y !
placement inside the sprea bid

ask

price

a nontrivial problem. t Hme t+e
e Rapidly closing the spread -> priority but risk ot informed traders
e Slowly closing the spread -> “testing” the informed traders but
risk of losing priority



G(t] A) (ticks)

We wish to answer the question: how does the spread s(t) return to anormal value after a

spread variation?
To thisend we introduce the quantity

G(T|A)=E(s(t+7)|s(t) —s(t—1) = A) — E(s(t))

10’ u - '
.
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G(T|A) ~ 779 §~0.4—0.5



Permanent impact
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Permanent impact is roughly proportional to immediate impact




WHY IS SINGLE TRADE
IMPACT CONCAVE?

¢ Liquudity takers condition their orders on what 1s
offered.

— When offer is deep, they submit large orders
— When offer is shallow, they submit small orders

— Result is that observed impact grows slowly
with size




MARKET IMPACT F(V)
FOR SINGLE TRADE
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Farmer, Gillemot, Lillo, Mike, Sen (Quantitative Finance, 2004)
Weber and Rosenow (Quantitative Finance, 2006), Gerig (2007)



What is the origin of fat tails and

clustered volatility?

* A common belief is that large part of the story is
explained by the inhomogeneous rate of trading

* Theories making use of this point of view are
for example:

—Subordinated processes (Mandelbrot and Taylor 1967,
Clark 1973, Ane and Geman 2000)

e price shift due to individual transactions are Gaussian (or
thin tailed), but when many trades are aggregated in a time
interval, the return distribution can be fat tailed. This is due to
the fluctuation of number of trades or volume in the time
interval

— Volume fluctuations (Gabaix et al. 2003) "



Alternative time clocks

We define transaction time as

Tg(ti) — Tg(ti_l) -+ 1

where t; is the time when transaction i occurs.

e\We define shuffled transaction time as follows:
e We associate to each trade the corresponding price change.
eThen we randomly shuffle transactions. We do this so that we
match the number of transactions in each real time interval,
while preserving the unconditional distribution of returns but

destroying any temporal correlations.

Which time reproduces better the real time volatility?
Transaction time or shuffled transaction time ?
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P(lrl > x )

Shuffling experiments:
return distribution

ll'

o—o real time
s—=a shuftled transction time
=—& {ransaction time
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Clustered volatility

H-2 NYSE1 LSE NYSE2
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Return distribution for fixed number of transactions
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The type of aggregation (time or number of trades) does not matter
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Fat tails of return distribution and clustered
volatility are closer to the real one in
transaction (volume) time rather than in
shuffled transaction (volume) time.

These results indicate that the main drivers of

heavy tails are the fluctuations of the price
reaction to individual transactions.

Tick size is also important as emphasized by
the comparison of NYSE1 and NYSE2 dataset.

Our analysis suggests that fluctuations in

trading rate are not the most important
determinant of return’s fat tails and clustered

volatility
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Order flow

* One of the key problem in the analysis of
markets is the understanding of the relation
between the order flow and the process of
price formation.

 The order flow is strongly depending on
- the decisions and strategies of traders
- the exploiting of arbitrage opportunities

* This problem is thus related to the balance

between supply and demand and to the
origin of the market efficiency.



Market order flow

* We investigate the London Stock Exchange in
the period 1999-2002

* We consider market orders, i.e. orders to buy
at the best available price triggering a trade

* We consider the symbolic time series
obtained by replacing buy orders with +1 and
sell orders with -1

* The order flow is studied mainly in event time
””+11+11-11_11_1I+1I_11+1I+1I+11_1I_1I+11“’



Order flow dynamics

Time series of signs of market

10"'F E orders is a long memory process
o 3 (Lillo and Farmer 2004, Bouchaud
o
2 et al 2004)
<]
2 - -0.5
S107F . C=1'"=71
!0k
s I
<

IO'iOO T H“l‘Ol T H“llOZ T HHIIO3 T H“104

lag (event)

* Why is the order flow a long-memory process ?
* We show (empirically) that:

* It is likely due to splitting

* It requires a huge heterogeneity in agent size



Limit Orders

autocorrelation
autocorrelation

ool Lo ol Lol .
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lag (event)
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Cancellations
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The sign time series of the three types of orders
is a long-memory process

Hurst exponent ==———=p>

(

\

Hypo = 0.69540.039
H,, = 0.716 +0.054

H,., = 0.768 +0.059



What is the origin of long-memory in order flow?

