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PREFACE

These notes are loosely based on the liquid crystals, polymers, elasticity and nematic elastomers sections of the
book “Liquid Crystal Elastomers” by Warner and Terentjev, OUP (paperback edition 2007).

Figure 1: Warner and Teren-
tjev: “Liquid Crystal Elas-
tomers”: cover of the paper-
back edition 2007.

The notes have many exercises, some of which are solved and others of which have hints for their solution.
It is suggested to the reader that these will help in understanding the subject, in particular where it diverges from
classical elasticity theory (for instance when rotations are important in the elastic response because of the internal
rotational degree of freedom, the director). The approach to elasticity is with the deformation gradient tensor
because non-linear elasticity is used throughout (rubbersare capable of huge deformations). We use this tensor,
rather than Cauch-Green tensors, also because it more directly records rotations which are so important.

The first chapter of the notes is a birds eye view of the whole field. It mentions areas not covered here, for
instance smectic elastomers. Their elasticity is especially rich because the constraint of constant layer spacing is
hard on the energy scale of elastomers. We thus have this and the constraint of constant volume governing the
large deformations of those unusual elastomers.

The supersoft deformations of isotropic genesis nematic polydomain elastomers will hopefully be addressed
in a research lecture after the material in these notes on nematic elastomers has been covered.

Mark Warner
Cavendish Laboratory, University of Cambridge.
April, 2011
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CHAPTER 1. AN OVERVIEW OF LIQUID CRYSTAL ELASTOMERS

Liquid crystal elastomers bring together, as nowhere else,three important ideas:orientational orderin amor-
phous soft materials,responsive molecular shapeand quenched topological constraints. Acting together, they
create many new physical phenomena that are the subject of these notes. This bird’s eye view sketches how these
themes will come together.

Initially we introduce liquid crystals and polymers since they are our building blocks. A fuller primer for an
undergraduate or graduate student embarking on a study of polymer or liquid crystal physics, or on complex fluids
and solids, is found in the initial chapters of our book, “Liquid Crystal Elastomers” (Warner and Terentjev, 2007),
hereafter referred to as WT. Then elastomers are discussed both from the molecular point of view, and briefly
within continuum elasticity. We need to understand how materials respond at very large deformations for which
only a molecular approach is suitable. Also one needs to understand the resolution of strains into their component
pure shears and rotations, the latter also being important in these unusual solids. WT also provides a primer for
the basics of these two areas that are otherwise only found indifficult and advanced texts.

Classical liquid crystals are typically fluids of relatively stiff rod molecules with long range orientational
order. The simplest case is nematic – where the average ordering direction of the rods, the directornnn, is uniform.
Long polymer chains, with incorporated rigid anisotropic units can also order nematically and thus form liquid
crystalline polymers. By contrast with rigid rods, these flexible chains elongate when their component rods
align. This results in a change of average molecular shape, from spherical to spheroidal as the isotropic polymers
become nematic. In the prolate anisotropy case, the long axis of the spheroid points along the nematic director
nnn, Fig. 1.1.

Figure 1.1: Polymers are on average spherical
in the isotropic (I) state and elongate when they
are cooled to the nematic (N) state. The direc-
tor nnn points along the principal axis of the shape
spheroid. (The mesogenic rods incorporated into
the polymer chain are not shown in this sketch,
only the backbone is traced.)

So far we have no more than a sophisticated liquid crystal. Changes in average molecular shape induced by
changes in orientational order do little to modify the properties of this new liquid crystal. Linking the polymer
chains together into a gel network fixes their topology, and the melt becomes an elastic solid – a rubber. Radically
new properties can now arise from this ability to change molecular shape while in the solid state. To understand
this we have to consider rubber elasticity.

In rubber, monomers remain highly mobile and thus liquid-like. Thermal fluctuations move the chains as
rapidly as in the melt, but only as far as their topological crosslinking constraints allow. These loose constraints
make the polymeric liquid into a weak, highly extensible material. Nevertheless, rubber is a solid in that an
energy input is required to change its macroscopic shape (incontrast to a liquid, which would flow in response).
Equivalently, a rubber recovers its original state when external influences are removed. Systems where fluctua-
tions are limited by constraints are known in statistical mechanics as ‘quenched’ - rigidity and memory of shape
stem directly from this. It is a form of imprinting found in classical elastomers and also in chiral solids, as we
shall see when thinking about cholesteric elastomers.

Can topology, frozen into a mobile fluid by constraints, act to imprint liquid crystalline order into the system?
The expectation based on simple networks would be ‘yes’. This question was posed, and qualitatively answered,
by P-G. de Gennes in 1969. He actually asked a slightly more sophisticated question: Crosslink conventional

1



2 CHAPTER 1. AN OVERVIEW OF LIQUID CRYSTAL ELASTOMERS

polymers (not liquid crystalline polymers) into a network in the presence of a liquid crystalline solvent. On
removal of the solvent, do the intrinsically isotropic chains remember the anisotropy pertaining at the moment of
genesis of their topology? The answer for ideal chains linked in a nematic solvent is ‘no’! Intrinsically nematic
polymers, linked in a nematic phase of their own making, can also elude their topological memory on heating.
How this is done (and failure in the non-ideal case) is a majortheme of these notes.

Second, what effects follow from changing nematic order andthus molecular shape? The answer is new
types of thermal- and light-induced shape changes.

The third question one can ask is: While in the liquid-crystal state, what connection between mechanical
properties and nematic order does the crosslinking topology induce? The answer to this question is also re-
markable and is discussed below. It leads to entirely new effects – shape change without energy cost, extreme
mechanical effects and rotatory-mechanical coupling. We give a preview below of these effects in the form of a
sketch – details come later.

Rubber resists mechanical deformation because the networkchains have maximal entropy in their natural,
undeformed state. Crosslinking creates a topological relation between chains that in effect tethers them to the
solid matrix they collectively make up. Macroscopic deformation then inflicts a change away from the nat-
urally spherical average shape of each network strand, and the entropy,S, falls. The free energy then rises,
∆F = −T∆S> 0. This free energy, dependent only on an entropy change itself driven by molecular shape
change, explains why polymers are sometimes thought of as ‘entropic springs’. Macroscopic changes in shape
are coupled to molecular changes. In conventional rubber itis always the macroscopic that drives the molecular;
the induced conformational entropy of macromolecules offers the elastic resistance.

Nematic polymers suffer spontaneous shape changes associated with changing levels of nematic (orienta-
tional) order, Fig. 1.1. One now sees a reversal of influence:changes at the molecular level induce a correspond-
ing change at the macroscopic level, that is induce mechanical strains, Fig. 1.2: a block of rubber elongates by a

Figure 1.2: A unit cube of rubber in the isotropic
(I) state. Embedded in it is shown the average of
the chain distribution (spherical). The block elon-
gates by a factorλm on cooling to the nematic (N)
state, accommodating the now elongated chains.

I
N

1

n
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heat l m

factor ofλm > 1 on cooling or 1/λm < 1 on heating. This process is perfectly reversible. Starting in the nematic
state, chains become spherical on heating. But mechanical strain must now accompany the molecular readjust-
ment. Very large deformations are not hard to achieve, see Fig. 1.3. Provided chains are in a broad sense ideal,

Figure 1.3: A strip of nematic rubber ex-
tends and contracts according to its temper-
ature. Note the scale behind the strip and
the weight that is lifted!

it turns out that chain shape can reach isotropy both for the imprinted case of de Gennes (on removal of nematic
solvent) and for the more common case of elastomers formed from liquid crystalline polymers (on heating).
Chains experiencing entanglement between their crosslinking points also evade any permanent record of their
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Figure 1.4: (a) Rotations of the director and matrix by anglesθ andΩ, respectively. From (b) to (c) the director,
and thus chain shape distribution, is rotated by 90o from nnno to nnn. The rubber is mechanically clamped and hence
the chains in (c) that would be naturally elongated alongnnn must be compressed: the dotted spheroid in (c) is
compressed to the actual solid spheroid.

genesis. Many real nematic elastomers and gels in practice closely conform to these ideal models. Others are
non-ideal – they retain some nematic order at high temperatures as a result of their order and topology combining
with other factors such as random pinning fields and compositional fluctuations. They still show the elongations
of Fig. 1.3, but residues of non-ideality are seen in the elastic effects we review below.

This extreme thermomechanical effect, and the phenomena ofFigs. 1.5 and 1.7, can only be seen in mon-
odomain, well aligned samples. Without very special precautions during fabrication, liquid crystal elastomers
are always found in polydomain form, with very fine texture ofdirector orientations. The great breakthrough in
this field, developing a first method of obtaining large, perfect monodomain nematic elastomers, was made by
Küpfer and Finkelmann in 1991.

Nematic-elastic coupling was the third question we posed and gives rise to new rotational phenomena ubiq-
uitous in liquid crystal elastomers. It is possible to rotate the director and the rubber matrix independently, see
Fig. 1.4 (a). Such relative rotations of the body and of its internal anisotropy axis show that nematic elastomers
are not simply exotic, highly-extensible, uniaxial crystals. Such materials belong to a class displaying so-called
Cosserat elasticity, but with the distinction that deformations and rotations can be large in elastomers. Imagine
now rotating the director while clamping the body so its shape does not change, Figs. 1.4(b) and (c). The natural,
prolate spheroidal distribution, when rotated by 90o to be alongnnn, has a problem. Chains do not naturally fit,
since the clamped body to which they are tethered is not correspondingly elongated alongnnn to accommodate
their long dimensions. Chains in fact must have been compressed to fit, at considerable entropy loss if they were
very anisotropic. A rotation of 180o recovers the initial state, so the free energy must be periodic, and turns
out to beF = 1

2D1sin2(θ −Ω). The rotational modulus,D1, was first given by de Gennes in the infinitesimal
form 1

2D1(θ −Ω)2. A rotation of the director in Fig. 1.4(b) would lead to a ‘virtual’ intermediate state depicted
by dotted lines in Fig. 1.4(c). Subsequent squeezing to get back the actual body shape demanded by the clamp
condition (full lines) of Fig. 1.4(c) costs an energy proportional to the rubber modulus,µ , and to the square of
the order,Q, (sinceQ determines the average chain shape anisotropy). ThusD1 ∼ µQ2. In contrast to ordinary
nematics, it costs energy to uniformly rotate the director independently of the matrix.

In liquid nematics it is director gradients that suffer Frank elastic penalties, and thus long-wavelength spatial
variations of the rotation angle cost vanishingly small energy. Thermal excitation of these rotations causes even
monodomain nematic liquids to scatter light and to be turbid. Not so monodomain nematic elastomers which
are optically clear because even long wavelength director rotations cost a finite rubber-elastic energy1

2D1θ 2 and
cannot be excited, see Fig. 1.5. The excitations have acquired a mass, in the language of field theory.

Local rotations, so central to nematic elastomers, yield a subtle and spectacular new elastic phenomenon
which we call ‘soft elasticity’. Imagine rotating the director but now not clamping the embedding body, in
contrast to Figs. 1.4(b) and (c). One simple response would be to rotate the body by the same angle as the
director, and this would clearly cost no energy. However, contrary to intuition, there is an infinity of other
ways by mechanical deformation to accommodate the anisotropic distribution of chains without its distortion
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Figure 1.5: A strip of monodomain ‘single-crystal’ nematicrubber. It is completely transparent and highly
birefringent (image: H. Finkelmann).

as it rotates. Thus the entropy of the chains does not change,in spite of macroscopic deformations. Figure 1.6
illustrates the initial and final states of a 90o director rotation. They are separated by a path of states, characterised
by an intermediate rotation angleθ and by a corresponding shape of the body, one of which is shown. This θ -
state is shown in the sketch (b) accommodating the spheroid without distorting it. A special combination of
shears and elongations/compressions is required, but it turns out not very difficult to achieve in experiment!

One of the traditional ways to rotate the director in liquid crystals is by applying an electric (or magnetic) field
and generating a local torque due to the dielectric anisotropy. Due to the nematic-elastic coupling, the director
rotation is very difficult if an elastomer sample is mechanically constrained. Apart from a few exceptions (all
characterised by a very low rubber-elastic modulus, such asin highly swollen gels) no electrooptical response can
occur. However, if the elastomer is mechanically unconstrained, the situation changes remarkably. In a beautiful
series of experiments, Urayama (2005,2006) has confirmed the prediction of soft elasticity: that the field-induced
director rotation has no energy cost, can easily reach 90o rotation angles and has associated mechanical strains
that almost exactly follow the sketch in Fig. 1.6.

