

2234-8

Meeting of Modern Science and School Physics: College for School Teachers of Physics in ICTP

27 April - 3 May, 2011

Excitons: artificial hydrogen atoms in crystals

Alexey Kavokin University of Southampton UK

Excitons: artificial hydrogen atoms in crystals

Alexey Kavokin,

University of Southampton

All modern electronics is based on semiconductors...

« Horisontal » and « Vertical » lasers

High power lasers and low power lasers

Single photon sources, quantum cryptography, quantum computing...

Each laser has a threshold...

Threshold comes from the population inversion...

How to make it lower ???

...reducing the density of electronic states !

Electron density of states

EXCITON: an artificial ATOM !

Exciton-polaritons: quantum and classical pictures

LIGHT-MATTER COUPLING IN SOLIDS

Maxwell equations

$$\begin{split} \boldsymbol{\nabla} \cdot \mathbf{D} &= \frac{\rho}{\varepsilon_0} \,, & \boldsymbol{\nabla} \times \mathbf{E} &= -\frac{1}{c} \partial_t \mathbf{B} \,, \\ \boldsymbol{\nabla} \cdot \mathbf{B} &= 0 \,, & \boldsymbol{\nabla} \times \mathbf{B} &= \frac{1}{\varepsilon_0 c^2} \partial_t \mathbf{J} + \frac{1}{c^2} \partial_t \mathbf{D} \end{split}$$

Electric displacement field $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \boldsymbol{\varepsilon} \mathbf{E}$

and Lorentz oscillator model

Solution: $x(t \to \infty) = \mathcal{A}\cos(\omega t - \phi)$

$$\mathcal{A}(\omega) = \frac{-eE_0}{m_0} \frac{1}{\sqrt{(\omega^2 - \omega_0^2)^2 + (2\gamma\omega)^2}} \qquad \phi(\omega) = \arctan\left(\frac{2\gamma\omega}{\omega_0^2 - \omega^2}\right)$$

Hopfield, J. J. (1958). Theory of the contribution of excitons to the complex dielectric constant of crystals, *Phys. Rev.* 112: 1555.

2nd Hopfield equation

Dispersion of bulk exciton-polaritons in the limit $M_x \to \infty \quad \gamma \to 0$

Polaritons in microcavities

Concept of polariton lasing:

A. Imamoglu, et al, Phys. Lett. A 214, 193 (1996).

Photon mode dispersion

Optically or electronically excited exciton-polaritons relax towards the ground state and Bose-condense there. Their relaxation is stimulated by final state population. The condensate emits spontaneously a coherent light

Polariton lasing vs polariton BEC

Criteria	Polariton laser	Polariton BEC
Strong coupling regime	yes	yes
Formation of a macroscopically occupied coherent polariton state	yes	yes
Stimulated scattering	yes	yes
Polaritons with low k at thermal equilibrium	not necessarily	yes
Thermodynamic phase transition	not necessarily	yes
Order parameter build up	not necessarily	yes
Spontaneous symmetry breaking	not necessarily	yes

ARTICLES

Bose-Einstein condensation of exciton polaritons

J. Kasprzak¹, M. Richard², S. Kundermann², A. Baas², P. Jeambrun², J. M. J. Keeling³, F. M. Marchetti⁴, M. H. Szymańska⁵, R. André¹, J. L. Staehli², V. Savona², P. B. Littlewood⁴, B. Deveaud² & Le Si Dang¹

nature

Phase diagrams for BEC of exciton-polaritons in different model cavities

Solid lines show the critical concentration N_c versus temperature of the polariton KT phase transition. Dotted and dashed lines show the critical concentration N_c for quasi condensation in 100 µm and 1 meter lateral size systems, respectively.

Kavokin A, Malpuech G, Gil B, Semiconductor microcavities: towards polariton lasers, MRS Internet Journal of Nitride Semiconductor Research **8** (3): 3 (2003)

GaN-based microcavities

Strong coupling in GaN-based microcavities: experimental realisation

CLERMONT (1999-2003) CLERMONT2 (2003-2007) CLERMONT4 (2009-2013)

N. Antoin-Vincent et al, PRB 68, 153313 (2003)

I. Sellers et al, Phys. Rev. B73, 033304 (2006)

Polariton lasing in GaN microcavities

S. Christopoulos et al., Phys. Rev. Lett. 98, 126405 (2007).

T=77K

S. Christopoulos, G. Baldassarri von Högersthal, A. J. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean, *Room-Temperature Polariton Lasing in Semiconductor Microcavities*, **Phys. Rev. Lett. 98**, 126405 (2007).

10¹¹-(c) (a) 10^{9} T=300K 10^{7} 7000~1/β PL (arb) 10³ 0.01 0.1 1 Power (mW) Linewidth (meV) 10^{1} (ď 10 10-1 5 3.40 3.46 Energy (eV) 2 n 2.0Pump power (mW) Power (mW) ++ (e) 15 Δω (meV) 1.0 10 -0.5 5-0.1 0.02 0-0.0 0.5 1.0 1.5 2.0 3.36 3.40 3.44 Energy (eV) Power (mW) $I_{\rm th} = 1.0 \text{ mW}$ $N_{3D} \sim 8 \times 10^{17} \text{ cm}^{-3}$

Polariton lasing

Micro-transmission maps of the cavity linewidth of a GaN bulk microcavity, with a negatively-detuned cavity of resonant wavelength around 418nm. The spot size is $8\mu m$.

Build-up of the condensate in a GaN microcavity

Below threshold

Above threshold

J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin, J.-F. Carlin, and N. Grandjean, Spontaneous Polarization Buildup in a Room-Temperature Polariton Laser, **Phys. Rev. Lett. 101**, 136409 (2008).

Room temperature polariton lasing

G. Christmann et al., Appl. Phys. Lett. 93, 051102 (2008)