

2234-1

Meeting of Modern Science and School Physics: College for School Teachers of Physics in ICTP

27 April - 3 May, 2011

Materials engineered by layer-by-layer deposition

Giuseppe Balestrino CNR SPIN & University of Rome "Tor Vergata" Rome ITALY Materials engineering by layer-by-layer deposition

Thin oxide films with novel or enhanced physical properties obtained by design

G. Balestrino CNR SPIN & University of Roma "Tor Vergata"

Choosing the right bricks

Chemical compatibilityStructural compatibility

Oxide structures may be quite complex

Functional properties of perovskites

HTS layered superconductors

A large variety of commercial substrates available with the perovskite structure

SrTiO₃ cubic a=3.905 Å

LaAlO₃ cubic a=3.76 Å

NdGaO₃ pseudocubic a=3.86 Å

Sm_{0.2}Ce_{0.8}O₂ (SDC) on STO

$$d_{110}^{SDC} = 5.44 \text{\AA} / \sqrt{2} = 3.85 \text{\AA} \implies \frac{d_{100}^{STO} - d_{110}^{SDC}}{d_{100}^{STO}} \approx 1.3\%$$

Schematic sketch of the correlation between the cubic cells of SDC, STO, and MgO.

Deposition techniques: MBE

Pulsed Laser Deposition (PLD)

Growth mechanisms

- (a) Frank-Van der Merwe or layer-by-layer growth,
- (b) step-flow growth,
- (c) Stranski-Krastanov growth,
- (d) Volmer-Weber growth.

RHEED geometry

RHEED intensity oscillations

RHEED vs. surface morphology

Multitarget Pulsed Laser Deposition

Synchotron characterization

Characteristics of synchrotron radiation

- □ High brilliance, exceeding other natural and artificial light sources by many orders of magnitude: 3rd generation sources typically have a brilliance larger than 10¹⁸ photons/s/mm²/mrad²/0.1%BW, where 0.1%BW denotes a bandwidth 10⁻³ v centered around the frequency v.
- □ High collimation, i.e. small angular divergence of the beam
- Widely tunable in energy/wavelength by monochromatization (sub eV up to <u>the MeV range</u>)
- □ High level of polarization (linear or elliptical)
- Pulsed <u>light emission</u> (pulse durations at or below one <u>nanosecond</u>),

An ideal tool for ultrathin layers (few u.c.) and interfaces

Epitaxial strain as a consequence of lattice misfit

- Non equilibrium distribution of ions and vacancies (space charge region)
- Polarity discontinuity
- Electrical charge transfer

2D electron gas in oxide heterostructures

- Induced superconductivity in oxide heterostructures
- Enhanced ionic conductivity in oxide heterostructures

Engineering complex oxide heterostructures

Tunable Quasi–Two-Dimensional Electron Gases in Oxide Heterostructures

Science 313, 1942 (2006)

S. Thiel,¹ G. Hammerl,¹ A. Schmehl,² C. W. Schneider,¹ J. Mannhart^{1*}

Superconductivity at the interface LAO/STO

Superconducting Interfaces Between Insulating Oxides

N. Reyren et al., Science 31 August 2007: Vol. 317. no. 5842, pp. 1196 - 1199

Induced superconductivity in oxide based heterostructures

Nobel Lecture, December 8, 2003

by Vitaly L. Ginzburg

From the Nobel Lecture (citing his book)

"On the basis of general theoretical considerations, I believe at present that the most reasonable estimate is *T*c 300 K. ...omissis... In this scheme, the most promising materials – from the point of view of the possibility of raising *T*c – are, apparently, layered compounds and dielectric–metal–dielectric sandwiches...

High-Temperature Superconductivity (Moscow: Nauka, <u>1977</u>)

And now oxide heterostructures come!

Ginzburg V L Phys. Lett. 13 101 (1964)

Further evidence

nature

Vol 455|9 October 2008|doi:10.1038/nature07293

LETTERS

High-temperature interface superconductivity between metallic and insulating copper oxides

A. Gozar¹, G. Logvenov¹, L. Fitting Kourkoutis², A. T. Bollinger¹, L. A. Giannuzzi³, D. A. Muller² & I. Bozovic¹

Engineering superconducting superlattices

Superconducting superlattices on atomic dimensions

Epitaxial relationship among the different constituent blocks of the (YSZ/SDC)_N/STO/MgO heterostructure.

XRD θ -2 θ patterns of several (YSZ/SDC)_N/STO/MgO heterostructures with approximately the same overall thickness but N ranging from 1 to 20 (fig.a. to fig.e.). A sketch of the heterostructure is shown at the top.

Electrochemical characterization of

Recent developments in thin film growth techniques have opened new perspective for the deposition of heterostructures based on complex oxides.

This has made possible to engineer oxide heterostructures with novel and interesting physical properties.

Few examples were given

Chances are good that the field of "oxide electronics", boosted by the large variety of oxide functional properties, will experience a fast development in the near future.