Practically, when dealing with rubbers, one might instead impose a mechanical distortion (say an elongation,
λ , perpendicular to the original director) and have the othercomponents of strain, and the director orientation,
follow it. The result is the same – extension of a rubber costsno elastic energy and is accompanied by a character-
istic director rotation. The mechanical confirmation of thecartoon is shown in stress-strain curves in Fig. 1.7(a)
and the director rotation in Fig. 1.7(b).

We have made liquid crystals into solids, albeit rather weaksolids, by crosslinking them. Like all rubbers,
they remain locally fluid-like in their molecular freedom and mobility. Paradoxically, their liquid crystallinity
allows these solid liquid crystals to change shape without energy cost, that is to behave for some deformations
like a liquid. Non-ideality gives a response we call ‘semi-soft’. There is now a small threshold before director
rotation (seen in the electrooptical/mechanical experiments of Urayama (2005,2006), and to varying degrees in
Fig. 1.7); thereafter deformation proceeds at little additional resistance until the internal rotation is complete.
This stress plateau, the same singular form of the director rotation, and the relaxation of the other mechanical
degrees of freedom are still qualitatively soft, in spite ofa threshold.

There is a deep symmetry reason for this apparently mysterious softness that Fig. 1.6 rationalises in terms
of the model of an egg-shaped chain distribution rotating ina solid that adopts new shapes to accommodate it.
Ideally, nematic elastomers are rotationally invariant under separate rotations of both the reference state and of

Figure 1.6: Rotation of chain shape distribution, fromnnno to nnn, with an intermediate stateθ shown. The uncon-
strained rubber deforms to accommodate the rotating director without distorting the chain distribution.
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the target state into which it is deformed. If under some conditions, not necessarily the current ones, an isotropic
state can be attained, then a theorem of Golubović and Lubensky shows that in consequence soft elasticity must
exist. It is a question of care with the fundamental tenet of elasticity theory, the principle of material frame
indifference. We shall examine this theorem and its consequences many times in these notes, including what
happens when the conditions for it to hold are violated, thatis when semi-softness prevails.

Elastic softness, or attempts to achieve it, pervade much ofthe elasticity of nematic elastomers. If clamps or
boundary conditions frustrate uniform soft deformation trajectories, microstructures will evolve to allow softness
with the cost of interfaces being a relatively smaller priceto pay. There are similarities between this so-called
‘quasi-convexification’ and that seen in martensite and other shape-memory alloys.

Cholesteric liquid crystals have a helical director distribution. Locally they are very nearly conventional ne-
matics since their director twist occurs typically over microns, a much longer length scale than that associated
with nematic molecular ordering. They can be crosslinked toform elastomers which retain the cholesteric direc-
tor distribution. Several phenomena unique to cholesterics emerge: Being locally nematic, cholesteric elastomers
would like on heating and cooling to lose and recover orientational order as nematic elastomers do. However,
they cannot resolve the requirement at neighbouring pointsto spontaneously distort byλm, but in different di-
rections. Accordingly, their chains cannot forget their topologically imprinted past when they attempt to reach a
totally isotropic reference state (the second de Gennes’ prediction of 1969). Thus cholesteric rubbers also can-
not deform softly in response to imposed strains. Their optical and mechanical responses to imposed stress are
exceedingly rich as a result. They are brightly coloured dueto selective reflection and change colour as they are
stretched – their photonic band structure changes with strain. They can emit laser radiation with a colour shifted
by mechanical effects. Further, the effect of topological imprinting can select and extract molecules of specific
handedness from a mixed solvent. Such rubbers can act as a mechanical separator of chirality – a new slant on a
problem that goes back to Pasteur.

We have sketched the essentials of nematic (and cholesteric) rubber elasticity. This survey leaves out many
new phenomena dealt with in later chapters, for instance electromechanical Freedericks effects, photo-elastomers
that drastically change shape on illumination, and so on.

Smectics are the other class of liquid crystal order. They have plane-like, lamellar modulation of density in
one direction (SmA), or additionally a tilt of the director away from the layer normal (SmC). Many other more
complex smectic phases exist and could also be made into elastomers. In many smectic elastomers, layers are
constrained not to move relative to the rubber matrix. Deformations of a rubber along the layer normal are thus
resisted by a layer spacing modulus,B, of the order of 102 times greater than the shear modulus of the matrix.
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Figure 1.7: (a) Stress-deformation data of Küpfer and Finkelmann (1994), for a series of rubbers with the same
composition and crosslinking density, but differing in preparation history: some show a normal elastic response
while others are remarkably soft. (b) The angle of director rotation on stretching nematic elastomer perpendicular
to the director for a variety of different materials, from Finkelmannet al. (1997). The solid line from, theoretical
modeling, accurately reproduces singular points and characteristic shape of data.
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Figure 1.9: (a) A SmA elastomer (Hiraokaet al., 2005). (b) Spontaneous shearλxz in achieving the SmC state.

Distortions in plane, either extensions or appropriate shears, are simply resisted by the rubber matrix. Thus SmA
elastomers are rubbery in the two dimensions of their layer planes, but respond as hard conventional solids in
their third dimension. Fig. 1.8 shows this behaviour. Such extreme mechanical anisotropy promises interesting
applications.

The director tilt associated with the transition from SmA toSmC induces distortion in the polymer chain
shape distribution. Since chain shape is coupled to mechanical shape for an elastomer, one expects, and sees in
Fig. 1.9, spontaneous distortion. This response to order change is analogous to the elongations associated with
orientational order of chains on entering the nematic state, but here we instead have shear. The amplitude is also
large, of the order of 0.4 in the figure. As in the nematic case,the broken symmetry suggests a mechanism for
SmC solids richer still than that of SmA elastomers, including SmC soft elasticity equivalent to that of Fig. 1.6.

The tilted, SmC, liquids also exist in chiral forms which must, on symmetry grounds be ferroelectric. Their
elastomers are too. Ferroelectric rubber is very special: mechanically it is soft, about 104 times lower in modulus
than ferro- and piezoelectrics because, as sketched above,its molecules are spatially localised by topological
rather than energetic constraints. Distortions give polarisation changes comparable to those in ordinary ferro-
electrics. But the response in terms of stress must necessarily be 104 times larger than in conventional materials.
In these notes lack of space means we will not treat smectics.In WT their underlying liquid crystalline properties
are reviewed in some detail. In Chapter 12, molecular picture of smectic elastomers valid to large distortions with
strong layer constraints is given and the principal phenomena derived and discussed along with experiment. In
Chapter 13 their continuum mechanics, which is also very complex, is developed.

We end our preview as we started – solids created by topological constraints are soft and highly extensible.
Liquid crystal elastomers share this character with their important cousins, the conventional elastomers. But their
additional liquid crystalline order gives them entirely new kinds of elasticity and other unexpected phenomena.



CHAPTER 2. LIQUID CRYSTALS

Liquid crystalline rubbery solids are polymer networks with nematic or smectic order. They display most of
the complexities of conventional liquid crystals: directional but not translation long range order, optical bire-
fringence and phase transitions. In fact they are liquid crystals with the exception that they cannot flow. Liquid
crystal networks have many properties in addition to simplenematics and smectics, but to start understanding
them, we briefly review conventional liquid crystals. WT (Warner and Terentjev, 2007) reviews more of the
basics of what is a large and subtle subject. Excellent monographs exist, such as (de Gennes and Prost, 1994)
and (Chandrasekhar, 1977). More specialist reviews explain corners of the field, for instance Landau theory or
polarisational effects.

What are the essential differences when nematic liquid crystals are ‘solidified’ to form elastomers or gels?
We shall see that rubber has all the mobility of liquids locally but not in a bulk sense – they cannot flow. The
ordering thus remains mobile, albeit with some tethering tothe solid matrix. All liquid crystal properties other
than flow are manifested. We shall dwell here on properties ofsimple nematics, cholesterics and smectics that
will be radically changed in networks.

Detailed molecular models play little role in nematic elastomers, apart from describing phase transitions and
behaviour close to them, and for details of photoelastomers. Otherwise nematic, cholesteric and smectic elas-
tomers, like conventional rubbers, are remarkably universal. We shall see that the properties of conventional
elastomers depend essentially on the density of crosslinksand on temperature, much like an ideal gas. Liquid
crystal elastomers depend upon these two factors, but also upon the shape anisotropy of their constituent poly-
mer chains. This anisotropy is liquid crystalline (molecular) in origin, but can be measured directly or derived
from macroscopic shape changes, a path we shall mostly follow. For this reason we do not dwell on detailed
microscopic models of liquid crystals, and also not on models of polymers.

2.1 ORDERING OF ROD AND DISC FLUIDS

Nematics are anisotropic fluids. They derive their name fromthe thread-like defects in their anisotropy, i.e.
disclinations that are observed under the microscope. The Greek wordνηµα for thread was taken by G. Friedel
for the name of this phase. Molecular asymmetry is a precondition for macroscopic anisotropy. Weak asymmetry,
for instance in the N2 molecule is insufficient to lead to spontaneous ordering. Increasing either the shape
anisotropy (astericinfluence), or the anisotropy of polarisability (athermotropicinfluence), results in anisotropic
liquids with long range directional ordering. The archetypical mesogenic molecule that forms such a fluid is
para-azoxyanizole (PAA), see Fig. 2.1. Its shape is rod-like and its conjugated chemical bonds render it more
polarisable along its long axis.

N N

O

O CH3O CH3OCH3 OCH3

N

CH3C 3CHC 2

CHC 2CHC 2OC CH H3 OC CH H3

CH3C 3

CHC 2

CHC 2

CHC 2

CHC 2N C

(PAA)

(MBBA)

(5CB)

Figure 2.1: The chemical structure of para-azoxyanizole (PAA). This, and many other mesogenic (liquid crystal
phase-forming) molecules are characterised by the same general pattern of two para-substituted aromatic rings
rigidly linked into a rod-like structure. The terminal groups often vary, from a simple CH3 in PAA, to longer
flexible chains in MBBA, or dipolar units, e.g. a CN group in cyanobiphenyls (5CB).
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When long-range van der Waals forces of anisotropic attraction are the dominant ordering influence, a re-
duction in temperature will lead to nematic ordering. Such systems are known asthermotropic. PAA is a good
example of these. At a temperatureT > 135oC, even at the highest densities (in the melt, with no solvent at all),
shape effects are insufficient to produce the nematic phase which can only result from cooling.

We shall be interested in directionally ordered molecules,irrespective of the mechanism by which they order
(generally it is both). Rod-like molecules, similar to PAA,continue to order when incorporated into polymer
chains and thereby create the essential alignment we require to obtain nematic (and later) smectic elastomers.
For all the reasons given above, anisotropic disc-like molecules will generate nematic (and other) phases too. In
some cases liquid crystal polymers have been created from incorporating discs into polymer chains.

2.2 NEMATIC ORDER

The sketch Fig. 2.2(a) of a nematic fluid shows rods correlated with a directionnnn, the nematic director. The
director is a unit vector, only showing the principal axis ofalignment. In a fluid of rods, as in Fig. 2.2, the
direction ‘up’ is not distinguished from ‘down’; indeed it could not be since the rods drawn are not themselves
capable of making the distinction. For this reasonnnn is drawn as a double headed vector. In practice rods do have
an internal direction, for instance a dipole moment along their long axis, but the up-down (quadrupolar) symmetry
of nematics is not broken. If it were, we would have ferroelectric nematics with a spontaneous polarisation from
the predominance of, say, ‘up’ molecular dipoles over those‘down’. In nature uniaxial nematics are not polar
but quadrupolar, with the symmetry described by the point groupD∞h (a symmetry of a simple cylinder).

The orientational order can now be defined. In Fig. 2.2(a) a test rod’s spine is drawn with an angleθ to nnn.
The nematic order parameter is defined via the average of second Legendre polynomial1, as

Q= 〈P2(cosθ )〉= 〈3
2 cos2 θ − 1

2〉 (2.1)

where〈. . . 〉 denotes an average over rod directionsθ . From Fig. 2.2 one can see howQ = 1 corresponds to
perfect nematic order with rods directed up(θ = 0) or down(θ = π). Q= 0 is when rods are randomly oriented,
that is the phase is isotropic and〈cos2 θ 〉= 1/3. Moderate nematic order ofQ= 1/2 sees rods with an average
angle ofθ ∼ 35o, whereasQ= −1/2 has all rods confined to the plane perpendicular tonnn, that is all rods have
(θ = π/2).

1 The Legendre polynomialsPn(cosθ ) naturally describe orientations since they are the eigenfunctions of the angular momentum
operator (actually, its square) which is the generator of rotations. Dipolar order is described by〈P1(cosθ )〉= 〈cosθ 〉. Since equal numbers
of rods in a nematic have an angleθ asπ − θ , and since cos(π − θ ) = −cosθ , the dipolar order of a nematic vanishes,〈P1〉= 0. P2 is the
next function to try.
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Figure 2.3: The coordinates of a rod used to define the order parameter tensor.