Two explanations has been proposed

@ Herding among market participants (LeBaron and Yamamoto
2007). Agents herd either because they follow the same
signal(s) or because they copy each other trading strategies.
Direct vs indirect interaction

@ Order splitting (Lillo, Mike, and Farmer 2005). To avoid
revealing true intentions, large investors break their trades up
into small pieces and trade incrementally (Kyle, 1985).
Convert heavy tail of large orders volume distributions in
correlated order flow.

Is it possible to quantify empirically the contribution of herding
and order splitting to the autocorrelation of order flow?

Note that this is part of the question on the origin of diagonal
effect raised in Biais, Hillion and Spatt (1995).



Decomposing the autocorrelation function

Assume we know the identity of the investor placing any market
order.

@ For each investor / we define a time series of market order
signs €; which is equal to zero if the market order at time t
was not placed by investor / and equal to the market order

sign otherwise
@ T he autocorrelation function can be rewritten as

2
1 . 1 :
C(T) — N Et : E ':Eltelt-%’r o (N Et : E :G,t)



Decomposing the autocorrelation function

We rewrite the acf as C(7) = Cspjit(7) + Cherd(7) Where
1 1 i
Csp/it('T) - Z (Pﬁ(’T’) N”—(T) Z EQCI;_H.] - P'W Z 62] )
] t t
. 1 , 1 ;
Cherd(T) = ) (P”(T) N7 > e N D 4])
t t

I
i#]
N' is the number of market orders placed by agent /, P = Ni/N,
NY(7) is the number of the number of times that an order from
investor / at time t is followed by an order from investor j at time

t + 7, and PY(7) = NY(1)/N

1 i J i DJj
NU(T) Zetelt-i—?'] - P'P




Market members

@ At LSE there are typically 250-300 market members trading a
stock. Of those roughly 80 are significantly active in a six
month period.

@ There is a huge heterogeneity in market member activity at
LSE. The 15 most active ones are responsible for 80-90% of
transactions.

@ The activity of market members (independently from their
trading direction) is characterized by the persistence

Pii(r) = Pii(r) — (P')?



Market members persistence

Market member activity is highly clustered in (transaction) time.
|.e. there is some degree of predictability that a member active

now will be active in the near future.

P (v)
1e-03

Figure: The diagonal terms of persistence in activity, i.e., P"(7) — [P']?
of MO placement for the 15 most active participant codes, the first half
of 2009 for AZN. For many codes this quantity is consistently positive,

AZN 2009/
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time lag [global MO time]

indicating a significant clustering in their activity.




Herding or splitting?

AZN 2009/1 AZN 2009/1
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N
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Figure: Left panel. The splitting and the herding term of the correlation
of MO signs (the two terms sum up to C(7)) for the first half year of
2009 for AZN. Right panel. The splitting ratio of MO signs (defined as
the ratio of the splitting term in the correlations and the entire
correlation) for the first half year of 2009 for AZN.

Splitting dominates herding (especially for large lags)




Hidden orders

o In financial markets large investors usually need to trade large
guantities that can significantly affect prices. The associated cost is
called market impact

e For this reason large investors refrain from revealing their demand
or supply and they typically trade their large orders incrementally
over an extended period of time.

e These large orders are called packages or hidden orders and are
split in smaller trades as the result of a complex optimization
procedure which takes into account the investor’s preference, risk
aversion, investment horizon, etc..

e \We want to detect empirically the presence of hidden orders from
the trading profile of the investors



Model of order splitting

« There are N hidden orders (traders).

e An hidden order of size L is composed by L revealed
orders

e The initial size L of each hidden order is taken by a given
probability distribution P(L). The sign s, (buy or sell) of the
hidden order is initially set to +1 or -1 in a random way.

e At each time step an hidden order i is picked randomly
and a revealed order of sign s, is placed in the market. The
size of the hidden order is decreased by one unit..

e When an hidden order is completely executed, a new
hidden order is created with a new size and a new sign.



