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1. Aggregation of information and rational expectations

1.1 The normal-CARA world

1.1.1 Bayesian decision making under risk

Suppose that Primus is interested in taking actions that depend on an unknown parameter
y. For instance, he has a utility function u(y) which depends on the value of y. If Primus is a
(subjective) expected utility maximizer, he should pick the action which maximizes the ex-
pected value of his utility computed with respect to his (subjective) probability distribution
for y.

Suppose now that, before making any decision, Primus receives additional information
about y. Then he should update his prior probability distribution to a posterior probability
distribution and use this latter one to choose an optimal action. Updating beliefs when new
information is available, therefore, is crucial for taking informed decisions.

This basic format for taking decisions under uncertainty when new information is re-
vealed is the tenet of Bayesian rationality. Out of the many possible variations, the literature
especially insists on a model where Primus has an exponential utility function and normally
distributed random variables (both prior and posterior). This is made for analytical conve-
nience. This section collects the basic mathematics necessary to deal with the cara–normal
model.

1.1.2 Updating normal beliefs

Suppose that the prior distribution for the random variable Y is normal with mean m and
standard deviation sy > 0. For short, we write Y ∼ N(m, sy). Imagine that Primus can
receive signals about Y . Each signal x is independently and identically distributed according
to a normal distribution with mean y and standard deviation sx > 0; that is, a signal is an
(iid) draw from X ∼ N(y, sx).

We are interested in what should be Primus’ posterior distribution for Y after having
observed one signal X. If we denote by g(y) the prior distribution for Y and by f(x|y) the
conditional distribution of the signal, we have respectively

g(y) =
1√

2πsy
exp

[
− 1

2s2
y

(y −m)2

]

f(x|y) =
1√

2πsx
exp

[
− 1

2s2
x

(x− y)2

]
By Bayes’ rule, the posterior density function for Y given a signal X = x is given by

g(y|x) =
f(x|y) · g(y)∫
f(x|y) · g(y) dy

. (1)
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Carrying out substitutions, we can find the posterior density of Y |x and check that

Y |x ∼ N

( m
s2y

+ x
s2x

1
s2y

+ 1
s2x

,
1

1
s2y

+ 1
s2x

)
. (2)

Three properties are worth being noted. First, the posterior is a normal as well. If
we begin with a normal prior and the signal is normally distributed, the posterior remains
normal. This feature is extensively used in models with rational expectations.

Second, we can simplify (2) by defining the precision of a normally distributed signal as
the inverse of its variance. In particular, let τy = (1/s2

y) and τx = (1/s2
x) respectively the

precisions of Y and X. Then (2) can be written as

Y |x ∼ N
(
mτy + xτx
τy + τx

,
1

τy + τx

)
. (3)

Thus, the posterior mean of Y |x can be written more simply as the average of the prior
mean and of the signal weighted by their respective precisions. In the following, we make
frequent use of this simple method for computing the expected value of a posterior belief.

Third, note that the Bayesian posterior beliefs converge to the truth as the number of
signals increase. After n (iid) draws x1, x2, . . . , xn, the variance of the posterior goes to zero
while the Strong Law of Large Numbers implies that the posterior mean converges to y.

1.1.3 Cara preferences in a normal world

If Primus is an expected utility maximizer with constant absolute risk aversion, his utility
function must be linear or exponential. In particular, if we also assume that he is strictly
risk averse, his utility function over the wealth w must be a negative exponential

u(w) = −e−kw (4)

where k > 0 is his coefficient of (absolute) risk aversion.
Suppose that Primus has preferences which satisfy these assumptions and that his beliefs

are normally distributed so that W ∼ N(µ, σ). Check that his expected utility can be
written

Eu(W ) =

∫ [
−e−kw

]
· 1√

2πσ
exp

[
− 1

2σ2
(w − µ)2

]
dw = − exp

{
−
[
kµ− 1

2
k2σ2

]}
.

This expression is a function only of the current mean µ and the current variance σ2 of W .
Since − exp(−kw) is a strictly increasing function of w, Primus’ preferences in a cara–normal
world are more simply expressed by the functional

V (µ, σ) = µ− 1

2
kσ2

and we can characterize them using simply the two statistics µ and σ2 and the coefficient
of absolute risk aversion k.
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1.1.4 Demand for a risky asset

Suppose that Primus is an expected utility maximizer with constant absolute risk aversion
k > 0. Assume that there are two assets, one of which is a risky stock and the other is a
riskless bond. The bond has a current price normalized to 1 and will pay a riskless amount
(1 + r) at the end of the period. The stock has a current price of p and will pay a risky
amount Y ∼ N(m, s) at the end of the period. Primus’ current endowment is w. What is
Primus’ optimal portfolio?

Primus is interested in maximizing the expected value of his terminal wealth (at the
end of the period). Assuming that short sales are allowed and the market is frictionless,
he can invest in any portfolio of α stocks and β bonds such that αp + β = w. Therefore,
β = w − αp. Note that α and β are unrestricted in sign and may not add to 1.