Nematic order can be measured directly by nuclear magnetic resonance (de Gennes and Prost, 1994), or more
macroscopically, the fluid of aligned rods in Fig. 2.2(a) hasa refractive indexm‖ alongnnn typically greater than
that, m⊥, in all the perpendicular directions. This is because rods (see Fig. 2.1) are mostly more polarisable
along their lengths and their long axes in a nematic are correlated with the director. Again ‘up’ and ‘down’
are not distinguished and the difference∆m= m‖−m⊥ depends on the nematic orderQ as: ∆m= ∆moQ. The
intrinsic anisotropy,∆mo, depends on molecular factors and can be calculated, or estimated by extrapolation to
low temperatures where the nematic order becomes high,Q→ 1.

We shall often deal with nematic order viewed from a general coordinate frame, not simply along the director
as in the above example of refractive index. In fact, nematicorder is tensorial in character and we have viewed
in a principal frame where the director is along thezaxis:

mmm=





m⊥ 0 0
0 m⊥ 0
0 0 m‖



 ≡ Diag(m⊥,m⊥,mz) . (2.2)

(For brevity we shall often denote diagonal tensors by the ‘Diag’ form). For a general orientation ofnnn we have
for the refractive index tensor:

mi j = m⊥δi j +(m‖−m⊥)nin j (2.3)

The microscopic definition of the order parameter tensor is the analogous extension from the scalarQ. Let
uuu be the unit vector describing the axis of the test rod. Using theθ ,φ coordinates of Fig. 2.3, the projections of
the rod areuz = cosθ , ux = sinθ cosφ anduy = sinθ sinφ . The mean square projections are〈uzuz〉 = 〈cos2 θ 〉,
〈uxux〉= 〈sin2 θ cos2 φ〉, 〈uyuy〉= 〈sin2 θ sin2 φ〉 and all other〈uiu j〉 with i 6= j vanish. Since we are interested in
angular distributions rather than in the physical extent ofan extended object, we have taken a unit vector,uuu, for
which one has 1= (uuu)2 = 〈(uuu)2〉 = 〈uxux〉+ 〈uyuy〉+ 〈uzuz〉 = Tr(〈uuuuuu〉). The above averages certainly satisfy
this identity. In fact the identity adds nothing to the content of the tensoruiu j , so we subtract out the spherical
part 1

3 Tr(〈uuuuuu〉)δδδ ≡ 1
3δδδ from the tensor〈uuuuuu〉. Then the equivalent of eqn (2.3) is:

Qi j = 〈3
2uiu j − 1

2δi j 〉 (2.4)

(see Fig. 2.3). One can check thatQzz is indeed the average〈P2(cosθ )〉= Q we defined before, if the coordinate
axiszzz is chosen alongnnn.

The other elements〈uxux〉 and〈uyuy〉 are related to〈uzuz〉 since the average over the free angleφ is trivial
in the case of uniaxial order:〈cos2 φ〉 = 〈sin2 φ〉 = 1/2. They can thus be written as〈uxux〉 = 〈uyuy〉 = (1−
〈cos2 θ 〉)/2= (1−〈uzuz〉)/2= (1−Q)/3. For this orientation ofnnn we have for the matrix representing the order
parameter:

QQQ=





−Q/2 0 0
0 −Q/2 0
0 0 Q



 , (2.5)
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while in general the order parameter is
Qi j = Q

(
3
2nin j − 1

2δi j
)
. (2.6)

The order parameter tensor is, by construction, traceless and agrees with any of the macroscopic definitions of
the ordering (for instancemmm) if they too are made traceless. Let the average value of the refractive index be

m= 1
3 Tr

(
mmm
)
= 1

3(m‖+2m⊥). Then the new traceless ˜m becomes

m̃ =





m⊥−m 0 0
0 m⊥−m 0
0 0 m‖−m



≡ 2
3∆m





− 1
2 0 0

0 − 1
2 0

0 0 1



≡ 2
3∆moQQQ . (2.7)

The phase we have described is uniaxial. All anglesφ in Fig. 2.3 are equivalent and, as we have seen, for
such nematics macroscopic average quantities such as the refractive index take the same values in all directions
perpendicular tonnn. Here this meansmxx = myy = m⊥. In optics, the distinguished direction (along the director
nnn) is called extraordinary (e) and the others ordinary (o). The refractive index tensor described bymmm governs
the passage of the variously polarised light beams through the liquid crystal. It is known as the refractive index
indicatrix and precisely mirrors the local nematic order parameter.

When there is no symmetry aboutnnn, that is where all the perpendicular directionsφ are not equivalent, then
we have a biaxial fluid with a more complex order parameter (Stephen and Straley, 1974) Such phases have not
yet been observed in nematic elastomers and we do not discussthem further here; see WT for how biaxial order
can be mechanically induced in nematic elastomers by applied stresses.

2.3 FREE ENERGY AND PHASE TRANSITIONS OF NEMATICS

In Fig. 2.2 we saw that an order parameter ofQ= 1/2 represented a nematic with a moderate degree of typical
alignment of rods. By contrast a state withQ=−1/2 is geometrically very different and physically very implau-
sible in conventional nematics. The value〈P2(cosθ )〉 = − 1

2 implies that all the rods would then be confined to
the plane perpendicular tonnn. Both the van der Waals and the excluded volume contributions to the free energy
would be most unfavourable. Thus a system free energy depending on the equilibrium order parameterQ must
distinguish between states of±Q, in contrast to magnetic (polar) systems where there is no distinction between
positive and negative states. The general, Landau-de Gennes expansion of the free energy in powers of the full
tensor order parameter,QQQ, is

Fnem= 1
3A Tr

(

QQQ·QQQ
)

− 4
9B Tr

(

QQQ·QQQ·QQQ
)

+ 2
9C Tr

(

QQQ·QQQ ·QQQ ·QQQ
)

+ . . . . (2.8)

InsertingQQQ, from eqn (2.5) or (2.6), into eqn (2.8) yields the usual freeenergy density expressed as a function of
the scalar order parameter,Q. As an important consequence of nematic symmetry, the Landau expansion of the
nematic free energy density contains odd powers ofQ:

Fnem= 1
2AQ2− 1

3BQ3+ 1
4CQ4+ · · ·− f Q (2.9)

The linear term− f Q represents the effect of an external field, for instancef = 1
2δǫǫoE2 whereE is an applied

electric field (which also has the effect of defining the direction of alignment, that is the directornnn) and where
δǫ ∝ Q is the anisotropic part of the relative dielectric constant. Without an applied field, the free energy density
expansionFnem is schematically shown in Fig. 2.4. As the temperature is lowered, a metastable minimum with
Q > 0 first appears atTu. At Tni the absolute minimum atQ = 0 jumps discontinuously to an orderQm > 0.
The transition is thus of the first order. The existence of coexisting isotropic and nematic states around this
transition creates the possibility of thermal hysteresis.The nominal transition pointTni is defined where the two
minima have equal depth. The second minimum atQm 6= 0 exists in addition to the first atQ= 0 because of the
− 1

3BQ3 term, that is because of the need to distinguish between states of±Q. This deep connection between the
requirements of alignment geometry and the first order character of the phase transition was first recognised by
Landau (Landau and Lifshitz, 1986).

In fact nematics are only weakly first order. Their latent entropy at the transition is very small. The sign
of this is the smallness of the coefficientB. Normally the vanishing ofB yields a so-called critical point where
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Figure 2.4: The Landau free energy densityFnemof a nematic liquid plotted against the scalar magnitude of order
parameterQ. The plots correspond to characteristic points on the temperature scale: (a) the first appearance of
Qm on cooling atT = Tu, (b) the transition pointTni, (c) at some temperature belowTni the order parameterQm

(shown by arrow) increases and the ordered phase has a lower free energy; (d) at the supercooling pointT = T∗

the disordered phase atQ= 0 is no longer a metastable state.

a second order phase transition occurs, with the attendant critical divergence of many physical properties, for
instance the specific heat and the correlation length of fluctuations. In nematics there is an incipient critical
behaviour associated with a hidden second order transitionat a temperatureT∗ just belowTni, see curve (d) of
Fig. 2.4. The most sensitive temperature behaviour in the problem can encapsulated by writingA=Ao ·(T−T∗).

A full discussion of Landau theories applied to nematics, including their foundations, can be found in
(Gramsbergenet al., 1986) and in (Hornreich, 1985). Landau descriptions of (albeit weakly) first order systems
are of qualitative rather than quantitative significance. Strictly, the Landau free energy is an expansion ofF(Q)
for smallQ, valid for second order systems close enough to the transition where the order parameter becomes
indefinitely small. First order systems, such as nematics, have however a discontinuous jump to a finite order
parameter. Qualitatively, however, the Landau energy doesgive the right behaviour. The exercise shows that
Ao,T∗,B andC determine the transition and can be fixed from measurements of Qni, of Tni−T∗ (from observing
critical properties), ofTni and of the latent entropy. It is better to take this phenomenological approach toF(Q)
here than to attribute any deeper significance to the coefficients.

The minimum inFnem at Q = 0 becomes a maximum atT = T∗ (the quadratic coefficientA reverses sign).
ThusT∗ is the limit to supercooling of the isotropic state. The other minimum atQm > 0 is lost whenA(T) >
B2/4C or equivalently whenTu = T∗+ 1

4(B
2/AoC), the limit to superheating of the nematic state, see Fig. 2.4.

Superheating and supercooling are of course characteristic of a first order transition.
A large number of experiments have been performed to investigate the nematic-isotropic phase transition,

which is often called the ‘clearing point’. The reason for this name will become clear in later sections of these
notes. There is a degeneracy and the fluctuations of nematic director nnn are very large at long wave lengths.
Becausennn is also the axis of optical birefringence, the light is strongly scattered by its fluctuations in the nematic
phase – and so the material appears turbid. In the isotropic phase there is no director, no birefringence, no
significant scattering of light – and so the liquid is clear, transparent. The mentioned degeneracy, when long
wavelength director fluctuations are not penalised by elastic energy, is removed in nematic elastomers.

An external field, the− f Q contribution in eqn (2.9), can induce order at high temperatures (the paranematic
state, in analogy to the effect of magnetic fields on spins at high temperatures). A linear term added to the curves
of Fig. 2.4 shifts to higherQ both the minimum atQ= 0 and those at finiteQ. The transition is also shifted to
higher temperatures since the mimimum initially at finiteQ is deepened (stabilised). The transition eventually
disappears at a critical point( fc,Tc). The critical order parameter,Qc, is half the order parameter jump,Qni, at the
zero-field transition. See the sequence off 6= 0 curves in Fig. 2.5. Usually magnetic fields have a weak effect on
the nematic transition. Electric fields are stronger, but seeing the critical point is still difficult (Hornreich, 1985).
In contrast, mechanical fields can exert a powerful influenceon the nematic behaviour of nematic elastomers;



12 CHAPTER 2. LIQUID CRYSTALS

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

T
ni

T
*

T
u

Qni

Temperature

N
em

at
ic

 o
rd

er

Figure 2.5: The order parameterQm(T) against temperatureT. The dashed line shows the metastable solution
Qm < 0, dual to the principal order parameter branchQm corresponding to the deep minimum inFnem in Fig. 2.4.
The upper and lower limits of the transitionTu andT∗ and the direction of hysteresis are shown by arrows; the
zero-field transition point is atT = Tni. The subsequent plots show the evolution ofQm when an external field
− f is applied: the paranematic phase at high temperatures becomes more pronounced asf increases, while the
discontinuous jump ofQm becomes smaller and disappears at the critical point.

see WT§6.6 — they are comparable in effective strength to molecularfields. Indeed many nematic elastomers
appear to be in a supercritical state from the internal stresses they suffer. They do not have discontinuities in their
order parameter at any temperature.