e We assume that the distribution of initial hidden order size
is a Pareto distribution

X
pl)=77 L=21 a>1

The rationale behind this assumption is that

1. Itis known that the market value of mutual funds is
distributed as a Pareto distribution (Gabaix et al., 2003)
2. Itis likely that the size of an hidden order is proportional to

the firm placing the order



We prove that the time series of the signs of the revealed
order has an autocorrelation function decaying asymptotically

¢ Noz—2 1
p(T) ~

a To1

TR —o n=1
~ < e o—o n=50

time lag



Testing the models

e |t is very difficult to test the model because it is difficult to have information on the
size and number of hidden orders present at a given time.
e We try to cope with this problem by taking advantage of the structure of financial
markets such as London Stock Exchange (LSE).
e At LSE there are two alternative methods of trading

- The on-book (or downstairs) market is public and execution is completely
automated (Limit Order Book)

- The off-book (or upstairs) market is based on personal bilateral exchange
of information and trading.

We assume that revealed orders are placed in the on-book
market, whereas off-book orders are proxies of hidden
orders



Volume distribution

The volume of on-book and off-book trades have different
statistical properties
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* The exponent a=1.5 for the hidden order size and the market order sign
autocorrelation exponent y are consistent with the order splitting model which
predicts the relation y=0-1.



* The investigated market is the Spanish

Our investigation

Stock Exchange (BME)

Q Firms are credit entities and investment firms
which are members of the stock exchange and

are entitled to trade in the market.

O 200 Firms in the BME (350/250 in

the NYSE)

[:J

member
member

\\\> Market P
member
/{ "y X ﬁ

Marke }
membe -

\

M- - 3
member "’*{:}

\

VALOR
TEF
TEF
ANA
CAN
CAN

VIS
SOL
ALB
ALB
ACX
AGS
AGS
ACS
SCH
CTE
CTE
CTE
FER
SGC
ACR
ACR
DRC
DRC
AUM

VOLUMEN  PRECIO SOCCOM

236
1764
110
37
151
214
286
104
29
97
120
110
107
11226
96
50
14
237
50
161
47
20
267
m

2187
2187
3800
2194
2200

700
1299
2710
2719
3689
1445
1448
2930
1045
1935
1955
1958
1296
3980
1139
1140

803

80S
1649

9405
9405
9839
9839
9839
9821
9839
9839
9839
9839
9839
9839
9839
9858
9839
9839
9839
9839
9820
9839
9839
9839
9839
9839

SOCVEN
9858
9487
9855
9578
9412
9561
9838
9843
9419
9843
9487
9485
9863
9880
9832
9872
9426
9560
9560
9487
9845
9573
9484
9474

HORA
90108
90108
90109
90109
90109
90109
90110
90110
90110
90111
90111
90111
90111
90112
90112
90112
90112
90112
90113
90113
90113
90114
90114
90114

FECHA
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000
01/06/2000

* Investigation at the level of
market members and not of the

agents (individuals and
institutions

* The dataset covers the whole

market

* The resolution is at the level of
individual trade (no temporal

aggregation)



A typical inventory profile
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Detecting hidden orders
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We developed a statistical method to identify periods of time when an investor was
consistently (buying or selling) at a constant rate -> Hidden orders



Distributional properties of hidden orders

Investment horizon
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Large hidden orders

The distributions of large hidden orders sizes are characterized by power law tails.

' BBVA (2104) | SAN (2086) | TEF (2062)
v,y | 23 (1927) |20 (L7:23) |19 (16;2.2)
Ny | 20 (L723) | L7 (1.420) | L7 (1.4:2.0)

¢r |15 (1317 |15 (1.3:17) |12 (L0;1.4)

Table 4.1: Tail exponents of the distribution of T', N,,.. 5, and V.., estimated with the
Hill estimator (or Maximum Likelihood Estimator). In parenthesis we report the 95%
confidence interval. The number in parenthesis nearby the tick symbol is the number of

patches detected for the considered stock.

Power law heterogeneity of investor typical (time or volume) scale

1 1
P(T> 1)~ —— PNy >2)~ — P(Vi > )~

1.3 1.8 T2
These results are not consistent with the theory of Gabaix et al. Nature 2003)
1 1 1
p(T>x)NE P(Nm>:c)~$—3 P(Vm>$)NW



Allometric relations of hidden orders

We measure the relation between the variables characterizing hidden orders by
performing a Principal Component Analysis to the logarithm of variables.