The terminal value of such a portfolio is normally distributed with mean αm+β(1+r) =
αm+(w−αp)(1+r) and variance α2s2. Hence, the expected utility of Primus of a portfolio
with α stocks is

αm+ (w − αp)(1 + r)− 1

2
kα2s2.

Maximizing with respect to α, this yields Primus’ demand function for stock:

α(p, r;m, s2; k) =
m− p(1 + r)

ks2
. (5)

Note that the demand for the risky stock does not depend on the initial wealth w. Moreover,
the demand is separately monotone in each of its arguments; for instance, it is increasing
in the mean m and decreasing in the variance s2.

1.2 Rational expectations

1.2.1 Introduction

The main question addressed by rational expectations models is what happens when people
with different information decide to trade. How market prices are affected by traders’ infor-
mation affects how the traders can infer information from market prices. The fundamental
insight is that prices serve two purposes: they clear markets and they aggregate informa-
tion. This dual role can make the behavior of prices and markets much more complex than
assumed in simple models of asset behavior.

Let us begin with an example. Suppose that there are two agents in the market for q
widgets. Primus receives a binary signal about the true value of widgets: if the signal is
H igh, his demand for widgets is p = 5 − q; if the signal is Low, his demand is p = 3 − q.
We say that Primus is informed because his demand depends on which signal he receives.
Secunda receives no signal and offers an unconditional supply of widgets p = 1+q. Moreover,
assume that, if she could receive signals, Secunda would change her supply to p = 1 + 3q
with an H-signal and to p = 1 with an L-signal.

When Secunda is sufficiently naive, the following situation occurs. If Primus receives
an H-signal, the demand from the informed Primus equates the supply from an uninformed
Secunda at a price of pH = 3 (and q = 2 widgets are exchanged). If he receives an L-signal,
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his demand equates the supply from Secunda at a price of pL = 2 (and q = 1 widget is
exchanged). Different prices clear markets for different signals: p = 3 when the signal is H
and p = 2 when it is L.

This outcomes, however, presumes that Secunda does not understand that prices also
convey information. The market-clearing price is p = 3 if (and only if) the signal is H.
Thus, if Secunda sees that markets clear at a price of p = 3 she can infer that Primus has
received an H-signal and this suffices to let her change the supply function to p = 1+3q. But
in this case the market must clear at a price such that 5−q = 1+3q, that is p = 4. Similarly,
if the market-clearing price would be pL = 2, Secunda would understand that Primus got
an L-signal and her supply would switch to p = 1, making this the market-clearing price.

In other words, if Secunda passively lets the prices clear the market, the prices are
pH = 3 and pL = 2. If she exploits the information embedded in different prices, the prices
will be pH = 4 and pL = 1. The first case (pH = 3 and pL = 2) can be an equilibrium
only if we assume that Secunda is not sufficiently rational to understand that prices reveal
information, or to use the information which is revealed by prices. Market-clearing equilibria
with rational agents require that the information embedded in prices is fully exploited, and
this is what the notion of rational expectations equilibrium is about.

1.2.2 A simple financial market

We consider a two-asset one-period economy in which all random variables are independent
and normally distributed, with strictly positive standard deviations. The two available
assets are a risky stock and a riskless bond. The bond has a current price normalized to 1
and will pay a riskless amount (1+r) at the end of the period. The stock has a current price
of p and will pay a risky amount Y ∼ N(m, sy) at the end of the period. For convenience,
denote by τy = 1/s2

y the precision of Y .
There are n traders in the economy. They have identical cara preferences expressed by

the utility function (4), defined over terminal wealth, with k = 1. Each agent i has an initial
endowment wi of wealth and receives a signal Xi ∼ N(y, sx), with sx > 0. Agents’ signals
are independent and identically distributed. The overall supply of stock is exogenously fixed
to z ≥ 0. (The specific value of z does not matter: most people like to normalize it to 1,
but a few purists set it to 0 on the ground that the stock is created and exchanged among
the market participants.)

Suppose that agents are naive and do not consider the informational value of the price.
Based on the realization xi of his own signal, agent i’s demand for stock is

αi = mτy + xiτx − p(1 + r)(τy + τx). (6)

It can be shown that (6) follows from (5) using the fact that the agent maximizes expected
utility based on his posterior distribution.

The competitive equilibrium requires that the aggregate demand equates the aggregate
supply; that is,

∑
i ai = z, which gives the competitive equilibrium price

p =
mτy + x̄τx − (z/n)

(1 + r)(τy + τx)
, (7)
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where

x̄ =

∑
i xi
n

is the average of all the agents’ signals.
It is clear that (7) describes a 1-to-1 function between price and x̄. Hence, given a

price p, an agent can invert this function and learn the realization of the random variable
X̄. Since X̄ ∼ N(y, sy/

√
n), this can be viewed as a signal about Y that has a precision

higher than that of Xi. Hence, the competitive price aggregates the information singularly
received by each agent into a more powerful statistics.