Nematic elastomers are much more complex than simple nematics. However, they possess the same uniaxial
quadrupolar symmetry. ‘Up’ and ‘down’ are not distinguished for its director(nnn→ −nnn). Thus Landau theory,
which is based on symmetry considerations, tells us that their thermal properties will be qualitatively the same as
those of simple nematics. We shall find that the free energy ofnematic elastomers have a critical temperatureT∗

and the coefficientC modified from the values taken by the corresponding nematic polymer (uncrosslinked) melt.
The modification depends on the network’s thermal and mechanical history. Networks are solids and thus the
director can resist aligning along external fields, most drastically a mechanical (stress) field, even in the absence
of anchoring at the boundaries. In simple nematics, where the orientation of the directornnn is readjusted without
resistance, ignoring anchoring at surfaces and other boundary effects for the moment, the external field (generally
EEE or BBB) sets this orientation. For more details and molecular theory, see WT§2

2.4 DISTORTIONS OF NEMATIC ORDER

Ignoring the effect of boundaries, the free energy of a nematic fluid is degenerate with respect to the direction
of nnn, which can be swung around by an infinitesimal guiding field, eitherEEE or BBB. However, since nematic fluids
have long range directional order, there is a penalty associated with spatially varying the director,nnn(rrr). We stress
both aspects in this section. In the next section we show thatthe loss of this degeneracy is central in nematic
elastomers. Non-uniform directors will figure in a novel waylater when we discuss instabilities in nematic
elastomers.

The director can be splayed, twisted or bent, see Fig. 2.6(a), (b) and (c) respectively. The penalty for such
distortions is the Frank elastic free energy density:

FFr =
1
2K1(divnnn)2+ 1

2K2(nnn·curlnnn)2+ 1
2K3(nnn× curlnnn)2 (2.10)

with theKi being the corresponding splay, twist and bend curvature elastic constants respectively. Deriving this
expression (de Gennes and Prost, 1994) requires care that itobeys all symmetry requirements, the most obvious
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Figure 2.6: Three principal distortion modes in Frank elasticity: splay (a), twist (b), and bend (c) of the director
nnn.

being invariance with respect tonnn→−nnn. With the simplificationK2 = K3 = K, the Frank free energy densityFFr

reduces to
1
2K1(divnnn)2+ 1

2K(curlnnn)2 ,

apparently only quadratic innnn, but even then this free energy is not at all innocent. The requirement thatnnn(rrr)
remains a unit vector,nnn2(rrr) = 1 at all pointsrrr, means thatFFr yields highly non-linear problems. Only few prob-
lems can be solved exactly; these special cases are catalogued in a series of beautiful and instructive illustrations
(de Gennes and Prost, 1994).

In general is the full tensor order parameterQi j that is the proper field variable in the nematic phase. More
than just the director is spatially varying; it is also the magnitude of the order. The Landau free energy density
of the fluctuating nematic liquid crystal should be written as

Fnem = 1
3A Tr

(

QQQ ·QQQ
)

− 4
9B Tr

(

QQQ·QQQ ·QQQ
)

+ 1
9C Tr

(

QQQ·QQQ
)2

+ 2
9κ1 (∇ jQi j )

2+ 1
9κ3(∇kQi j )

2 . (2.11)

Linear gradient terms lead to spontaneous development of spatial variation of the nematic order — cholesteric
phases; see WT§2.8 and§9.

The energy density cost of spatial variation over a distanceξ is∼K/ξ 2 whereas the energy density associated
with elastic distortions isµ , the rubber shear modulus. The rapidity of variation at which the energy costs are
comparable isξ =

√

K/µ. For representative valuesK ∼ 10−11N andµ ∼ 106J/m3 one hasξ ∼ 10−9m, a very
short length scale and we almost never meet Frank effects in elastomers.





CHAPTER 3. POLYMERS, ELASTOMERS AND RUBBER ELASTICITY

In polymer melts, chain conformations are non-excluding, ideal random walks and thus are Gaussian. The self-
avoidance problem of polymer solutions does not arise because of excluded volume screening. Elastomers too are
conformationally ideal too and thus their statistical mechanics is relatively straightforward. Chains may however
be entangled and these constraints will be felt when chains are extended. Polymers, and liquid crystal elastomers,
are universal in most of their physical properties, which depend only weakly on their detailed structure — their
complex chemistry can be at first neglected: for instance theshear modulus of a rubber is well described by
µ = nsk BT wherens is the number of network strands per unit volume. A problem, at first sight of great
complexity, has been reduced to counting (ns) and an energy scale set by temperature,k BT. The relationship
of ideal, equilibrium rubber elasticity has the same statusand simplicity as the perfect gas lawp= nkBT and
it is to this level of simplicity that we shall aspire in discussing the molecular basis of liquid crystal elastomers.
The latter’s properties are so radically different from conventional solids, to start with we don’t need to consider
entanglements, finite extensibility etc. that are needed tofine-tune descriptions of classical elastomers. Books
that cover all aspects of polymers that we require are classics by Flory, de Gennes and Edwards (Flory, 1953;
Flory, 1969; de Gennes, 1979; Doi and Edwards, 1986), the latter two being directed toward more advanced
topics in polymers such as entanglements, dynamics and solutions.

Rubber is also capable of very large deformations and small strain elasticity is entirely inadequate. In liquid
crystal elastomers many new phenomena emerge at large strains which is why we shall require a molecular
theory.

3.1 CONFIGURATIONS OF POLYMERS

The classic example of a polymer is polyethylene, a long chain of segments shown in Fig. 3.1. The degree of
polymerisation,N, may be quite large (N = 102– 104). The C-C bonds are nearly tetrahedral (109o), but there
is a significant degree of crank motion generated in exploring the three possible positions of the next−CH2−
group. This generates an enormous number of equivalent configurations, 3N in total, for an ideal single chain of
−(CH2−CH2)n−. For any chain, especially those with a complex chemical structure, the effective step length
ℓ over which the chain can essentially bend may be equivalent to many monomers. However, the principle of
polymer chains possessing a vast number of conformations ispreserved so long as the total number of monomers,
N, is large compared with the number of monomers per effectivestep length. The rubbery response of networks
(and indeed the characteristic response of polymers in general) depends on this separation of scales (the total
length of a chain, often called the arc lengthL , being much greater than the effective step lengthℓ). The opposite
limiting case, ofL ≪ ℓ, corresponds to an almost completely rigid rod molecule of lengthL (something that we
have discussed in relation to ordinary nematic liquid crystals). We shall confine ourselves to sufficiently long
chains where the entropic properties of polymers are pronounced. Figure 3.2 shows three schematic snapshots
of such a chain with considerable internal flexibility in thejoints. By considering the distribution,p(RRR), of

Figure 3.1: The molecular unit (monomer) of a polyethylene chain. Covalent bonds of carbon make a tetrahedron
– arrows on the two outgoing bonds show where this unit is connected to other identical monomers, thereby
specifying the position of two more C atoms. (a) Thetransconformation with the−C−C− links in one plane.
(b) One of thegaucheconformations where the first or last C atom is out of plane.

15
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Figure 3.2: A random walk composed of freely jointed segments with N = 100 such rods or ‘steps’. Three
different trajectories in space are illustrated. The end-to-end vector,RRR, is the sum of the stepsuuu of the component
rods.

the chain’s end-to-end vectorRRR, one can make the idea of an effective jointed unit and the irrelevancy of local
structure more precise.

Let us take a chain composed ofN rods of lengtha freely jointed together as in Fig. 3.2. The whole chain
conformation traces a path of a random walk with a fixed step lengtha (in this simple model, evidently,a= ℓ).
Equivalently, this is a trajectory of a Brownian particle diffusing in space under the influence of a fixed-magnitude
stochastic force. The mean square end-to-end vector for such a random walk ofN steps is, in each direction,

〈RRR2
x〉= 〈RRR2

y〉= 〈RRR2
z〉= 1

3〈RRR
2〉= 1

3a2N ≡ 1
3aL (3.1)

whereL = Na is the actual arc length of the chain and corresponds to the total time of the analogous Brownian
diffusion. In terms of the joint vectorsuuui of lengtha, the end-to-end distanceRRR is given byRRR= ∑i uuui . Since
vectorsuuui are uncorrelated with each other in their direction, the average〈uuuiuuu j〉= 1

3δi j a2 and the result for〈RRR2〉
follows immediately.

Let the total number of possible conformations of such a chain, or the number of possible random walks
with no restrictions on their starting and ending points, beZN (this is 3N in our simplistic 3-state model for
polyethylene). Since energy plays no role in this idealisedchain model, this number of conformations is also the
partition function for the chain:ZN = ∑configsexp(−H /k BT) with the energyH of each configuration equal to
zero or an irrelevant constant. The number of configurationswith the ends fixed,ZN(RRR), is a great deal smaller:

ZN(RRR) = pN(RRR)ZN (3.2)

the pN(RRR) expressing the probability a given conformation will have an end-to-end vectorRRR. It is easy to show
from the central limit theorem thatpN(RRR) is a Gaussian distribution:

pN(RRR) =

(
3

2πR2
o

)3/2

e−3RRR2/2R2
o (3.3)

characterised by its varianceR2
o. The product of two parameters expressing the detail of chemical structure of a

polymer, its step lengtha, and the arc lengthL, appears simply as the single parameter of probability distribution
p(RRR), namely asaL = R2

o, reproduce eqn (3.1). This combinationRo is the only significant quantity associated
with an idealised chain. It is directly measurable by neutron scattering in the melt and by light and neutron
scattering in solution, as the average radius of chain gyration.

For a non freely-jointed chain, the effective step length will be increased beyond the physical length of a
monomera and, given a fixed overall arc lengthL, the number of effective steps in a chain will decrease from the
full number of monomersN to a lower value. We now more precisely define an effective step length, denoted by
ℓo, from the measurable quantitiesRo andL:

ℓo = R2
o/L (by analogy withR2

o = aL). (3.4)

Flory’s coefficientC∞ = ℓo/a (Flory, 1953) is a direct measure of just how much local chemical structure can
stiffen and extend a chain beyond what it would be, if freely jointed. Whatever the stiffening,Ro remains the
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single measure of the chain size distribution. This is true if L is long enough compared withℓo so that the
distribution is Gaussian.

The free energy of the single polymer chain we have describedabove isF =−kBT lnZN(RRR), where we use
eqn (3.2) and (3.3) forZ to obtain:

F (RRR) = Fo+ kBT
(
3RRR2/2R2

o

)
+C . (3.5)

Fo = −kBT lnZN is the free energy of an unconstrained chain and is an additive constant.C is another additive
constant arising from the normalisation of probability distribution pN. Fo andC simply make a reference point
of free energy and we neglect it, since it does not depend on the chain end-to-end distanceRRR.

We have obtainedF (RRR) by simply counting configurations, assuming that they all have equal internal energy.
The free energy (3.5) is purely entropic, the prefactor ofk BT being a signal of this. However, energy is involved
in the distortion of chemical bonds. If the internal energy per molecule associated with bond distortion were
U (RRR), then we would instead have:

F (RRR) = U (RRR)−TS (RRR)

with S the entropy per molecule. The classical freely jointed model evidently hasU = 0 and an entropy

S (RRR) =−kB
(
3RRR2/2R2

o

)
. (3.6)

In fact the free energy (3.5), quadratic as it is inRRR, represents Hooke’s law for the extension of a single chain.
One indeed thinks of polymers as entropic springs with Hooke’s constant 3k BT/R2

o. The stored (free) energy
is entropic, because it measures a change (reduction) in thenumber of possible conformations (and thus – the
entropy) when the ends of such a chain are pulled apart (R increases). Ultimately one would reach a state of a
fully extended chain withR= L and, thus, onlyonepossible configuration. This very unfavourable situation is,
of course, well beyond the limit of applicability of the Gaussian law (3.3) for a truly random walk. In addition
to this very basic argument, there is some residual temperature dependence inRo in eqn (3.5) and (3.6) since
thermal energy determines the effective stiffness of chemical bonds and hence the effective step lengthℓ. The
dependence is weak compared with the dramatic effects of nematic ordering leading, for instance, to spontaneous
shape changes of between 10 and 400% in elastomers. Moreover, for most of these notes, we only require that
chains have some anisotropy. As usual in polymers, most effects are universal and do not depend on specific
chain properties. We accordingly mostly discard stiffnessvariation effects.

The free energy for an isolated polymer chain with free ends extended by a distanceR is a paradigm for a
polymer network where the macroscopic deformation ultimately leads to the extension of constituent chains. The
internal energy contribution toF turns out to be small and we can consider network chains as purely entropic
springs.

In the melt and in elastomers chain configurations are those of phantom, single Gaussian chains (Arrighiet al., 1992).
However, despite their ideal conformations in the concentrated state, chains are not really phantoms - they are
entangled with each other. In networks, as chains are extended their configurations are restricted more power-
fully than simply by their ends being fixed. The fixing of chainends to other chains means that, unlike in the
corresponding melt, knots cannot be untied and their frozen-in topology must be respected. One can examine
(Deam and Edwards, 1976; Ballet al., 1981) topological effects in networks in order to explain the experimen-
tal deviation from classical predictions. For sufficientlylong chains crosslinked in the melt such deviations are
important. However, we shall find that liquid crystal order leads to deviations from classical behaviour that are
much more significant than the role of entanglements, even inshort solution-crosslinked chains.