5 8 8

10°F 10°¢ 10°
: X i 1. a
4N ~VEL T~ V9
g PG 10°F 10°F B s e
103;— o, ° .,ub of ,a lO;%} ? 105%_ ° ?g : o %
; 210k 210'F
1025- ] 103; ~ 103%_
10‘; 10% 102%—
s 10k 10'F
10(;05 | 1|0( mlé;m (Euréé))s 169 10" 10(1'0(, l 1(1)] 1(1) N 163 1(‘)4 10° 10(1)0’ l(l)‘ 1{|)]7m (Eurcl};x 10°
BBVA (2104) SAN (2086) TEF (2062)
g1 || 1.08 (1.05;1.12) 1.06 (1.01 ;1.10) 1.07 (1.04 ;1.11)
g2 || 1.81 (1.69;1.93) 1.81 (1.68 ;1.94) 2.00 (1.88;2.14)
g3 || 0.68 (0.65;0.71) 0.68 (0.65 ;0.70) 0.62 (0.59 ;0.64)

Table 4.3: Exponents of the allometric relations defined in Eq. 4.7. The exponents
are estimated with PCA and the errors are estimated with bootstrap. In parenthesis we
report the 95% confidence interval. The number in parenthesis nearby the tick symbol is

the number of patches detected for the considered stock.



Comments

The almost linear relation between N and V indicates that
traders do not increase the transaction size above the
available liquidity at the best (see also Farmer et al 2004)

For the N,_-V_ and the T-N_ relations the fraction of variance
explained by the first principal value is pretty high

For the T-V  relation the fraction of variance explained by the
first principal value is smaller, probably indicating an
heterogeneity in the level of aggressiveness of the firm.

Also in this case our exponents (1.9, 0.66, 1.1) are quite

different from the one predicted by Gabaix et al theory (1/2,
1,1/2)



Role of agents heterogeneity

 We have obtained the distributional
properties and the allometric relations of the
variables characterizing hidden orders by
pooling together all the investigated firms

* Are these results an effect of the aggregation
of firms or do they hold also at the level of
individual firm?



Heterogeneity and power law tails

e For each firm with at least 10 detected hidden

orders we performed a Jarque-Bera test of the
lognormality of the distributionof T, N, and V

BBVA SAN TEF

T 75 (15/20) 63 (17/27) 77 (24/31)
N 90 (18,/20) 100 (27/27) 100 (31/31)
Vin 90 (18,/20) 100 (27/27) 094 (29/31)

* For the vast majority of the firms we cannot reject
the hypothesis of lognormality

 The power law tails of hidden order distributions
is mainly due to firms (size?) heterogeneity



Individual firms
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Figure 4.5: Probability density function of the standardized logarithm of the variables
T, Nuej and Viua; of the firms for which the Jarque-Bera test of lognormality cannot be
rejected. Specifically, for each stock and each variable we consider the firms for which the
lognormal hypothesis cannot be rejected (see Table 4.2). For each of these firms we com-
pute the logarithm of the variable, we subtract the mean value and divide by the standard
deviation. According to the null hypothesis these normalized variables should be Gaussian
distributed. In the figure we plot in a semi-log scale the probability density functions for
each firm (continuous lines) and we compare them with the Gaussian probability density
function (dashed line). Each column refers to a firm (from left to right, BBVA, SAN,
TEF) and each row refers to a variable (from top to bottom T, N,,,.; and V,,..;).



Order flow is a long memory process

The origin is delayed market clearing and hidden
orders

Hidden order size is very broadly distributed

Heterogeneity of market participants plays a key
role in explaining fat tails of hidden order size

Can we use the detected hidden
orders to compute the market
impact of hidden orders?



Market impact of hidden orders
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Figure 4: Average rescaled market impact R for hidden orders
shorter than 1 day as a function of N for the BME (left) and
LSE (right). Circles are the results for all hidden orders, while
squares are the results when there is a low fraction of market
orders ( fmo < 0.2) and diamonds are for when there is a large

fraction of market orders ( fro > 0.8). Dashed lines are power
law fits R ~ N7. Values of ~ are reported in Table II.