Suppose now that an agent is not naive and recognizes that he can exploits the infor-
mation aggregated by the price. Then he would change his demand to take into account
the new information. Recall that the agent knows both his own signal Xi and (by inverting
the price) X̄. It can be shown that the distribution of Y conditional on X̄ and Xi is the
same as the distribution of Y conditional on X̄. Hence, the updated posterior for agent i
can be simply computed by assuming that the agent has a prior Y ∼ N(m, sy) and receives
a signal X̄ ∼ N(y, sy/

√
n). If we let τx̄ denote the precision of the signal X̄ and x̄ be the

realization of the “signal” X̄, the posterior distribution is

Y |X̄ = x̄ ∼ N

(
mτy + x̄τx̄
τy + τx̄

,
1

τy + τx̄

)
.

It follows that the demand of the agent would change to

αi = mτy + x̄τx̄ − p(1 + r)(τy + τx̄), (8)

which is different from the demand of the naive agent. This suggests that the competitive
equilibrium with naive agents may not be stable to the recognition that, besides clearing
the market, the price also aggregate information.

We are thus led to ask whether there exists an equilibrium when agents are not naive and
instead have rational expectations. In a rational expectations equilibrium, the agents fully
exploit the information revealed by the prices. It turns out that in our simple market the
rational expectations equilibrium can be found very simply. Consider an artificial economy
where every agent observes the same signal X̄ and solve for the competitive equilibrium
assuming naive agents. The demand of each agent is the same as in (8) and hence the
equilibrium price of this artificial economy is

p =
mτy + x̄τx̄ − (z/n)

(1 + r)(τy + τx̄)
.

Inverting this price function still reveals the realization x̄ of the signal X̄. However, since
now demands have been formed assuming knowledge of x̄, an agent with rational expecta-
tions will not change his demands and therefore the price will not be affected.

This rational expectations equilibrium, however, may not be stable for a different reason.
Note that agent i’s demand function in (8) does not directly depend on his own information,
but only on the statistics x̄ which is identical for all agents. Now, if an agent’s demand
does not directly depend on his own information, how can the price aggregate individual
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information? Furthermore, if individual information does not enter an agent’s demand,
this agent has no incentive to collect information: he can let the others “do the job” of
getting informed and then free-ride on them. But if all agents think this way or if there
is a positive cost to collect information, how would the price formation mechanism get to
aggregate information?

This problem arises (in part) because the rational expectations equilibrium just dis-
cussed reveals completely the information singularly received by each agents. We say that
the equilibrium is fully revealing. Because the price reveals everything, there remain no
incentives for an agent to collect information privately: everything he knows gets revealed
to everybody for free. However, if we look at a partially revealing equilibrium with rational
expectations, the price reveals only part of an agent’s private information and therefore can
still make it advantageous for him to search and collect private information (besides what
the price might reveal).

1.2.3 Rational expectations equilibrium with noise

We consider a two-asset one-period economy in which all random variables are independent
and normally distributed, with strictly positive standard deviations. The two available
assets are a risky stock and a riskless bond. The bond has a current price normalized to 1
and will pay a riskless amount (1+r) at the end of the period. The stock has a current price
of p and will pay a risky amount Y ∼ N(m, sy) at the end of the period. For convenience,
denote by τy = 1/s2

y the precision of Y .
There are two traders in the economy. (If you prefer, you can assume that there are

two classes of traders and that within each class traders are identical.) They have identical
cara preferences with k = 1 and arbitrary endowments of money. Primus is an informed
trader, while Secunda is uninformed. Primus receives a signal X ∼ N(y, sx) about the
value of the stock; denote by τx = 1/s2

x the precision of this signal. Secunda receives no
signal. Differently from the previous example, we now assume that there is an exogenous
and random supply of stock Z. For instance, this may come from “noise traders” who are
forced to buy or sell stock at any price for external reasons such as a sudden and unexpected
need for liquidity, or a bequest. For convenience, we assume that Primus and Secunda hold
no stock and that Z ∼ N(0, sz). Primus’ signal is assumed to be independent of Z and thus
neither trader receives information about Z.

By (3), Primus’ posterior distribution is

Y |x ∼ N
(
mτy + xτx
τy + τx

,
1

τy + τx

)
.

Therefore, by (5), Primus’ demand for the risky asset is

α1 =

mτy+xτx
τy+ τx

− p(1 + r)

1
τy+τx

= mτy + xτx − p(1 + r)(τy + τx).

Secunda, who is uninformed, receives no signal. However, she knows that trading from
the informed agent affects the price. If she knew how this trading affects the market-clearing
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prices, she could extract information about the informed trader’s signal from the market
price.