3.2 CLASSICAL RUBBER ELASTICITY

Let us now return to the classical picture of simple, isotropic and long polymer chains. Most of the unusual,
characteristically polymeric properties we associate with polymers of high molecular weight derive from their
resistance to distortion of their average shape. The entropy of a single chain, eqn (3.6), is lowered as the distance
between its ends is extended. Fewer conformations implies that the free energy rises. This stored elastic free
energy is at the root of the entropic-mechanical effects of rubber elasticity. We present the classical picture of
rubber here, because we aim to develop an analogous simple view for nematic elastomers – a straightforward
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extension of the classical approach describing isotropic polymer networks. Consider a network of crosslinked
chains sketched in Fig. 3.3. The number of crosslinks is sufficient to ensure a percolating path of elastically
active chains across the whole block of rubber. Distortion of the block causes the component strands between

Figure 3.3: A block of rubber with the underly-
ing polymer network. (a) The chains of the net-
work are shown linked. A test chain (heavy curve)
has a span at formationRRRf between two succes-
sive crosslinks along its contour. (b) The block
of rubber is extended by factorsλii in the three
principal directions. The test network span is now
RRR= λλλ ·RRRf .

Ro R

(a) (b)

crosslinks to distort with respect to their equilibrium average shapes, which costs a free energy due to the loss of
configuration entropy. Departure from equilibrium corresponds to a reduction from the maximal entropy allowed
by network constraints. The material is thereby a solid rather than a liquid, which would accommodate any
distortion in its shape at constant energy. We shall return to this rather obvious remark later, since we shall find
that it is not true for some distortions of nematic elastomers.

Returning to simple rubber: without crosslinks it would be apolymer melt – a fluid that would eventually
flow under stress. Relatively so few monomers are locally constrained by crosslinking that chains continue to
have great mobility and explore the myriad of conformationscharacteristic of such a melt. Rubber is in effect
a liquid in all regards except that it cannot flow! In nematic networks this observation is of central importance
since the associated mobility of the directornnn is also great and will largely determine the mechanical response.

The mobility of chains means, in particular, that they continue to explore many conformations and the drive to
maximise entropy outweighs other influences. Change of average shape continues to be resisted, as in the single
chain example given above. Consider the junction points in Fig. 3.3 to be fixed relative to the body. This implies
that a selected strand’s end-to-end vector, connecting a pair of crosslinks, will deform in geometric proportion to
the body’s deformation (the affine deformation approximation). Suppose a selected strand at network formation
has been given an end-to-end distanceRRRf . The deformation,λλλ , is defined such that any separation vector in the
body, e.g. initiallyRRRf , will deform to a new valueRRR given by:

RRR= λλλ ·RRRf . (3.7)

For instance in Fig. 3.3 if the sides are initially of unit length and deform to dimensionsλxx,λyy,λzz in the
directionsx,y andz respectively (and no shear deformations are present), theneach dimension of the chain is
multiplied by the same geometric factors:

Rx = λxxR
f
x, Ry = λyyR

f
y and Rz = λzzR

f
z .

The one test strand of Fig. 3.3 is shown in the deformed body inits affinely deformed state. The free energy of
this particular strand is, as in the corresponding eqn (3.5):

Fs(RRR) = k BT

(
3RRR2

2R2
o

)

.

Recall that the mean square size,Ro, is the single parameter describing the Gaussian chain statistical properties.
Using the affine relationship (3.7), we obtain

Fs(RRR) =
3k BT

2

RRRf ·λλλT ·λλλ ·RRRf

R2
o

. (3.8)

Several constants, exposed and then neglected in eqn (3.5),such as the constantC from the normalisation of
the Gaussian chain probability, have also been suppressed here. The current free energy of the selected network
strand depends on the deformationλλλ and on the initial end-to-end separationRRRf (the subscriptf denotes the state
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at the network formation). The overall elastic free energy of the block of rubber adds together contributions like
eqn (3.8) for all other network strands. All different strands have their own initial end-to-end distanceRRRf , but we
know the proportion of chains with any givenRRRf among the whole ensemble – it is the probability distribution of
chains having this end-to-end distance before crosslinking, at the moment of network formation:

p(RRRf) =

(
3

2πR2
o

)3/2

e−3(RRRf )
2/2R2

o . (3.9)

Naturally, it is the same Gaussian as in Sect. 3.1, eqn (3.3).Thus, the summing of individual chain free energies
(3.8) in the deformed body is equivalent to theaveragingof Fs over their distribution and then multiplying
the resulting average free energy per strand by the total number of network strands in the system. SinceRRR is
derived fromRRRf , the probability to find a strand currently with end-to-end separationRRR is simply the probability
of finding the appropriate spanRRRf at the moment of network formation, that ispN(RRRf). The average free energy
per strand,F , is:

F =
3k BT
2R2

o
〈RRRf ·λλλ T ·λλλ ·RRRf〉p(RRRf) . (3.10)

This amounts to averaging of a quadratic form (inRRRf) with the corresponding Gaussian distribution,p(RRRf) . The
integration is of the form

∫
x2e−α x2

dx, and yields the appropriate averages:

〈Rf
i R

f
j〉= 1

3R2
oδi j . (3.11)

We have assumed here that the mean square chain size at formation is the same as that which is current,R2
o,

when we are distorting the rubber, eqn (3.8). If for instance, temperature were to change between formation and
current conditions, then the mean square size,R2

f , at formation might be different from the current value,R2
o.

Substituting the average (3.11) back in to eqn (3.10) and multiplying by the average number of strands per unit
volumens, the free energy density (the free energy per unit volume) ofa deformed rubber becomes

F = 1
2nsk BT Tr

(

λλλ T ·λλλ
)

≡ 1
2nsk BT (λi j λ ji ) (3.12)

= 1
2nsk BT

(
λ 2

xx+λ 2
yy+λ 2

zz

)
. (3.13)

[We follow the Einstein convention of summation over the pairs of repeated indices in expressions involving
matrices – such as in (3.12).]

Equation (3.13) is the result of the particular extension shown in Fig. 3.3, that is the case whereλλλ is diagonal,
with no shear deformations. Note that the mean square size ineach spatial direction,R2

o, has cancelled out
between expressions (3.10) and (3.11) and, as promised, theenergy is justk BT times geometrical factors (λ 2,
the squares of the extensions). Nothing remains of the structure of the component chains, except that they must
be long enough (and flexible enough) to satisfy laws of Gaussian statistics.

Chapter 4 is concerned with classical elasticity. We show there that the free energy density of a material
deforming at constant volume is of the form of eqn (3.12) where the coefficient is12µ , with µ the solids’s shear
modulus. Thus eqn (3.12) allows us to define, for the first timein these notes, the characteristic rubber modulus:

µ = nsk BT .

We shall constantly use this quantity. The magnitude of thisstatic, equilibrium rubber modulus may vary greatly
depending on the value ofns. It is, however, useful to give at least a crude estimate ofµ . The number of chain
strands per unit volume,ns, is equal to the inverse volume occupied by an average chain between two connected
network crosslinks. Let us take a network of rather flexible polyethylene chains (see Fig. 3.1) with, on average,
N = 100 units between crosslinks and a monomer size of, saya ∼ 3 Å. Thenns ≃ 1/(Na3) ∼ 3× 1026m−3.
This is a high estimate – it leads to a modulusµ ∼ 106 Pa at room temperature. (The units of elastic moduli
are commonly taken as Pa, which is the same as J/m3 or N/m2). In practice, the rubber modulus is often much
lower. There are two common reasons, both serving to reduce the density of strandsns: simple flexible chains
with a small monomer size (a ∼ 2-3 Å) often have much lower crosslinking density and thus very long chain
strands – often with monomer numbersN ≥ 104 between crosslinks. Polymers with a more complex molecular
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structure, in particular with long rigid rod elements necessary for liquid crystallinity, have the monomer volume
10-20 times greater then that of, say, polyethylene. Accordingly, one often finds rather weak rubbers withµ as
low as 104Pa, but hardly less than that. This identifies the characteristic range of possible magnitudes,

µ ∼ 104−106Pa.

At first sight the free energies (3.12) and (3.13) are unfortunate results. The lowest free energy density,F = 0
would apparently be atλxx = λyy = λzz= 0. Rubber should shrink to a point under the action of the entropic
springs of the network! Of course, the repulsion arising when the molecules overlap eventually balances the
attractive forces, as in any liquid or solid. The bulk modulus has the same dimensions (Pa) as the rubber modulus
µ , and for a polymeric liquid, as for simple liquids, is roughly of the order 109−1010 J/m3. The characteristic
scale of rubber elastic energies is about 10−4 times that of the compressional modulus. Thus entropic effects of
rubber elasticity are insignificant, compared with those causing or penalising volume change, and distortions of
rubber must accordingly occur at constant volume (to within1 part in 104). The difficulty that the rubber should
shrink to a point under elastic forces is thus avoided. The example of Fig. 3.3 is instructive. Assuming the sides
of the rubber block are along the coordinate axesx,y,z, the constancy of volume requires that the product of
extensions is fixed:

λxxλyyλzz≡ Det
(

λλλ
)

= 1 . (3.14)

If we extend the sample by the factorλ in the z direction (λzz= λ ) and let thex andy dimensions simply be
slaves to the condition of constant volume, then the constraint (3.14) demandsλxx = λyy = 1/

√
λ and the free

energy density (3.13) becomes:

F = 1
2µ
(

λ 2+
2
λ

)

. (3.15)

Having put in the conservation of volume by hand, this of course hasλ = 1 as its relaxed, undeformed state. The
higher energy scale associated with change of volume can be ignored if we always chooseλλλ with the constraint

(3.14) in mind. Figure 3.4 shows the reduced energy density (3.15), in units of12µ , increasing from the ground-
state levelλ 2+2/λ = 3 in both elongation (λ > 1) and compression (λ < 1) modes of deformation.

Figure 3.4: The plot of free energy density of
incompressible rubber under uniaxial elongation
and compressionλ , in units of 1

2µ ; the absolute
minimum isF = 3

2µ at λ = 1. Three curves cor-
respond to the classical rubber-elastic expression
(3.15), the middle solid line, and two its modifi-
cations, due to the ‘finite extensibility’ (curve la-
belled by solid circles), and the chain entangle-
ments (solid squares).
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The energy density as a function of deformation determines the force per unit area (see later for definitions
of stress) as deformation is imposed. Take for example simple extension along the vertical axis,z, of a classical
rubber, sketched in Fig. 3.3, that is initially aunit cube. Its current length in thez direction isλ . The forcefz
acting on thez ends of the body is the rate of change of energy, eqn (3.15), with lengthλ , times the area of the
initial sample cross-section perpendicular toz-direction:

fz = A
∂F
∂λ

= Aµ
(

λ − 1
λ 2

)

. (3.16)

Taking a unit cube (A= 1) allowed us to consider forces and stresses interchangeably in this sketch.
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3.3 LIQUID CRYSTALLINE POLYMERS

Nematic and smectic elastomers are networks of polymer chains with intrinsic liquid crystalline ordering. Such
polymer liquid crystals (PLCs) combine the spontaneous orientation of liquid crystals with the entropically driven
behaviour of polymers. Creating a PLC is delicate; too much chain stiffness eliminates the large number of
configurations of a chain that makes it an entropic spring. Too stiff, it becomes a simple rod, albeit a long
one. Too little stiffness or too few nematic-forming rods eliminates orientational order and results in an ordinary
isotropic melt of chains.
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Figure 3.5: Typical main chain polymer liq-
uid crystals with rod-like, nematic-forming sec-
tions in the middle of each monomer, flexible
−(CH2)n− spacers between the rods allowing for
many conformations. Polymer (a) with the 10-
spacer is known as DDA-9, with the 7-spacer it
is AZA-9; their monomers are not unlike the ne-
matic PAA, Fig. 2.1. Polymer (b), with a different
rigid rod structure, occurs in several main chain
nematic elastomers.

Two strategies can be followed. Rigid rod-like elements canbe linked together in a head-to-tail fashion to
form a main chain (MC) polymer with linkages between the rodsgiving sufficient flexibility to ensure a Gaussian
chain, and thus a random walk as in Fig. 3.2. Examples of the chemical structure of main-chain PLCs are shown
in Figs. 3.5(a) (d’Allestet al., 1988) and (b) (Percec and Kawasumi, 1991).

Rods can otherwise be pendant to a flexible backbone to give a comb or side-chain (SC) PLC (Plate and Shibaev, 1987).
Again, nematic order and flexibility compete.