Moro, Vicente, Moyano, Gerig, Farmer, Vaglica, Lillo, Mantegna, Physical Review E 2009




Impact vs N

We find that for both groups the relation <R|N> is well described by:

(RN} = AN

Table II: Parameters of the fitting of the market impact with

Eq. 15.
I\"Iarketl Afo>08  Vimo>0.8 | Afpo<o2 Vimo<0.2
BME |063+0.17 048 £0.07| —0.63 £0.22 0.44 £0.09

LSE 017 £0.05 0.72+£0.10| —0.16 =0.14 0.64 +=0.30




Market impact versus time

5 T I I

- |O-O BME
O-O LSE

Solid lines are power-law fits while dashed lines correspond to temporary (upper) and permanent
(lower) market impact. Temporary impact R,,,,, is measured at the end of the hidden order t/T=1
while permanent impact R is obtained through an average of R(t/T) with 1.5<t/T<3. Data are
only for f,,,> 0.8.

perm

Moro, Vicente, Moyano, Gerig, Farmer, Vaglica, Lillo, Mantegna, Physical Review E 2009



R and R

perm temp

The power low fits give:

R~ (4.28 £0.21) x (£)*7*"®  (BME)
R~ (213 +£0.05) x ()" (LSE)

The drop in impact is:

R =0.51+0.22 for BME

perm/ Rtemp

R Ricmp,=0.73£0.18 for LSE

perm/ temp



Fair pricing condition

Suppose that the price after reversion is equal to the average price paid during
execution.

If during execution price impact grows like A X (t/t)? then the average price paid by the
agent who executes the order is:

1
) \ f " \ f P 4 '- \ o4
p)=p + A | /j (t/T)?d(t/T) = p: + 15

i.e. the permanent impact is 1/(1+f) of the peak impact

In our case by using the values of 3 obtained in the previous figure we get

1/(1+p) = 0.58 +0.01 for the BME and 1/(1+f) = 0.62 + 0.02 for the LSE which are

statistically similar to the ratios R ,,,/R..n,, for each market .



Long memory and efficiency

« How can the long memory of order flow be compatible
with market efficiency?

e |n the previous slides we have shown two empirical facts

e Single transaction impact is on average non zero and
given by

E[r‘v] =sign(v)f(v)=¢f (v)

e The sign time series is a long memory process

Elee,, |=17

I 1+7



Naive model

e Consider a naive random walk model of price
dynamics

Pigg— P, == gtf(vt)'l' 1,
o |t follows that
Elrr,  |xElee,  |=17

I+T 1 t+7

 If market order signs €, are strongly correlated in

time, price returns are also strongly correlated,
prices are easily predictable, and the market
inefficient.



* |tis not possible to have an impact model
where the impact is both fixed and permanent

 There are two possible modifications

— A fixed but transient impact model (Bouchaud et
al. 2004)

— A permanent but variable (history dependent)
impact model (Lillo and Farmer 2004, Gerig 2007,
Farmer, Gerig, Lillo, Waelbroeck)



Fixed but transient impact model (Bouchaud et al 2004)

The model assumes that the price just after the (t-1)-th transaction is

D, =D+ EGO(k)gt—kf(Vz—k) + noise
k=1

and return is

r.=p..,—-P =G,(De f(v,)+ E[Go(k +1) -G, (k)le,_ . f(v,_,) +noise

k=1

where the propagator G,(k) is a decreasing function.

The propagator can be chosen such as to make the market exactly efficient. This can be done
by imposing that the volatility diffuses normally. The volatility at scale / is

/
V, = E[(p,., - p.)*1= DG = )+ UGy (£ + j) = Gy()IF +2A(0) + =

j=0 j>0

where A is a correlation-induced contribution



The correlation in the order flow decays as a power law with exponent y

Assume that Gy (@) itself decays at large € as a power law, o2 ?. When B,y < 1,
the asymptotic analysis of A(€) yields:

A@) ~ Tocol(y, f)&* 27 (2.27)

where I > 0 is a certain numerical integral. If the single trade impact does not decay
(p = 0), we recover the above superdiffusive result. But as the impact decays faster,
superdiffusion is reduced, until f = f. = (1 — y)/2, for which A(€) grows exactly lin-
early with € and contributes to the long-term value of the volatility. However, as soon
as f exceeds f., A(€) grows sublinearly with €, and impact only enhances the high-
frequency value of the volatility compared to its long-term value ¥?, dominated by
“news.” We therefore reach the conclusion that the long-range correlation in order flow
does not induce long-term correlations nor anticorrelations in the price returns if and
only if the impact of single trades is transient (f > 0) but itself nonsummable (f < 1).
This is a rather odd situation in which the impact is not permanent (since the long-
time limit of G 1s zero) but is not transient either because the decay is extremely slow.
The convolution of this semipermanent impact with the slow decay of trade correlations
gives only a finite contribution to the long-term volatility. The mathematical constraint
B = B, will be given more financial flesh later.



The model is able to make predictions on the response function defined as
Rf = E[En(prmf - pn)]

which can be re-expressed in terms of the propagator and of the order sign
correlation C,

Re=Go@) + Y, Go(@—)C;+ Y [Go(@+j) — Go(NIC;
O<j<@ j>0

From a mathematical point of view, the asymptotic analysis can again be done when
Go(€) decays as o2 ?. When f+y < 1, one finds:

r(-7) r oz
TATQ=-p—p) |sinzp ~ sinz(l—f—7)

Ro o1 Toco ‘ g\Pr (2.29)

where we have explicitly given the numerical prefactor to show that it exactly vanishes
when f = f., which means that in this particular case one cannot satisfy oneself with
the leading term. When f < f., one finds that R, diverges to +oc for large €, whereas
for f > ., R, diverges to —oo, which is perhaps counterintuitive but means that when
the decay of single trade impact is too fast, the accumulation of mean reverting effects
leads to a negative long-term average impact—see Figure 2.7. When f is precisely equal
to f., R¢ tends to a finite positive value R ,: The decay of single trade impact precisely
offsets the positive correlation of the trades.
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FIGURE 2.9 Comparison between the empirically determined Gy(&), extracted from R and C using

FIGURE 2.8 Average empirical response function R for FT during three different periods (1st and 2nd Y S ;
semester of 2001 and 2002); error bars are shown for the 2002 data. For the 2001 data, the y axis has been Eq. 2.28, and the power-law fit G; (@) = Io/(#] +*)"/* for a selection of four stocks: ACA, CA, EX,
rescaled such that R; coincides with the 2002 result. R is seen to increase by a factor ~2 between € = 1 and FP.

and € = 100.



History dependent, permanent impact
model

 We assume that agents can be divided in three
classes

— Directional traders (liquidity takers) which have large
hidden orders to unload and create a correlated order
flow

— Liquidity providers, who post bid and offer and attempt
to earn the spread

— Noise traders

* The strategies of the first two types of agents will
adjust to remove the predictability of price changes



Model for price diffusion

We neglect volume fluctuations and we assume that the naive model is modified as

Piyg— P ENL= H(Et - gz) + 1, gt - Et—l[gf‘g]

where Q is the information set of the liquidity provider.

Ex post there are two possibilities, either the predictor was right or wrong
Let p*, (p,) be the probability that the next order has the same (opposite) sign of the
predictor and r*, (r,) are the corresponding price change



* The efficiency condition E, ,[r,|€2]=0 can be
rewritten as

piry —prry =0

* The market maker has expectations on p*,

and p-, given her information set €2 and

adjusts r, and r in order to make the
market efficient

----- > MARKET EFFICIENCY
ASYMMETRIC LIQUIDITY MODEL



Empirical evidence of asymmetric liquidity

~ 1= (Slope -0.8) ' ) 0.62
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A linear model

The history dependent, permanent model is completely defined when
one fixes

- the information set Q2 of the liquidity provider
- the model used by the liquidity provider to build her forecast ¢,

As an important example we consider the case in which
- the information set is made only by the past order flow
- the liquidity provider uses a finite or infinite order autoregressive
model to forecast order flow

K
h, = H(gt - Eaigti) + 1,

=1



If the order flow is long memory, i.e. E[¢g,,.|~7 the optimal
parameters of the autoregressive model are ¢, =k > =k""and the
number of lags K in the model should be infinite.