A rational expectations equilibrium postulates that there is a specific pricing rule P (·)
which links Primus’ information with the market price and let Secunda use this rule to
extract information. In equilibrium, the pricing rule must be correct; that is, Secunda must
extract information that is consistent with Primus’ signal.

Suppose that the pricing rule is linear (we will check this in a moment). That is, assume

p = am+ bx− cz (9)

for some appropriate coefficients a, b, c to be determined as part of the equilibrium. Given
this pricing rule, Secunda (who is the uninformed trader) can construct the observable
random variable

η :=
p− am

b
= X − c

b
Z.

Since Z ∼ N(0, sz), this implies that η is an unbiased estimate of the signal X actually
received by Primus. This estimate, however, is garbled by the additional zero-mean noise
associated with Z. Since η is an unbiased estimator for X and X is an unbiased estimator
for Y , η is also an unbiased estimator for Y . Indeed, as we see from the right-hand side,
η ∼ N(y, sx + (c/b)sz). Therefore, η is a signal that Secunda can use to obtain information
about Y .

Let τη be the precision associated with sη = sx + (c/b)sz; of course, τη < τx. By (3),
Secunda’s posterior distribution for Y is

Y |{P (·), p} ∼ N
(
mτy + ητη
τy + τη

,
1

τy + τη

)
.

Again by (5), Secunda’s demand for the risky asset is

α2 =

mτy+ητη
τy+τη

− p(1 + r)

1
τy+τη

= mτy + ητη − p(1 + r)(τy + τη).

The equilibrium price can be found by equating the aggregate demand α1 +α2 with the
aggregate supply Z. This yields (after substituting for η)

p =
2mτy + x(τx + τη)− Z[1 + (c/b)τη]

(1 + r)(2τy + τx + τη)
.

This expression can be rewritten as p = am+ bx− cZ by appropriately choosing a, b, c such
that

a =
2τy

(1 + r)(2τy + τx + τη)
,

b =
τx + τη

(1 + r)(2τy + τx + τη)
,

c =
1 + (c/b)τη

(1 + r)(2τy + τx + τη)
.
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This confirms that the pricing rule conjectured in (9) is linear and concludes the example.
If the aggregate supply Z were not noisy, Secunda could use η to infer exactly what is

the signal x received by Primus. We say that the rational expectations equilibrium is fully
revealing if prices can be used to infer exactly what are the signals. In this case, prices
are sufficient statistics for all the available information and the market is “efficient” in the
strong sense (even private information is embedded in prices).

The rational expectations equilibrium is partially revealing if only a partial inference is
possible, as in this example, where prices reflect both private information and exogenous
noise. Now, if p goes up, Secunda cannot tell whether the cause is more positive private
information (i.e., a higher signal for Primus) or smaller asset supply (i.e., a lower realization
of Z).

1.3 Computing a rational expectations equilibrium

Suppose that there are n traders and j assets. Each trader observes a signal Xi (i =
1, 2, . . . , n) about one or more assets. The construction of a rational expectations equilib-
rium (REE) can be outlined in five steps.

1. Specify each trader’s prior beliefs and propose a pricing rule (which for the moment is
only a conjecture) P c mapping the traders’ information to the prices of the assets. The
pricing rule P c(X1, X2, . . . , Xn, ε) may incorporate some noise ε. The traders takes
this mapping as given. The pricing rule must be determined in equilibrium; at this
stage, it is parameterized by undetermined coefficients because the true equilibrium
price is not known yet.

2. Derive each trader’s posterior beliefs, given the parameterized price conjectures and
the important assumption that all traders draw inferences from prices. The posterior
beliefs depend on the proposed pricing rule (e.g., from the undetermined coefficients).

3. Derive each trader’s optimal demand, based on his (parameterized) beliefs and his
preferences.

4. Impose the market clearing conditions for all markets and compute the endogenous
market clearing prices. Since individual demands depend on traders’ beliefs, so do
prices. This gives the actual pricing rule P a(X1, X2, . . . , Xn, ε) which provides the
actual relationship between traders’ signals and the prices.

5. Impose rational expectations; that is, make sure that the conjectured pricing rule
P c coincides with the actual pricing rule P a. This can be achieved by equating the
undetermined coefficients of P c with the actual P a.

1.4 An assessment of the rational expectations model

The REE provides a few key insights on which the following literature has built upon.

1. Prices play two roles: they clear markets and they convey information.
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2. In a fully-revealing equilibrium, individual asset demands depend only on price, not
on the trader’s private information.

3. Therefore, in a fully-revealing equilibrium there is no incentive to invest in costly
information: this incentive is restored in a partially-revealing equilibrium.