SHAPE OF LIQUID CRYSTALLINE POLYMERS

The average shape of the nematic polymer backbone, distorted by the nematic ordering of the associated rods,
generates the equilibrium elastic response of a network into which it is linked. The aligned rod-like segments
of a main-chain polymer elongate the average shape of gyration, essentially stretching the backbone, along
their principal axis the directornnn; see Fig. 3.6(a). Side-chain polymers may have the backbonein different

(a) (b) (c) (d)

Figure 3.6: The shapes of nematic polymer back-
bones. The MC polymer (a) shows very high
backbone anisotropy, the intermediate case of
side-on PLC (b) shows weaker, but still substan-
tial backbone alignment, while in the two end-on
SC PLCs (c,d) the mesogenic groups may be only
weakly coupled to the backbone; here the choice
between the oblate (c) and the prolate (d) back-
bone arrangement is made by the spacer selection.

conformations for the same degree of nematic ordering of pendant rods depending on the type of linking the
mesogenic groups to the backbone, Figs. 3.6(b)-(d). The local uniaxial symmetry of a nematic is preserved
whatever the coupling.

The mean square end-to-end vector remains sufficient to characterise the shape of a chain and its probability
distribution, if it is long enough to be Gaussian. In a principal frame there are now three such mean square
quantities and in general we have:

〈RiRj〉= 1
3ℓi j L (3.17)
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Figure 3.7: Nematic polymer radii of gyra-
tion from neutron scattering. (a) MC ne-
matic polymers DDA-9 (filled circles) and
AZA-9 (open diamonds) in the isotropic and
nematic states. R‖ ∼ √

ℓ‖L along nnn be-
comes much larger than that perpendicular,
R⊥ ∼

√
ℓ⊥L. (b) A side-on polysiloxane

in the isotropic, nematic and smectic states.
The backbone’sR‖ (filled circles) flattens to
become shorter thanR⊥ (open circles) when
smectic. 0
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where now the effective step lengths form a tensorℓi j [compare with the analogous isotropic form, eqn (3.1)]
and define an anisotropic Gaussian distributionpN(RRR), uniaxial if the mesogenic units form an ordinary nematic
phase. Neutron scattering from deuterated test chains in melts gives the mean square radii of gyration.

Figure 3.7(a) shows the shape anisotropy of the polymer DDA-9, Fig. 3.5(a) (d’Allestet al., 1988). The
main-chain PLC melt anisotropy jumps from zero to a finite value on cooling through the transition temperature
Tni. With ever increasing nematic order at low temperatures, the anisotropy can increase to very high values as
the main chain polymer stretches out its backbone, see Fig. 3.6(a). For instance atT = 108oC, the ratio of radii
of gyration isR‖/R⊥ ∼ 8 giving a ratio of effective step lengthsℓ‖/ℓ⊥ ∼ 60. Still larger values obtain below this
temperature. This ratio determines mechanical effects in nematic elastomers.

Side chain polymers of both the extended and flattened backbone varieties have been studied as well (Ohmet al., 1988;
Cotton and Hardouin, 1997). In general their anisotropy is less extreme because the backbones are less strongly
coupled to the ordering rods – see Fig. 3.7(b) (Lecommandouxet al., 1997).

In uniaxial polymers, mean square sizes in all directions inthe plane perpendicular tonnn are identical,Rx =
Ry = R⊥. For such nematic polymer melts with the directornnn alongzwe have the accordingly uniaxial tensor of
step lengths:

ℓℓℓ
o
=





ℓ⊥ 0 0
0 ℓ⊥ 0
0 0 ℓ‖



→ ℓ⊥δδδ +[ℓ‖− ℓ⊥]nnnnnn in a general coordinate system. (3.18)

whereℓ‖ andℓ⊥ are the effective lengths of steps in the directions parallel and perpendicular tonnn and depend on
Q. Thus〈R2

z〉= 1
3ℓ‖L and〈R2

x〉= 〈R2
y〉= 1

3ℓ⊥L (cf. Figs. 3.6 and 3.7).
The tensorℓℓℓ defines the spheroid of gyration〈RiRj〉, eqn (3.17). Figure 3.8 extracts only the backbone from

the sketches in Fig. 3.6, in particular ignoring the rods in side-chain polymers. We then have the appropriate
uniaxial prolate and oblate spheroids, withδℓ > 0 andδℓ < 0, respectively. The isotropic phase has its gyration
tensor in the shape of a sphere and hence hasδℓ = 0. The Gaussian distribution of chain conformations,p(RRR),

Figure 3.8: The gyration tensor spheroids.
The arrow indicates the nematic director.
The rods are suppressed in the diagram.
Their coupling to the backbone may pro-
duce prolate (elongated alongnnn) or oblate
chain conformations.

n

R

R

must be generalised for the anisotropic case:

p(RRR) =

[(
3

2πL

)3 1
Det[ℓℓℓ ]

]1/2

exp

(

− 3
2L

Riℓ
−1
i j Rj

)

. (3.19)
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The inverse step length tensor isℓℓℓ−1 = Diag
(

ℓ−1
⊥ , ℓ−1

⊥ , ℓ−1
‖

)

in its diagonal frame (see eqn (2.2) for a reminder

of this notation), with the distribution in this frame being:

p(RRR)∼ exp

(

− 3R2
x

2ℓ⊥L
−

3R2
y

2ℓ⊥L
− 3R2

z

2ℓ‖L

)

. (3.20)

This distribution determines nematic rubber elasticity, just as the isotropic distribution (3.3) led to the entropic
spring energy (3.8) and thus to classical rubber elasticity.

It is possible to give explicit expressions for the step length tensorℓℓℓ within specific models of polymers
that turn out to work very well. See for instance that of a freely jointed nematic main chain polymer treated in
WT§3.2, exercise 3.1. The anisotropy for a nematic main chain freely jointed polymer is

r =
ℓ‖
ℓ⊥

=
1+2Q
1−Q

∼ 1+3Q for Q small. (3.21)

Experimentally, side chain polymers in fact obey the same kind of dependence of shape tensor on order parameter
although one would expect for such polymers the angular relationship between chain steps and the rod alignment
to be different.





CHAPTER 4. CLASSICAL ELASTICITY

The deformation tensorλλλ has arisen naturally in the derivation of classical rubber elasticity. In the form given
by eqn (3.7) it is appropriate for small and large strains alike, which is as well since rubber is capable for
strains up to many hundreds of percent. Since we are concerned with elasticity of a new and unexpected form,
with hitherto unsuspected phenomena to be summarised in thenext chapter, we devote some space to reviewing
the symmetry character ofλλλ , from whence the effects will arise. We also examine the structure of non-linear
elasticity and the connection with linear elasticity commonly used to describe solids at small strains. In contrast
to classical elasticity, nematic rubber elasticity relieson the coupling of the rotations of internal degrees of
freedom (the directornnn) to not only elastic strains but also body rotations. We thusillustrate the geometry of
deformations and local rotations in order to prepare for this new type of elasticity. We note that incompressible
distortions are all essentially shears; even the simple extensions and compressions of the rectangular block in
Fig. 3.3 are shears, just viewed from a rotated coordinate frame. Deformations, not in general symmetric or
anti-symmetric, can be broken down into symmetric (pure shear) and rotational components. This will be useful
in considering the mechano-orientational responses and instabilities of nematic elastomers. Intimately related
to this symmetric/anti-symmetric resolution of strains are the square roots of tensors. We discuss them in this
context, though principally to introduce them for the latertreatment of soft elasticity.

There is a large literature on the fundamentals of elasticity, for instance, the book by Atkins and Fox (1980)
gives a good and compact overview, including the definitionsof the various distortion and strain tensors and the
more general requirements of invariance. Murnaghan (1967)discusses non-linear elasticity, symmetry require-
ments and the roots of tensors. Treloar (1975) also reviews elasticity in the context of rubber.

4.1 THE DEFORMATION TENSOR ANDCAUCHY–GREEN STRAIN

Consider a reference spaceSR of the relaxed body before deformation to a target spaceST. A material pointRRRo

in SR becomesRRR= RRRo+uuu(RRRo) in ST, see Fig. 4.1. The deformation records how differently neighbouring points
are displaced (byuuu) and hence how their relative separation is deformed from its relaxed value. The deformation
gradient tensor is defined as:

λi j =
∂Ri

∂Ro j
, (4.1)

see Fig. 4.1 [compare with eqn (3.7)]. It is clear that only the gradients of displacement contribute to physical
effects: the uniform displacement fielduuu corresponds to the movement of the body as a whole. Some authors
denoteλλλ by FFF . We shall sometimes refer to it simply as the deformation tensor.

If the target space transforms under rotations, represented by the matrixUUU , asRRR′ =UUU ·RRR, and the reference
space transforms under rotationsVVV asRRR′

o =VVV ·RRRo, then the deformation tensor deforms as

λ ′
kl = Uki

∂Ri

∂Ro j
VT

jl (4.2)

λλλ ′ = UUU ·λλλ ·VVVT or conversely λλλ =UUUT ·λλλ ′ ·VVV . (4.3)

See Sect. 4.3.1 for more on rotations, in particular the end of that section for explicit forms of matrix repre-
sentationsUUU andVVV of finite rotations. Thusλλλ records the character of both the target and reference states.
The connection with both spaces is quite different in character from the Cauchy tensors to be introduced below.
Approaching large amplitude elasticity throughλλλ makes dealing with non-linearities easier than via retaining
non-linear terms in the Cauchy strain formalism of conventional elasticity which we outline in Sect. 4.2. Also
rotational information about the mapSR → ST is retained.

Isotropic systems are invariant under rotationsVVV of SR and the system’s final energy must be invariant under
rotations ofST . (If SR is crystalline, the invariance under the relevant point group instead of underVVV is required).
The rubber free energy (3.13) is a good vehicle to discuss this. F is a function of the combination

λλλ T ·λλλ =VVVT ·λλλ ′T ·UUU ·UUUT ·λλλ ′ ·VVV =VVVT ·λλλ ′T ·λλλ ′ ·VVV .

25
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Figure 4.1: The deformation of an elastic body. A point with the coordinateRRRo in a reference spaceSR is moved
to a new positionRRR in a target spaceST . The deformation is fully described by a field of displacement vectors
uuu(RRRo) at each point in the initial body shape. The material pointRRRo is thereby displaced byuuu(RRRo) to RRR. The
matricesVVV andUUU are the rotations relevant forSR andST respectively.

Thus the productλλλ T ·λλλ is invariant under body rotationsUUU of the final (target) spaceST ; it is called the right
Cauchy–Green deformation tensor

CCC= λλλ T ·λλλ , CCC=VVVT ·CCC′ ·VVV. (4.4)

EvidentlyCCC transforms as a second rank tensor in the reference spaceSR.
The rubber elastic free energy in the initial (unprimed) frame can be expressed in terms ofCCC′:

F = 1
2µ Tr

(

CCC
)

= 1
2µ Tr

(

VVVT ·CCC′ ·VVV
)

= 1
2µ Tr

(

CCC′ ·VVV ·VVVT
)

= 1
2µ Tr

(

CCC′
)

(4.5)

(by cyclical properties of the trace).F is invariant under rotations of the reference state becausethe trace of the
productλλλ T ·λλλ is. The form of the free energy in terms ofCCC is then identical to that in terms ofCCC′.

For completeness, the left Cauchy–Green tensor isBBB= λλλ ·λλλT. In contrast toCCC, it is invariant under rotations
of the reference state and transforms like a second rank tensor in the target stateST :

BBB= λλλ ·λλλ T; BBB=UUUT ·BBB′ ·UUU . (4.6)

Importantly, the elastic energy can be equivalently expressed in terms of the left Cauchy–Green deformation
tensor, although this is much less common approach because the invariance of the current (target) state is often a
more relevant condition (Lubenskyet al., 2002).

In general, the scalar free energy densityF must be a function purely of the rotational invariants ofCCC (or BBB,
if this is the chosen representation). Such invariants of a second-rank 3×3 tensorCi j are well known in linear
algebra, and are usually calledI1, I2 andI3. Explicitly:

I1 = Tr
(

CCC
)

, I2 =
1
2

[(

Tr
(

CCC
))2

− Tr
(

CCCT ·CCC
)]

, I3 = Det
(

CCC
)

. (4.7)

Since these are rotational invariants, they are the same in all frames, including the diagonal frame. It is therefore
sufficient to write their expressions in terms of the eigenvaluesC1, C2 andC3 of CCC. This yieldsI1 =C1+C2+C3,
I2 =C1C2+C2C3+C3C1 andI3 =C1C2C3.

