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Overview



Black Holes:

Can we understand the quantum states of a black hole?

String theory provides a precise accounting of the microstates of
certain extremal black holes. They have zero temperature and
differ qualitatively from astrophysical black holes.

Can we use stringy techniques to study non-extremal black holes?

Today I will focus on Kerr black holes with mass M and angular
momentum J. These black holes have finite Hawking temperature
and have been (indirectly) observed.

These are the most interesting black holes, but in a sense I will
have the least to say.

For less interesting black holes the constructions are much more
explicit so one can make more detailed statements.



Plan for Today:

• Black Holes and Conformal Symmetry

• Conformal Structure of Kerr

• Counting States



Extremal Black Holes (A Caricature)
For an extremally charged (M = Q) or rotating (M = J2) black
hole we define the near horizon region by

r − rhor << M

The geometry of the near horizon region includes an AdS factor.

For example, the near horizon limit of the D1-D5 system includes
an AdS3 factor

The isometry group of AdS is the same as the conformal group in
one less dimension; this symmetry group acts as conformal
transformations on the asymptotic boundary of the near horizon
geometry.

So the Hilbert space of states is that of a conformal theory. This
allows us to understand black hole entropy.

Brown & Henneaux, Maldacena, Strominger, . . .



The Idea:

The near-horizon region of a realistic astrophysical black hole is
Rindler space, not AdS.

Nevertheless, the states of quantum gravity still organize
themselves into representations of the conformal group. The
difference is that the conformal symmetry is not geometrically
realized.

Aside from this, the computation proceeds in the exact same way
as for extremal black holes.

But many features of this CFT remain mysterious.



Non-Extremal Black Holes

A non-extremal black hole is unstable, but this does not preclude a
CFT description. It just means that the CFT must be coupled to
external degrees of freedom.

What is the analog of the “near-horizon” region?

For an extremal black hole the near-horizon region

r − rhor << M

is the part of the geometry probed by low energy modes

ω << M−1

For non-extremal black holes these two definitions do not coincide.
The first definition gives Rindler space.

What about the second?



The Near Region

Probe a non-extremal black hole by low energy modes

ω << M−1

These modes do not live near the horizon. But we can define the
“near” region by

r << ω−1

This definition is probe-dependent, so is not a limit of the
geometry.

When ω is small it includes

� The inner and outer horizons at r = r±
� The ergosphere

� Regions outside the black hole



Matching Surface

Consider a field in a Kerr background. Since ω << M−1 the two
regions

� Near: r << ω−1

� Far: r >> M

overlap. So we can study physics in the near and far regions and
match together along a matching surface at

M << rmatch << ω−1

This surface plays the same role as the boundary of AdS (or
NHEK) in the extremal case.

Claim: Near region physics has a conformal symmetry, realized as
conformal transformations of the matching surface.



Conformal Symmetry of Kerr



Kerr Metric

A Kerr black hole with mass M and angular momentum J has
inner and outer horizons at r = r± given by

M =
r+ + r−

2
,

J

M
=
√

r+r− ≡ a

In Boyer-Lindquist coordinates the metric is

ds2 =
ρ2

Δ
dr2−Δ

ρ2

(
dt − a sin2 θdφ

)2
+ρ2dθ2+

sin2 θ

ρ2

(
(r2 + a2)dφ− adt

)2

Δ = (r − r+)(r − r−), ρ =
√

r2 + a2 cos2 θ

The Ergosphere is at ρ = 0.



The Wave Equation

Consider a field Φ in the Kerr background.

Φ = e iωt f (r , θ, φ)

For r << ω−1 the Kerr Laplacian is

∇2 = H2 + L(L + 1) = H̄2 + L(L + 1)

where
H2 = −H2

0 + {H1, H−1}
is the Casimir of SL(2, R) and L(L + 1) is an eigenvalue of the S2

Laplacian.

Thus states organize into representations of SL(2, R)L× SL(2, R)R ,
the rigid conformal group in 1 + 1 dimensions.