On the other sides, there are three important difficulties with the notion of a REE.
First, there is the issue of its existence. If the number of possible signals is finite, then
for a generic set of economies there exists a REE. This result, of course, does not apply
to signals drawn from a normal distribution. Similarly, for j the number of assets in the
economy, if the dimension S of the space of signals is lower than j − 1, then for a generic
set of economies there exists a REE. Intuitively, if there are more prices than signals, there
is sufficient flexibility to both clear markets and aggregate information. On the other hand,
if S = j − 1, there is an open set of economies for which no REE exists. For instance, in
a model with two assets (a risky stock and a riskless bond) and a one-dimensional signal,
the existence of a REE, while possible, is a fragile result. Finally, for S > j − 1, all weird
things can happen.

Second, there is the issue of how the pricing rule is discovered. In a REE, traders must
know the pricing rule that specifies the equilibrium prices. How such knowledge comes
about, however, is left unspecified. One possible explanation is that it is learned over time,
but learning to form rational expectations is not an easy task. During the learning process,
traders must act according to “wrong” conjectures; their behavior, then, is likely to upset
the emergence of the “correct” conjectures.

Third, there is the issue of price formation. In a REE, it is implicitly assumed that
prices are set by a Walrasian auctioneer which (magically) equates demand and supply.
This implicit auctioneer collects the “preliminary orders” and uses them to find the market-
clearing prices. This avoids the difficulty of actually specifying the actual trading mechanism
but hides the effect of the market microstructure on the process of price formation. In
the next lecture, we will see that the microstructure literature improves on the rational
expectations model by making explicit the process of price determination.

All in all, models based on rational expectations are difficult to construct and difficult to
interpret. The common approach circumvents these difficulties by using specific examples.
While this makes things tractable, the approach is special in the sense that even smaller
deviations from the assumptions in the example may change the equilibrium drastically, or
make it disappear.
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2. Market microstructure: Kyle’s model

2.1 Introduction

The models on market microstructure differ on the assumptions made on how the best
available price is set. In auction models (also known as “order-driven”), the best available
price is defined by the submitted orders. In dealer models (also known as “quote-driven”),
it is defined by dealer quotes.

The rational expectations model can be seen as an example of an (implicit) auction
model. Kyle’s (1985) model improves on this by making it explicit the process by which
prices are formed, while keeping the auction structure and the use of an expectations con-
sistent pricing rule. In particular, Kyle assume batch-clearing; that is, all orders are fulfilled
simultaneously at the same price.

The model assumes that there is a market-maker (named Secunda) who set prices and
thus acts as an auctioneer. Moreover, the market-maker can take trading positions and
has privileged access to information on the order flow. This changes the nature of the
pricing rule because the act of price setting is assigned to a player within the model. The
market-maker must set prices using only the information which is available to him, which
is determined by the trading protocol. This generates a relationship between the price and
the trading protocol.

Besides the market-maker, Kyle assumes that there is one informed agent (named
Primus) and a number of liquidity traders in the market. The market maker aggregates the
orders and clears all trades at a single price. The informed trader chooses those transactions
which maximize the value of his private information. This provides a relationship between
the price and the strategic use of information by the informed trader. Thus price reflects
both the trading protocol and the strategic behavior of the informed trader.

2.2 The model

We consider a one-asset one-period economy, with a zero riskless interest rate. There are
three types of agents: one informed trader (Primus), one uninformed market-maker (Se-
cunda), and many noise traders who trade only for liquidity or hedging reasons. Primus
and Secunda are risk-neutral expected utility maximizers. All random variables are in-
dependent and normally distributed, with strictly positive standard deviations. The only
available asset is a risky stock which will pay a risky amount Y ∼ N(m, sy) at the end of
the period.

Primus is the informed trader, who receives a perfectly precise signal about Y and
learns that Y = y. Secunda is the uninformed market-maker, who knows only the prior
distribution of Y . After Primus learns that Y = y, market orders from Primus and the
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noise traders are submitted to Secunda to be executed at a uniform market-clearing price
p. The noise traders submit a random demand Qu ∼ N(0, su); if this is negative, they are
on balance selling. Primus submits a demand Qi without observing the realization of Qu.
The market-maker receives an aggregate demand Q = Qi +Qu; she knows the sum but not
who demanded what.

The market-maker’s pricing rule mandates that she earns zero profits. This is consistent
with free entry of competing market-makers, which impairs any monopoly power of the
single market-maker. This implies that the market-maker sets prices such that p = E(Y |Q).

Primus places an order Qi which maximizes his profit E[(Y − p)Qi|Y = y] = (y− p)Qi.
Primus’ order is influenced by the price quoted by the market maker. At the same time, his
demand Qi affects the price quoted. This strategic interaction between the market-maker
and the informed trader is what makes the model tick: Secunda’s choice of p depends on
Qi and Primus’ choice of Qi depend on p.

Kyle proves that there exists a linear equilibrium for this model such that the market-
maker pricing rule is

P (Q) = m+ αQ (10)

and Primus’ trading rule is
Qi = β(y −m), (11)

where

α =
1

2

sy
su

and β =
su
sy
. (12)

We will show momentarily a piece of the argument which establishes this result. Before
that, a quick commentary may be useful.