We have seen that the separation of compressional and rubber-elastic energy scales ensures that distortions are

at essentially constant volume, that isI3 =
(

Det
(

λλλ
))2

= 1 and is not considered further. Classical molecular

theory, eqn (3.12), producesF = 1
2µ I1 which is a reasonable first approximation, valid up to surprisingly high

extensions into the non-linear (large strain) regime. It isimpossible to adopt a simpler result. The Mooney-
Rivlin attempt to account phenomenologically for deviations due to entanglements and other causes, invokes the
simplest possible correction, giving forF :

F = c1I1+ c2I2 . (4.8)
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This modification is not entirely successful and gives no clue about the origins of the deviation from purely
classical behaviour measured by the phenomenological coefficient c2 in eqn (4.8). More fitting scope is given
by the Ogden rubber elastic free energy (Ogden, 1972). However, we are concerned with much more dramatic
departures from classical behavior than those likec2I2 and concentrate on generalisations ofI1 contributions.

We shall re-examine the above rotational symmetry requirements for nematic elastomers in Sect. 6.2.3: there
is, in fact, an additional hidden symmetry that leads to so-called ‘soft elasticity’ or a ‘Goldstone mode’ of their
mechanical response. This is the subject of Chapter 6. For large deformations and for these new elastic modes,
considerations at the level ofI1, or rather its generalisation for nematics, will turn out tobe sufficient.

COMPATIBILITY CONSTRAINTS

Distortions are in general non-uniform and thusλλλ (RRRo) depends on the position in the body where it is measured.
There are then certain conditions ofgeometric compatibilitythat the components ofλλλ must satisfy. The elements
of this matrix cannot be completely independent because, ineffect, there are only three independent components
of the vectoruuu(RRRo) that determine all components ofλi j . Mathematically, this geometric compatibility is most
obvious when one calculates the second derivative, in whichthe order of derivatives is immaterial:

∂λi j

∂Rok
=

∂ 2Ri

∂Ro j∂Rok
≡ ∂ 2Ri

∂Rok∂Ro j

i.e.
∂λi j

∂Rok
=

∂λik

∂Ro j
(4.9)

for all possible combinations of indicesi, j,k from the setx,y,z. Of course, when the components of strain
tensor are constant, all second derivatives are zero and compatibility is satisfied automatically. However, in
many cases, for instance in modulated structures such as cholesteric elastomers or around topological defects,
the deformations are naturally non-uniform and have to comply with this constraint.

In cholesteric elastomers with the pitch axis alongzzz, the director and the anisotropy associated with it rotate
in thexy-plane aszadvances. One might expect elastic deformations such asλxy(z) which would demand shears
λxz(y) from compatibility, whileλxz(z) can freely exist without the need for further attendant, compatibility-
induced shears.

4.2 NON-LINEAR AND LINEAR ELASTICITY ; STRESSES

Strain-based descriptions of elasticity break down the deformation tensorλλλ into a unit tensorδδδ (no deformation)
plus a displacement gradient tensorui j = ∂ui/∂Ro j :

λi j = δi j +ui j . (4.10)

Considering the change in squared distances between neighbouring points on distortion leads to the right, finite,
symmetric strain tensorεi j :

εi j =
1
2

(

λλλ T ·λλλ − δδδ
)

i j
≡ 1

2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂ui

∂x j

∂u j

∂xi

)

→ 1
2 (ui j +u ji ) , (4.11)

the latter being the small strain limit. The strain is symmetric by construction.
The right strain tensorεεε has the symmetry ofλλλ T ·λλλ – it is invariant under rotationsUUU of ST and transforms

like VVVT · εεε ·VVV under rotations of the reference state,SR. The left strain tensorϕϕϕ could be derived fromλλλ ·λλλ T;

it would be invariant under rotationsVVV of SR and transforms likeUUUT ·ϕϕϕ ·UUU under rotations ofST . Thus when

nematic orderQQQ
o

arises inSR andQQQ arises inST , we can coupleQQQ
o

to εεε to form true scalars, such as Tr
(

εεε ·QQQ
o

)

,

andQQQ couples toϕϕϕ , since each transforms as tensors in the same space. These symmetry requirements are vital

for developments of nematic rubber elasticity using Cauchystrains, rather thanλλλ .
In the linear case, consider forcesfff acting on the surfaces of a small volume element in a body, seeFig. 4.2.

The stressσik at this point is the component of force,fi acting in theith direction, divided by the area of the
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Figure 4.2: Stressσσσ — a force per unit area of
a body element. (a) Forcesfff acting normally to
the ith element of surface generate diagonal (ex-
tensional) components of stress,σii , the normal
stresses. (b) Forces acting in the plane of the sur-
face element yield shear stress, off-diagonal com-
ponents of stress,σik.

fi

i

fi

k

(a) (b)

element of the surface with normal in thekth direction on which the force is acting. Diagonal elements ofthe
stress tensor are normal forces divided by the relevant surface area, the surface normal vector defined to be

outwards from the body. The hydrostatic pressure isp= − 1
3 Tr

(

σσσ
)

, that is the average of the normal stresses

with a minus sign since pressure acts inwards. Since force depends on the change of energy with extension,
actual expressions for the stress turn out to depend on derivatives of the free energy densityF with respect to the
strain:σik = (∂F/∂εik)T . See WT§4.2 where these issues are discussed with reference to rubber.

However, conventional elasticity breaks down for large strains on physical and geometrical grounds (Landau and Lifshitz, 1986
(i) The harmonic approximation toF is inadequate. Additional powers of invariants can be used in its expansion,
but ultimately at hundreds of percent strain only a molecularly basedF will be adequate.
(ii) One has to be more careful finding the stress than we have been above. The true stress is the ratio of the force
to thecurrentarea, that is the area in the deformed state. The engineeringstress is the ratio of the force to the
initial area. As area changes at large distortions, there are distinctions between the two.

Murnaghan, 1967, explicitly derives the expression for stress in terms of derivatives of the free energy density
with respect to strain in the non-linear regime, taking intoaccount changes in area. Take for example simple
extension along the vertical axis (call itz) of a classical rubber, sketched in Fig. 3.3. We consider an initially unit
cube so we can use the energy density in place of the total energy. Its current length in thez direction isλ . The
force fz acting on thez ends of the body is the rate of change of energy,F , with lengthλ , eqn (3.15):

fz = A
∂F
∂λ

= Aµ
(

λ − 1
λ 2

)

whereA is the initial area of the sample cross-section facing thez-direction (A= 1 in the unit cube). However the
real surface area of the cross-section in thisxy-plane is no longer unity, but has been reduced by 1/λ because of
constancy volume (the two perpendicular dimensions each contract by a factor 1/

√
λ ). The current area is thus

Aλ = A/λ . Dividing the force by thiscurrentarea we obtain for thetrue local stress in the elastic material:

σzz= fz/Aλ = λ ∂F/∂λ = µ(λ 2−1/λ ) . (4.12)

Microscopically, as the rubber is extended there is the samenumber of strands (connecting crosslink points)
crossing anxy-section of the rubber and conveying force (proportional to∂F/∂λ ), but the sectional area is
diminishing thereby increasing the force per unit area. Clearly λ ∂F/∂λ increases more rapidly than∂F/∂λ .

By contrast, theengineeringstress is the current force divided by theinitial area,A, atλ = 1 which makes it
much easier to measure. Whence

σe
zz= µ(λ −1/λ 2) ; fz = σe

zzA .

Accordingly, the production of mechanical work on such an extension is simplyδw = −σe
zzδλ , using the en-

gineering stress if we only measure the extension factor andnot the change in cross-section area. To account
for this, and for the true stress, the work density should be written taking into account the changing area of the
element at constant volume:

δw=−σzz

(
1
λ

)

δλ =−σzzδ (ln λ ). (4.13)

Of course, both versions converge to the same linear expression at small deformations: whenλ = 1+ ε with
ε ≪ 1 one obtainsδλ ≈ δ (ln λ )≈ δε. (Both the stresses expand toσzz≈ σe

zz= 3µε for a rubber in this limit.)

4.3 GEOMETRY OF DEFORMATIONS AND ROTATIONS
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Figure 4.3: The geometry of rota-
tions.

In conventional elasticity of isotropic bodies, the energyis invariant under
body rotations. We illustrate below how body rotations reflect the anti-
symmetric part,λλλ A , of the deformation tensorλλλ . To automatically render

rotations irrelevant, one can take the symmetric partλλλ S of λλλ . Alterna-

tively, one can work withCCC = λλλ T ·λλλ which is symmetric by construction
and where any rotations of the target state, which would appear as a mul-
tiplicative factor asUUU · λλλ , are also removed by construction. In liquid
crystal elastomers there exists an internal rotational freedom (the director)
with respect to which body rotations are important, see Chapter 1, page 3.
Accordingly we recall the geometry of rotations and of pure shears in more
detail than is usual in elasticity. We then give examples of the decompo-
sition of λλλ into its two components (λλλ S and rotations). A more mathe-
matical treatment, Sect. 4.3.2, on how this decomposition is achieved in
general, can be skipped. It is however ultimately related tothe question of
the square roots of tensors, which we discuss. Roots of tensors are needed
later in soft elasticity.

4.3.1 ROTATIONS

Consider infinitesimal rotations about a particular axis,ΩΩΩ, depicted in Fig. 4.3. The displacementuuu is uuu= ΩΩΩ×
rrr = rrr ′′′− rrr where the magnitude of the displacement isu= r⊥Ω, given by the rotation of an arm of lengthr⊥ by
an infinitesimal angleΩ about the axisΩΩΩ. Returning to the definitionλi j = ∂ r ′i/∂ r j we find theλλλ corresponding
to body rotations to be:

λi j = ∂ r ′i/∂ r j = δi j +
∂

∂ r j
(ΩΩΩ× rrr)i . (4.14)

One can write this more simply using the totally anti-symmetric Levi-Civita tensorǫi jk since then(ΩΩΩ× rrr)i =
ǫilmΩl rm. Using∂ rm/∂ r j = δ jm we have

λi j = δi j + ǫil j Ωl ≡ δi j +Ωlǫl ji . (4.15)

We can invert this relation to give:

Ωk =− 1
2ǫi jkλi j =−λ A

i j (i 6= j 6= k) (4.16)

since the Levi-Civita tensorǫi jk selects out the antisymmetric part,λλλ A , of λλλ . For instance, for infinitesimal
rotations (about the axisyyy), we have:

λλλ =

(
1 −Ωy

Ωy 1

)

= δi j +uA
i j (i, j = z,x) . (4.17)

Here, and in the worked examples below in Sect. 4.3.2, we suppress for compactnessy and just present the
non-trivial, 2×2 part of matrices describing effects in thexz-plane. The appearance in eqn (4.17) of the anti-

symmetric component of strain,uuuA =
(

0
Ω

−Ω
0

)

is the signal that rotation is involved.

The matrix representing rotation by a finite angleΩ about the axisy, in thexz-plane, is

WWWΩ =





cosΩ 0 −sinΩ
0 1 0

sinΩ 0 cosΩ



 . (4.18)

In the most general case, the rotation matrixWWW is determined by three Euler angles: two defining the orien-
tation of the axis,ΩΩΩ, and one specifying the amount of rotation,Ω, about this axis. It clearly agrees with
eqn (4.15) atO(Ω). Recall that matricesWWW representing rotations have the propertiesWWW ·WWWT =WWWT ·WWW = δδδ and

Det
(

WWW
)

= 1, that is they are proper orthogonal matrices. The above example was of transforming a body, that is

a position vectorRRR transforms asRRR′ =WWW ·RRR. More discussion of finite rotations and their coordinate-independent
representation is in WT Appendix E, on-line.
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4.3.2 SHEARS AND THEIR DECOMPOSITION

PURE SHEAR IS COMPOSED OF STRETCH AND CONTRACTION

The symmetric part ofλλλ , at constant volume, is pure shear. Despite appearances, simple extension and compres-
sion at right angles are in fact pure shear (at constant volume), but viewed in a rotated coordinate system. In the
infinitesimal case the rotation is by 45o. This is a trivial observation since any symmetric tensor isdiagonalisable
and in diagonal form the elements are only stretch or compression. For the illustration below, we are rotatingSR

andST in the same way.

Figure 4.4: Small, simple extension and
compression (broken lines; arrows indicate
the principal extensions and compressions)
when rotated by 45o is pure shear. The orig-
inal coordinate axes are shown unbroken.
Pure shear rotates vectorsRo embedded in
the solid towards the stretch axis.

45o

l1/l

qo
Ro

R

Exercise4.1: Confirm that the pure,xz-planar shear
(

A
λ

λ
A

)

, sketched in Fig. 4.4, is simply a uniform

extension/compression viewed at 45o. When at constant volume, determine the valuesλ ′
xx andλ ′

zz in
the associated diagonal frame.