If, more realistically, K is finite the optimal parameters of the
autoregressive model follows the same scaling behavior with k

Under these assumptions and if K is infinite the linear model
becomes mathematically equivalent to the fixed-temporary model
(or propagator) model by Bouchaud et al. with

i—1
fa; =G(i+1)—G@) or G(i)=0[1-) a]

Jj=1



Impact of hidden orders

The above model allows to make quantitative prediction on the
impact of an hidden order

Assume an hidden order of length N is placed by a liquidity taker by
using a slice and dice strategy which mixes the trades with the flow
of noise traders with a constant participation rate «t

The impact of the hidden order is

Pl

E[pN]—pO ~ 0|1+

[@N -1’ -1]|=a’N"

An empirical value y=0.5, gives 3=0.25,which in turn implies that
the impact of an hidden order should grow as the % power of its size.

Moreover, as expected, the impact is smaller for slower execution
(i.e. smaller m)



Permanent impact

The model allows to compute the 06 -
permanent impact, i.e. the price change 08
after the price has relaxed back to its long ~ **
term value L
If t=1 then v

501

50

4H—1\/;F(H) sec[(K - H)JI] 0 N
TGR+K-HTQH-1-K) KF

499

E[poo] - P, =€6N

0

100

200

The permanent impact is linear and vanishes only if K is infinite,

recovering the Bouchaud et al idea of a completely temporary

market impact

300



Asymmetric liquidity depends on the information
set Q2.

This model predicts the existence of two classes

of traders that are natural counterparties in many
transactions

— Large institutions creates predictable component of
order flow by splitting their large hidden orders

— Hedge funds and high frequency traders removes this
predictability by adjusting liquidity (and making profit)

This ecology of market participants is empirically
detectable?

What is the interaction pattern between market
participants?



Coping with heterogeneity

One of the distinguishing features of physics is that it has to do with
collections of entities which are identical one to the other. There is

no way of distinguishing an electron from another, given that they
are identical in essence.

The representative agent paradigm assumes "that the choices of all
the diverse agents in one sector can be considered as the choices of
one ‘representative’ standard utility maximizing individual whose
choices coincide with the aggregate choices of the heterogeneous
individuals” (Kirman 1992). This paradigm has been severely
criticized.

In my opinion, heterogeneity is an open problem and the challenge
is to find classes of models of an economy with heterogeneous
interacting agents.



A possible approach

A different approach is to investigate real systems for
which detailed data on the behavior of agents is
recorded -> agent based empirical modeling

This approach has not been followed very often due
to the lack of data

One of the difficulties is that one has to infer

strategies, preferences and sometimes payoffs from
data on agents’ action.

We use this approach for the investigation of financial
markets



Limit order placement

S 3 = 3

Cumulative distribution
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Figure 2. An estimate of the cumulative probability distribution
based on a merged data set, containing the relative limit-order sizes
8(1) for all 50 stocks across the entire sample. The solid curve is a
nonlinear least squares fit to the logarithmic form of equation (1).
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Figure 5. The cross autocorrelation of the time series of relative
limit prices §(¢) and volatilities v(r — 1), averaged across all 50
stocks in the sample.

(from Zovko and Farmer 2002)

Limit order price is power law distributed with a tail exponent in the range 1.5-2.5
Moreover limit order price is correlated with volatility



An utility maximization argument

For a given limit price A, volatility o, and investment horizon T the investor is faced
with the lottery

From first passage time

. 1 N A
A with probability erfc [—} of the price random walk

V2032T
0 with probability 1 — erfc [ a

\ 202T]

e A :
So the expected utility is Ur ,(A) = erfc [ ] u(A where u(A) is the
utility function. o(2) V202T (&)

Agent optimizes her limit order placement by choosing the lottery (i.e. the value of A)
which maximizes the expected utility.

For several choices of u(A) it is possible to solve the problem analytically. For
example for power utility function u(x)=C x

A* — \/ig_l(a)aTl/z

Some variable must be highly fluctuating: market (o) or agent (o or T)?