Note that both the pricing and the trading rule depend on the same parameters (al-
though their ratio is inverted). When α is high and orders have a significant price impact,
then β is low because Primus trades less aggressively (to avoid the impact of his own
trades). When sy is high, Primus’ information is more likely to be substantial and therefore
Secunda adjusts price more aggressively. When su is high, Primus’ order is less likely to be
a conspicuous component of the total order flow, and therefore he can afford to trade more
aggressively.

To show that (10) and (11) constitute an equilibrium, we need to prove two facts. First,
that the best reply of Secunda to an insider using the trading rule (11) is precisely (10).
Second, that the best reply of Primus to a market-maker using the pricing rule (10) is
precisely (11). We prove only the first fact, and leave the second as an exercise.

Thus, assume (11). Secunda’s prior for Y is that Y ∼ N(m, sy). Since she observes
the aggregate demand Q = Qi + Qu, she can use this information to update her prior. As
Qi = β(y−m), the total order flow can be written Q = β(y−m)+Qu, with Qu ∼ N(0, su).
Dividing Q by β (which is known in equilibrium) and adding m (which is known), Secunda
can construct the observable random variable

η := m+
Qi +Qu

β
= y +

Qu

β
,
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which is normally distributed with mean y and standard deviation sη = su/β = sy. This
can be used to make inferences about Y . Exploiting known results from Lecture 7 (with
precisions instead of variances), we know that

Y |η ∼ N
(
mτy + ητη
τy + τη

,
1

τy + τη

)
.

Since τη = τy, we obtain

E (Y | η ) =
mτy + ητη
τy + τη

=
m+ η

2
.

Secunda sets her price equal to her best estimate of Y ; that is, P = E(Y |η). By definition,
η = m+ (Q/β). Hence, the price set by Secunda is:

P = E (Y | η ) =
1

2

(
m+

Q

β
+m

)
= m+

1

2β
Q.

Using again the value of β from (12), it is easy to check that this pricing rule indeed matches
(10), as it was to be shown.

2.3 Lessons learned

There are a few major insights to be gained from Kyle’s model.

1. When setting the price, the market-maker explicitly updates the analysis of fundamen-
tals (corresponding to her prior) with the information embedded in the order flow. She
uses information gathered by the traders as transmitted by their demands. Order flow
communicates information about fundamentals because it contains the trade of those who
analyze/observe fundamentals.

We can actually measure how much of the trader’s information is revealed in Kyle’s
model by looking at the variance of Secunda’s posterior distribution for Y . Before she
observes the order flow, this variance is sy. After she observes Q and updates her prior, the
variance becomes

V (Y |η) =
1

τy + τη
=
s2
y

2
.

This is exactly half of the prior variance s2
y. Regardless of the exact value, the important

message is that the updated variance is somewhere in between the prior variance and a
zero variance. If the updated variance were to remain s2

y, Secunda would learn nothing and
Primus could make infinite profits. If it were to drop to zero, Primus would make no profit
because all his trades would clear at the perfectly revealing price Y .

2. Since the market-maker cannot separate informative from uninformative trade, the
transmission of information is noisy and the informed trader can use this to his advantage.
Primus can partially hide his trade from the market-maker in the order flow from the noise
traders, reducing the amount by which price moves against him.
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3. Liquidity and market efficiency are deeply related. Efficient markets tend to gravitate
towards constant liquidity, defined as the price impact of orders. To see why, suppose that
liquidity is not constant: for example, suppose it is known that the market will be fairly
illiquid in the next month and then will revert to standard liquidity. Then if Primus buys
10’s worth of stock each day in the next month, each purchase will push the price of the
stock progressively upward. This is because, if Primus’ trades communicate information
about fundamentals, these price increases induced by the order flow should persist. Then,
when at the end of next month liquidity has returned to normality, Primus could suddenly
sell the 300’s worth of stock purchased during the month with almost no price impact and
make a riskless excessive profit similar to an arbitrage opportunity. An efficient market
should prevent making excessive profits.

Kyle (1985) considers a multiple-period extension of his model which generates constant
liquidity in equilibrium. Intuitively, this follows because the informed trader must balance
the effects of his current trades on his future trading opportunities: if he trades too much
too soon, the price will adjust rapidly and his profits will be smaller.
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3. Market microstructure: Glosten and Milgrom’s model

3.1 Introduction

The market in Kyle’s model is “order-driven”: the market-maker sees the order flow and
sets a price which clears the market in a single batch. Demand and supply meet at a single
price and simultaneously. This lecture considers a different trading protocol, possibly closer
to reality, which is “quote-driven” and involves sequential trades. Unlike Kyle’s auction,
this sequential-trade model describes a dealership market.

All trades involve a dealer, who posts bid and ask prices. Traders arrive sequentially and
can trade at the current bid-ask prices. Thus orders are fulfilled sequentially at (possibly)
different prices. After each trade, the dealer updates his bid and ask prices to reflect the
information he has learned from his privileged position. At each trade, the current trader
may be informed or uninformed so the model can accomodate more than one informed
trader.

