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Overview



The Problem:

Gravity is notoriously difficult to study as a quantum theory...

Classical general relativity doesn’t answer many physical questions:

� What happens inside a black hole?

� How can we think about the big bang singularity?

Basic conceptual questions:

� What are the degrees of freedom?

� What is the Hilbert space H?

� What is the Hamiltonian H?

� Are these notions even applicable to gravity?

� Can a Unitary theory describe singularities, inflation, . . . ?



Quantum Gravity

Many of these questions can be addressed, at least in principle, in
string theory.

Black Holes:

� Counting of black hole microstates by Strominger & Vafa, . . .

� Exact counting only for extremal black holes

� No “geometric” understanding of microstates

Cosmology:

� Construction of inflating vacua by KKLT,. . .

� Baroque constructions (non-perturbative effects)

� Rococo dynamics (instabilities)



Goal:

To describe recent progress on holographic approaches to black
hole entropy.

Lecture I: Core idea of microstate counting: AdS3/CFT2

Lecture II: Realistic (non-extremal) black holes: Kerr/CFT

Lecture III: Geometric interpretation of Microstates



Overview’



Black Holes and AdS/CFT

For an extremally charged (Q = M) or rotating (J2 = M) black
hole we define the near horizon region by

r − rhor << M

The geometry of the near horizon region always includes an AdS
factor. For many black holes we study in string theory the factor is
AdS3.

So we can understand the dynamics of the black hole by
understanding AdS3.

In fact, much of the important physics can be understand only by
thinking about Einstein gravity in AdS3

S(g) =

∫
M

√−g

(
1

G
R + Λ + . . .

)



The Plan for Today:

• The Classical Spectrum of AdS3 Gravity

• Modular Invariance and the Sum over Geometries

• The Quantum Spectrum of AdS3 gravity



AdS3 Gravity



Classical Theory:
The prototypical negative curvature metric is AdS3

ds2 = dr2 − cosh2 r dt2 + sinh2 r dφ2

X
T

The boundary cylinder R
1 × S1 lies at infinite distance. We

consider only metrics that look like AdS3 at infinity.



Spectrum

The two killing vectors

� H = ∂t generates time translations

� J = ∂φ generates rotations

States are labelled by an energy H and angular momentum J. It is
convenient to use the CFT language:

L0 = H + J, L̄0 = H − J

The theory has two types of states:

� Boundary Gravitons

� Black Holes



Boundary Gravitons

Even though there are no local gravitons, there are metric
perturbations associated with the boundary.

Naively, two metrics describe the same state if they are related by
a diffeomorphism. But with AdS boundary conditions, two metrics
describe the same state only if they are related by diffeomorphism
which vanishes at infinity

� Diffeo’s which act on the boundary give new ”boundary
graviton” states

These infinitesimal diffeomorphisms generate two copies of the
Witt algebra

[Lm, Ln] = (m − n)Lm+n

This is reminiscent of the Virasoro algebra in a CFT.



AdS/CFT Correspondence

The isometry group of AdS3 is SO(2, 2). This is the same as the
group of rigid conformal transformations in two dimensions.
Indeed, these isometries of AdS3 act as rigid conformal
transformations on the boundary cylinder.

The group of ”asymptotic symmetries” is generated by the
Virasoro algebra. These asymptotic symmetries act as local
conformal transformations on the boundary.

The algebra of charges has a central extension

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm+n

with c = 3�
2G . So we expect AdS3 gravity to be dual to a CFT!

Brown & Henneaux, Maldacena, . . .



BTZ Black Holes
There are also black holes, which are locally AdS3 but differ by
global identifications.

ds2 = dr2 − sinh2 r dt2 + cosh2 r dφ2

This is a quotient AdS3/Z.

The area L of the black hole horizon is the size of the φ circle



The Classical Spectrum

In terms of the L0 eigenvalue Δ = H + J, the spectrum includes

� A ground state with Δ = −c/24 (this is a choice of
normalization)

� A tower of discrete boundary graviton states at integer
Δ > −c/24

� A continuum of black holes with Δ > 0

We want to compute the exact quantum spectrum...



Partition Function



Partition Function

We want to compute the number of states N(E , J) of given energy
E and angular momentum J.

To do this, we will compute the partition function at finite
temperature β−1 and angular potential iθ:

Z (β, θ) = TrH
(
e−βH+iθJ

)
=

∑
E ,J

N(E , J) e−βE+iθJ

Write this in CFT language by letting τ = θ + iβ

Z (τ) = TrH qL0 q̄L̄0 , q = e2πiτ

How can we compute this exactly?



Euclidean Path Integral
To compute a thermal partition function we take

t → itE

The boundary goes from R
1 × S1 to T 2.

The partition function is computed by a Euclidean path integral

Z (τ) =

∫
Dg e−S(g)

over 3-manifolds which are a torus at infinity.

The geometry of the boundary T 2 depends on τ = θ + iβ. The
two directions of the torus (tE , φ) are identified

z ∼ z + 1 ∼ z + τ

where z = φ + itE . The parameter τ determines the conformal
structure of the boundaryT 2.



Saddle Points

In the saddle point approximation

Z (τ) =

∫
Dg e−S(g) ∼

∑
M3

e−S(M3)+...

where M3 is a constant curvature 3-manifold with T 2 boundary.

M3 is a solid torus which “fills in” the boundary T 2:

T

X



Saddle Points II

There are many such M3 = Mc,d . One for each choice of cycle
cT + dX which is contractible in the interior:

T

X

� When X is contractible, the M0,1 is thermal AdS.

� When T is contractible, the M1,0 is the Euclidean black hole.



Sum over Geometries

The path integral over Euclidean geometries with boundary T 2

Z (τ) =

∫
∂M=T 2

Dg e−S(g) =
∑
c,d

e−S(Mc,d )+...

is invariant under modular transformations

τ → γτ =
aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ SL(2, Z)

The geometry Mc,d is related to M0,1 by the modular
transformation γ.

This is the “black hole Farey Tail” of Dijkgraaf, Maldacena, Moore
& Verlinde, . . .



Counting Black Holes



Modular Invariance
We have given a gravity argument for the statement that

Z (τ) = Z (γτ)

for any modular transformation γ ∈ SL(2, Z).

This property is obeyed by any CFT partition function, provided
the theory is invariant under large Euclidean conformal
transformations.

If we assume that the CFT has a normalizable ground state then
this completely fixes the high energy spectrum of the theory.

N(Δ, Δ̄) ∼ exp

{
2π

√
c

6
Δ + 2π

√
c

6
Δ̄

}

This is precisely the Bekenstein-Hawking entropy of the black hole.

Strominger



Conclusions

A generic “extremal” black hole has a near horizon region with an
AdS factor. Microstates can be understood using AdS/CFT.

For AdS3 near horizons the partition function is computed as a
sum over geometries.

The result is modular invariant, and with only modest assumptions
gives the black hole entropy via Cardy’s formula.

Extensions:

� Perturbative corrections =⇒ subleading corrections.

� All order perturbative corrections =⇒ exact entropy

� Realistic black holes?

� Physical understanding of black hole microstates?