This is true for any free field, including spin 2.



Conformal Action

The generators act as conformal transformations on the matching
surface. If we let

w+ =

√
r − r+
r − r−

e2πTRφ, w− =

√
r − r+
r − r−

e2πTLφ−t/2M

then the SL(2, R) generators are

H1 = i∂+

H0 = i(w+∂+ +
1

2
y∂y )

H−1 = i(w+2∂+ + w+y∂y − y2∂−)

where y is a “radial” coordinate

y =

√
r+ − r−
r − r−

eπ(TL+TR)φ− t
4M



Black Hole States

This extends to local conformal symmetries VirL × VirR .

Thus states of low energy probes of the near region organize into
representations of the local conformal group, realized as conformal
transformations of the matching surface.

This is just like in normal AdS/CFT, except that now conformal
transformations act on the phase space of the theory rather than
on the geometry itself.

In AdS/CFT this is a signature of the conformal invariance of the
quantum gravity in asymptotically AdS space.

We conjecture that the same is true here.



The Kerr Entropy



The CFT dual to Kerr

The quantum states of Kerr organize into representations of the
conformal group.

They are states in a CFT.

To describe the black hole microstates we need to know

� which states describe black holes

� the central charge of the CFT

We will also assume that the CFT satisfies a few reasonable
properties.



Finite Temperature

To find the state, note that because

φ ∼ φ + 2π

the conformal generators are not globally defined. We must
identify

w+ ∼ e4π2TR w+, w− ∼ e4π2TLw−

The w± coordinates are accelerating (Rindler) coordinates.

So we have a state a finite temperature

TR =
r+ − r−

4π
√

r+r−
, TL =

r+ + r−
4π
√

r+r−

The state breaks SL(2, R)× SL(2, R) down to U(1)× U(1).

The theory is conformally invariant but the state is not.



Decoupling the Far Region

The TL,R temperatures are conjugate to ∂
∂w± , not ∂

∂t and ∂
∂φ . So

they differ from the usual Hawking temperatures.

With respect to these generators, the Kerr black hole has positive
specific heat and can be put in thermal equilibrium. It makes sense
to talk about a microstate.

This is related to the fact that we decoupled the black hole from
the far region.

To describe the decay of Kerr we would need to couple this CFT
to additional degrees of freedom.



Central Charge

We need to find a vacuum state invariant under the symmetries.

If we set TR = 0 the black hole is extremally rotating M = J2.
Then

� The “near” region is the “near-horizon extremal Kerr”
geometry of Bardeen & Horowitz

� the SL(2, R)R is unbroken and geometrically realized.

We compute the central charge by studying the diffeomorphisms
which generate the asymptotic symmetry group, a la Brown &
Henneaux:

cR = 12J

This is the “Kerr/CFT” used to describe extremal black holes of
Guica, Hartman, Song & Strominger.



Density of States

Assume that the CFT

� is parity invariant so cL = cR

� is modular invariant

� possesses a ground state with a gap.

Then we can compute the density of states using Cardy’s formula

N ∼ exp

{
π2

3
(cLTL + cRTR)

}

This is a good approximation when TL and TR are large, which
happens when the mass M is large.



Entropy

This reproduces the Bekenstein-Hawking entropy

S =
π2

3
(cLTL + cRTR) =

Area
4

including the numerical coefficient!

We have reproduced the entropy of a realistic black hole – not just
an extremal one – using a dual CFT.

Moreover,

� Scattering amplitudes reproduce CFT correlation functions.

� This works for a variety of other non-extremal black holes.



Conclusions

We are closing in on a microscopic description of realistic,
astrophysical black holes.

Using holographic techniques,

� States live in a dual CFT; conformal symmetries act on the
phase space but not on the geometry.

� This reproduces the Bekenstein-Hawking entropy, including
the numerical coefficient.

But several puzzles remain:

� We don’t know much about the dual CFT.

� We don’t even know its vacuum state!

� How can we understand black hole microstates geometrically?