This trading protocol implies some important differences from Kyle’s model. First,
there is an explicit bid-ask spread, as opposed to the single market-clearing price of Kyle’s
model. Second, the spread occurs even if the dealer is risk-neutral and behaves optimally
incorporating in the price all the information he can extract from the order flow. Third, since
trades occur sequentially, it is possible to analyze explicitly how the information content of
each trade affects the bid-ask spread.

3.2 The model

We consider a one-asset one-period economy, with a zero riskless interest rate. There
are three types of agents: a single dealer (Primus), several informed traders and many
uninformed traders. Both the dealer and the informed traders are risk-neutral expected
utility maximizers, while the uninformed traders trade only for liquidity or hedging reasons.

The only available asset is a risky stock which will pay a risky amount Y at the end
of the period. For simplicity, we assume that it can take only the high value Y = 1 or
the low value Y = 0. The prior distribution is P (Y = 1) = p and P (Y = 0) = 1 − p.
All the informed traders know the realization of Y (because they have received a perfectly
informative signal about it), while Primus does not.

Trading is organized as a sequence of bilateral trading opportunies, taking places one
after the other but always within the end of the period. The pool of potential traders is
given and the dealer knows that q of it are informed traders and (1 − q) are uninformed
traders. At each trading opportunity, one trader is randomly chosen from this pool (with
replacement) and is offered the chance to buy or sell one unit of the stock at the current
bid or ask price. The informed trader can buy, sell, or pass at her discretion. As for the
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uninformed traders, we assume for simplicity that they buy with probability r or sell with
probability 1 − r. The figure gives a pictorial representation of the process (under the
assumption that an informed trader buys when he knows that Y = 1 and sells otherwise).

1− rr1− rr

informed

sell sellbuy

uninformed

Y = 0

1− qq

informed

buy sellbuy

uninformed

Y = 1

1− qq

p 1− p
t

As in Kyle’s model, the dealer sets prices such that the expected profit on any trade is
zero. (This can be justified by assuming a competitive dealers’ market.) This implies that
Primus must set prices equal to his conditional expectation of the asset’s value given the
type of transaction taking place.

More specifically, before trading opportunity t occurs, Primus must offer a bid price bt
and an ask price at such that

bt = E(Y | next trader sells) and at = E(Y |next trader buys). (13)

This rule takes explicitly into account the effect that the sale/purchase of one unit would
have on Primus’ expectations. This makes sure that his prices are “regret-free”, in the sense
that — given the trade that actually occurs — the dealer believes that the price is fair.

Such “regret-free” price-setting behavior makes sure that prices incorporate the infor-
mation revealed by a trade. Due to the signal value of each trade, as trading goes on, the
dealer keeps revising his beliefs and sets new trading prices. This generates a sequence of
bid-ask prices {bt, at} that change over time, paralleling the evolution of Primus’ beliefs.
Let us work out an example and see what happens.

3.3 An example

Suppose p = q = r = 1/2. Denote by Bt and St respectively the event that at the trading
opportunity t there is a buy or a sale. By (13), the ask price at the first trading opportunity
should be

a1 = E(Y |B1) = 1 · P (Y = 1 |B1) + 0 · P (Y = 0 |B1), (14)

while the bid price should be

b1 = E(Y |S1) = 1 · P (Y = 1 |S1) + 0 · P (Y = 0 |S1). (15)
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In order to find what a1 should be, we need to compute P (Y = 1 |B1). By Bayes’ rule,

P (Y = 1 |B1) =
P (Y = 1) · P (B1 |Y = 1)

P (Y = 1) · P (B1 |Y = 1) + P (Y = 0) · P (B1 |Y = 0)
. (16)

Since we know by assumption that P (Y = 1) = P (Y = 0) = 1/2, it suffices to determine
P (B1 |Y = 1) and P (B1 |Y = 0). We know that the uninformed traders buy always with
probability 1/2. On the other hand, the informed traders know Y and therefore buy only
if Y is high and sell only if Y is low. That is, they buy with probability 1 if Y = 1 and sell
with probability 1 if Y = 0.

Therefore, conditional on Y = 1, the probability of a buy is 1/2 if it comes from an
uninformed trader and 1 if it comes from an informed trader. Since uninformed and informed
traders are equally likely to come up for trade, the overall probability is P (B1 |Y = 1) =
(1/2)·(1/2)+(1/2)·1 = 3/4. By a similar reasoning, P (B1 |Y = 0) = (1/2)·(1/2)+(1/2)·0 =
1/4. Substituting in (16), we find

P (Y = 1 |B1) =
(1/2) · (3/4)

(1/2) · (3/4) + (1/2) · (1/4)
=

3

4
.