It is possible to show that heterogeneity in volatility or utility function cannot explain

the value of the exponent empirically observed.
The only possibility is a strong heterogeneity in investment horizon T
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Heterogeneity in volatility Heterogeneity in traders preferences

Curiously, the same exponent of the time scale distribution is obtained by considering
the time to fill of limit orders, metaorder splitting, and a modified GARCH (Borland and

Bouchaud 2005)



How the market adapt to your trading?

 We decompose the total impact of a given
type of order book event into a contribution
from the same broker and a contribution from

all other brokers.
<(Pt—£ - Pt)I(Wt = 7Tl)et)'

Response function -> R,,(¢) =

P(m;)
:Rsame(é) <Z§'——€t_l(pt’-l - Pt’)I(bz' = bt)I(Trt = 7r1)et>
T P(m) - |
Rls_.:?me(g) + :Rfirlff(g) — 3‘1(€)
:Rdiﬁ(f) . <Z§:ft—1(pt'—l - pt')I(bt’ 7é bt)I(ﬂ't = 7T1)6t>

P(ﬂ'l)

(with B. Toth, Z. Eisler, J. Kockelkoren, J.-P. Bouchaud, and J.D. Farmer)



Response function is a delicate balance
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Figure 1: The response function R, (€) and its contributions coming from the orders of the same broker
(Rsme(£)) and of different brokers (RE#(£)). (left) The case of m; = MO". (right) The case of m; = MO'. The

insets show a zoom for small £.

These two contributions very nearly offset each other, leading to a total impact
that is nearly constant in time and much smaller than both these contributions.

Dynamical liquidity picture -> the highly persistent sign of market orders must
be buffered by a fine-tuned counteracting limit order flow in order to maintain

statistical efficiency (i.e. that the price changes are close to unpredictable, in

spite of the long-ranged correlation of the order flow).



Daily inventory variation time series

We quantify the trading activity of a firm in a given time
period T by introducing the inventory variation

=
o

t+71

vi(t) = Z €i(s)pi(s)Vi(s)
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Cross correlation matrix of inventory
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Trading activity is significantly cross correlated among firms



Origin of collective behavior
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* The first eigenvalue is not compatible with random trading and is therefore carrying
information about the collective dynamics of firms.

* The corresponding factor is significantly correlated with price return.

* There are groups of firms having systematically the same position (buy/sell) as the other
members of the group they belong to.



The rOIe Of Slze Few large trending firms
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Many heterogeneous reversing firms

Size = average daily fraction of volume



Inventory variation
correlation matrix
obtained by sorting
the firms in the rows
and columns
according to their
correlation of
Inventory variation
with price return = of
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h —

Herding

Herding indicator (see also Lakonishok et al, 1992)

# of buy firms

# of buy firms + # of sell firms

We infer that herding is
present in a given
group when the

probability of the
observed number of

buying or selling firms
is smaller than 5%
under the binomial null

hypothesis.
2003 2004

AL BH SH AILL BH SH
Reversing (1 day) 648 312 336 596 272 324
Uncategorized (1day) 212 108 104 192 104 88
Trending (1 day) 60 20 40 24 12 12
Reversing (15 min) 292 147 145 266 133 133
Uncategorized (15min) 102 53 49 115 63 52
Trending (15 min) 39 17 22 33 17 16

2000

1500

1000

|II|IIIIIlIIIIIIIIIIIIIIIIIIIIII

buy herding '

sell herding

~ reversing a)

L1 %

1

2000
1500

1000

1

llIllIlIIIIIIIIIIIIIIIIIIIIIIII

noise

M
L1 1

Price (eurox100)

I~
-

1500 |~

1000

T T T TrT I 1T Ty Tr T TT I T T T
. C)
trending

IIIlIlIIIIIIIIIIIII

IIIIIIlIIIllIIIIIIIIIII—

2001

2002 2003 2004

Trading day

2005



PhD opportunity

The CALL FOR APPLICATIONS FOR ADMISSION TO PhD
PROGRAM in Mathematics for Finance at the
Scuola Normale Superiore di Pisa
IS open

(see http://lwww.sns.it/en/scuola/ammissione/corsodiperfezionamento/scienze/).

The deadline for application is Thursday March 31, 2011
(Note that there is another available deadline on Monday
September 12, 2011).
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