By a similar reasoning, one can deduce that P (Y = 1 |S1) = 1/4.
By (14) and (15), we obtain that the dealers sets ask and bid prices respectively equal

to

a1 =
3

4
and b1 =

1

4
.

Suppose that there actually occurs a buy at a price of 3/4. What will be the new bid
and ask prices? The probability distribution for Y after a buy is P (Y = 1 |B1) = 3/4 and
P (Y = 0 |B1) = 1/4. This acts as a new prior for the next trading opportunity. Then

a2 = E(Y |B1, B2) = 1 · P (Y = 1 |B1, B2) + 0 · P (Y = 0 |B1, B2)

and
b2 = E(Y |B1, S2) = 1 · P (Y = 1 |B1, S2) + 0 · P (Y = 0 |B1, S2).

We need to compute P (Y = 1 |B1, B2) and P (Y = 1 |B1, S2). By Bayes’ rule,

P (Y = 1 |B1, B2) =
(3/4) · (3/4)

(3/4) · (3/4) + (1/4) · (1/4)
=

9

10
,

which in turn implies a2 = 9/10.
Note that, if a sale had occurred instead of a buy, the price would have been set to

a2 = 1/2 and b2 = 1/10. Therefore, the fact that the first transaction is a buy or a sale
reveals information. On the other hand, since (at − 1)(bt − 0) 6= 0 for all t, information is
never fully revealed.

The exercise can be repeated. The exact sequence of bid-ask prices will depend on
the actual trading events. For instance, if the first four events are B1, S2, B3, and B4, the
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sequence will be
t bt at trade

1 1/4 3/4 B1

2 1/2 9/10 S2

3 1/4 3/4 B3

4 1/2 9/10 B4

5 3/4 27/28 etc.

A sufficient statistics for the current bid and ask prices is the difference between the number
βt of buys occurred before t and the number σt of sales occurred before t. For instance, if
βt − σt = 0, then bt = 1/4 and at = 3/4.

3.4 Comments on the model

The assumptions about the trading protocol are crucial. Informed traders profit from
trading if prices do not yet reflect all the available information. An informed trader prefers
to trade as much (and as often) as possibile. By so doing, informed traders quickly reveal
information which is immediately incorporated in prices.

This cannot occur in the model because the only trader who is allowed to trade is chosen
randomly and she can only buy or sell one unit of stock. Thus, if an informed trader desires
to trade further, she must return to the pool of traders and wait to be selected again.

The probabilistic selection process dictates that the population of traders facing the
dealer is always the same as the population of potential traders. This makes it possible for
the dealer to know the probability that he is trading with an informed trader. Moreover, it
implies that plausible trading scenarios are ruled out. For instance, whenever information is
likely to become more dispersed over time, the fraction of informed traders should increase
with time (and the dealer would need to learn another parameter yet). This cannot occur
here.

An important result of the model is that transaction prices form a martingale. That is,
the best predictor for the transaction price in t+ 1 (given the information It available after
trade t) is the transaction price in t: E(pt+1|It) = pt.

For instance, in the example above, consider the situation after having observed the
first buy. The current price is pt = at = 3/4. The next transaction may come from
an uninformed trader with probability 1/2 or from an informed trader with probability
1/2. The probability that it will be a buy is 1/2 if the next trader is uninformed and 3/4
if he is informed. Therefore, the probability that the next transaction will be a buy is
(1/2) · (1/2) + (1/2)(3/4) = 5/8. Hence, the next price will be 9/10 with probability 5/8
and 1/2 with probability 3/8. Then E(pt+1|It) = (9/10) · (5/8) + (1/2) · (3/8) = 3/4 = pt.

The martingale property dictates that prices respect semi-strong efficiency, in the sense
that they reflect all the information available to the dealer. It can be shown that, in the
limit, all information is revealed and at − bt → 0 with both at and bt converging to 0 or 1
depending on whether, respectively, Y = 0 or Y = 1.
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3.5 Lessons learned

There are a few major insights to be gained from Glosten and Milgrom’s model.

1. Information alone is sufficient to induce spreads, independently of the risk attitude of
the dealer or of his inventory costs. The equilibrium spread in this model is such that when
the dealer trades with an informed trader he loses money (as in Kyle’s model, the informed
trader knows exactly the value of the asset). To prevent overall losses, the dealer must offset
them with gains from trading with uninformed traders. The equilibrium spread balances
these losses and gains exactly so that expected profits are zero.

2. Learning takes place over time, as it involves the sequential arrival of distinct orders.
The dealer does not know whether behind a single trade there is an informed trader who
knows something that the dealer does not, or an uninformed trader who must trade for
reasons unrelated to fundamentals. However, if a preponderance of sales takes place over
time, the dealer adjusts her beliefs and prices downward. The private information gradually
finds its way in the dealer’s prices.

3. There is a process of price discovery behind the (dynamic) adjustment to market ef-
ficiency. The dealer must uncover the private information hidden behind trades before
market prices can be efficient.
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