Solution: Transform asλλλ ′ = WWW · λλλ ·WWWT with WWW
(π/4)

= 1√
2

(
1
−1

1
1

)

whence:λλλ ′ =
(

A+λ
0

0
A−λ

)

=
(

λ ′
0

0
1/λ ′

)

whereA is fixed by Det
(

λλλ
)

= 1 asA=
√

1+λ 2. At lowest order as shears are small,

λ ≪ 1, thenA≈ 1. In its original frameλλλ is recognisable as a familiar form of pure shear
(

1
λ

λ
1

)

. In

the new frame, it corresponds to an extensionλ ′(=A+λ ) alongx′ and a compression 1/λ ′(=A−λ )
alongz′, at constant volume, see Fig. 4.4. Infinitesimally,λλλ ′ ≈

(
1+λ

0
0

1−λ

)

.

When the original diagonal elements are not equal, then the principal axes are not at 45o and 135o, but must still

be orthogonal, sinceλλλ is symmetric. For
(

A
λ

λ
B

)

, with A> B say, the principal extensionsλ± and their angles

χ± to thex-axis are:

λ± = 1
2

(

A+B±
√

(A+B)2−4

)

and χ± =±cos−1

[

2(AB−1)

(A+B)2−4∓ (A−B)
√

(A+B)2−4

]1/2

. (4.19)

We have invoked incompressibility, that isλ 2 = AB−1. The two anglesχ± differ by π/2.

Exercise4.2: An example of shear strains in the context of rubber elasticity. Consider a pure, planar

x− zshear of magnitudeλ . The deformation gradient isλλλ =
(

A
λ

λ
A

)

and the equivalent small strain

is εεε =
(

A−1
λ

λ
A−1

)

(suppressing the unchangingy components for compactness inλλλ and inεεε). Show

that the elastic energy density isF = µ(A2+λ 2) = µ(1+2λ 2). Hence the modulus associated with
this distortion is 4µ which derives from the curvature of the free energy density,∂ 2F/∂λ 2

)

λ=0 at
zero shear.
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SIMPLE SHEAR IS COMPOSED OF PURE SHEAR PLUS ROTATION

Consider a deformationλλλ S =
(

a
λ

λ
a

)

acting in thexz-plane. Thenλyy = 1 and we suppress they parts ofλλλ in

the discussion. Figure 4.4 shows the body initially and after a pureshear. At 45o these are shown to be simple
extensions and compression, at least approximately for this finite deformation. Figures 4.5(a) and (b) show

simpleshearsλλλ a =
(

1
0

λ
1

)

andλλλ b =
(

1
λ

0
1

)

. For infinitesimalλ , since deformations are then additive, we can

l
l(a) (b) (c)

45o

l/2

z
z’

x

x’

l/2

Figure 4.5: Simple shears (a) and (b)
add to give pure shear, Fig. 4.4. Sim-
ple shear can also be decomposed
into the rotation and the pure shear
components (c):Smallsimple shears
λ are pure shears in a coordinate sys-
tem (x′-z′), followed by a rotation of
–half the shear angle (λ/2) from the
original (x-z) system.

regard the pure shearλλλ S =
(

a
λ

λ
a

)

, Fig. 4.5(c), as being made up of two such simple shears in thetwo relevant

directions:
(

a λ
λ a

)

≈
(

1 0
0 1

)

+

(
0 λ
0 0

)

+

(
0 0
λ 0

)

(4.20)

The entrya∼ 1+O(λ 2) in λλλ S ensures volume conservation:

Det
(

λλλS
)

= 1= a2−λ 2 → a=
√

1+λ 2 (4.21)

Material pointsRRRo at aθo 6= 45o, see Fig. 4.4, are transformed to pointsRRR which have a different final angle
which increases,θ > θo, for initial anglesθo < 45o. The angle diminishes,θ < θo, for initial anglesθo > 45o.
Thus vectorsRRRo are drawn toward the extension diagonal and repelled from the compression diagonal. Overall,
there is no rotation of the body. Recall Chapter 1, where a penalty D1 for director rotation relative to body
rotation of the solid was anticipated. We can regard theD1 coupling as being that of the director to the anti-
symmetric part of deformations. Figure 4.4 and the above discussion of the attraction ofRRRo toward the extension
axis suggests another coupling,D2 of nnn to λλλ , but this time toλλλS rather than toλλλA .

Simple shear has been seen to possess a component of pure shear. Additionally, simple shear has a component
of rotation. For example in the limit ofsmalldistortionsλ :

(
1 λ
0 1

)

=

(
1 λ/2

−λ/2 1

)

+

(
0 λ/2

λ/2 0

)

(4.22)

≈ WWW−λ/2
+ εεελ/2

. (4.23)

Thus,λλλ a of Fig. 4.5(a) is a rotationWWW−λ/2
through an angle−λ/2 and a pure, symmetric shearεεελ/2

of small

amplitudeλ/2, see Fig. 4.5(c). Simple shear is not so simple as pure shear!

THE POLAR DECOMPOSITION THEOREM

For finite deformations the decomposition is more complicated, but it is still true by the polar decomposition
theorem that any non-singular, non-symmetricλλλ can be broken down into products of a symmetric deformation
gradient tensor and an orthogonal tensor, in effect a pure shear preceded or followed by a body rotation:

λλλ = λλλ L ·VVV or UUU ·λλλR . (4.24)
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The rotations are denoted as before byVVV or UUU depending upon which space they act on. The form of the

accompanying symmetric deformationsλλλ S will also depend on whether they precede or follow rotationsand

have been denoted byλλλ R andλλλ L because they yield the Cauchy-Green tensorsCCC andBBB respectively. Since they
are symmetric, a frame can be found in which they are diagonal, and in which the deformations are therefore
simple:

λλλ S =





λ1 0 0
0 λ2 0
0 0 λ3



 thus R1 = λ1Ro1, R2 = λ2Ro2, R3 = λ3Ro3 . (4.25)

Hence all deformations are extensions (λi > 1) or compressions (λi < 1). Thusλλλ R and λλλ L are the right
and left stretching tensors, respectively. This procedureis an example of the polar decomposition theorem

(Horn and Johnson, 1991) which holds for non-singular matricesλλλ . One requires that Det
(

λλλ
)

> 0, which

means geometrically (i) that deformations do not shrink a body to a point, Det
(

λλλ
)

= 0; or (ii) cause the body

to pass through itself, Det
(

λλλ
)

< 0 (Atkins and Fox, 1980).

Exercise4.3: Show that simple shear can be broken down into a combination of symmetric distortion
and body rotation, that is:

(
1 λ
0 1

)

=

(
cosΩ sinΩ
−sinΩ cosΩ

)

· 1√
4+λ 2

(
2 λ
λ 2+λ 2

)

≡UUU ·λλλ S

where sinΩ = λ/
√

4+λ 2. Check that the symmetric shear tensor is volume-preserving, that is

Det
(

λλλ S
)

= 1. Note that for small amplitudes the rotation isΩ ∼ λ/2, see Fig. 4.5. For large shears

the rotation isΩ = π/2.

Exercise4.4: Break down ageneral xz-distortionλλλ into a combination of symmetric distortion,λλλ s,
followed by body rotation,UUUΩ, abouty.

Solution:Let λλλ be broken down as:

(
λxx δ
δ ′ λzz

)

=

(
cosΩ sinΩ
−sinΩ cosΩ

)(
a d
d b

)

≡UUUΩ ·λλλ S .

Multiplying out the right-hand side and comparing with the corresponding elements on the left-
hand side, one obtains four simultaneous equations. Eliminating between them in pairs one obtains
equations for each ofa andb and two equations ford. Equating the latter two, one obtains for the
rotation:

tanΩ = (δ − δ ′)/(λxx+λzz) (4.26)

Thus sinΩ= (δ −δ ′)/∆ where∆=
√

(λxx+λzz)2+(δ − δ ′)2 and similarly for cosΩ in the rotation
matrix. Note, there is no body rotation forλλλ symmetric, that isδ = δ ′. Restoring sin and cos to the
expressions fora, b andd gives for the symmetric shear tensor:

λλλS =
1
∆

(
λxx(λzz+λxx)− δ ′(δ − δ ′) λxxδ + δ ′λzz

λxxδ + δ ′λzz λxx(λzz+λxx)+ δ (δ − δ ′)

)

. (4.27)

We use this decomposition in Sect. 6.2.4 to under stand the soft deformations of nematic elastomers
since the rotational component takes great physical significance when director rotation dominates
the response.
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PRINCIPAL EXTENSIONS

Symmetric distortionsλλλ have no rotational component and their principal extensions and compressions are
perpendicular to each other and at±45o to the laboratory axes (exercise 4.1) when distortions are small. We
have seen that any asymmetry inλλλ implies there is a component of pure (irrotational) shear plus a certain
degree of local rotation. In nematic rubber elasticity it isuseful to identify these components separately. It is
also interesting to examine the principal directions of extension/compression of an arbitraryλλλ . These are the
directions in which an element of the body is extended or compressed without being realigned; in the general
case they are not perpendicular to each other.

Exercise4.5: Find the eigenvectorseee± and eigenvaluesλ± of a deformationλλλ =
(

A
λ ′

λ
A

)

in thexz

plane, whereA=
√

1+λ λ ′ ensures Det
(

λλλ
)

= 1.

Solution:The eigenvalues are the roots of the characteristic equation for the non-symmetricλλλ :

Det
(

λλλ −λ±δδδ
)

= λ 2
±−2Aλ±+A2−λ λ ′ ≡ λ 2

±−2Aλ±+1= 0 ,

also using Det
(

λλλ
)

= 1. This quadratic equation does not always have a solution (as not every non-

symmetric matrix can be diagonalised), e.g. the case of simple shear,λ ′ = 0 is degenerate. When
the solution exists, the principal extensions(+) or compressions(–) are:

λ± =
√

1+λ λ ′±
√

λ λ ′

with the corresponding (normalised) eigenvectors and angle between them:

eee± =
1

√

1+λ ′/λ

(

1,±
√

λ ′/λ
)

χ = cos−1 (eee+ ·eee−) = cos−1
(

λ −λ ′

λ +λ ′

)

.

The symmetric caseλ = λ ′ clearly yields perpendicular directions. The limit of simple shear,λ ′ →
0, with pure shear and rotation in equal measure in the infinitesimal case, is degenerate.

We shall describe soft distortions of nematic elastomers where rotations are important. When determining direc-
tions associated with pure extension/compression the diagonal elements ofλλλ will not be equal as here.

SQUARE ROOTS AND POLAR DECOMPOSITION OF TENSORS

The square root of a tensor is, most simply, a tensor that whenmultiplied by itself returns the original tensor.
Representing tensors by matrices and adopting the principal frame, tensor multiplication is achieved by multiply-
ing the corresponding diagonal elements. It is then easy to construct the square root tensor by taking the square
root of each diagonal element. One can then subsequently rotate to a general coordinate frame. This procedure
is only valid for the roots of symmetric tensors. More general results are required when such tensors are used
to describe soft and semi-soft rubber elasticity. By the polar decomposition theorem we discuss below, we can
find a symmetric tensor followed by a rotation to represent any deformation. In fact this theorem and the roots of
tensors are deeply related. We conclude with the connectionbetween decompositions of non-singular matrices
in general and a practical algorithm for finding the pure shear times rotation for general deformations.

Exercise4.6: Show in a general frame, where a symmetric matrixXXX is not necessarily diagonal, that

the product of roots is as expected:XXX1/2 ·XXX1/2 = XXX. (We shall only require the roots of symmetric
tensors in these notes.)

Solution: Let UUU be the rotation that takes one from the current frame to the principal frame where
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XXX is represented by the diagonal matrixXXX
D
=





x1 0 0
0 x2 0
0 0 x3



. The definition of the root in the

diagonal frame is:

XXX
D
= XXX1/2

D
·XXX1/2

D
, with XXX1/2

D
=





√
x1 0 0
0

√
x2 0

0 0
√

x3



 .

Post- and pre-multiply this equation byUUU andUUUT to give on the left hand sideXXX =UUUT ·XXX
D
·UUU . On

the right-hand side insert between the factors ofXXX1/2
D the unity in the formδδδ =UUU ·UUUT. Judiciously

inserting some brackets to guide the eye, one obtains:

UUUT ·XXX
D
·UUU = (UUUT ·XXX1/2

D
·UUU) · (UUUT

︸ ︷︷ ︸

δδδ

·XXX1/2
D

·UUU),

which can be rewritten as

XXX = XXX1/2 ·XXX1/2 .

The result is evidently true in all frames.

A sketch of the proof of the polar decomposition theorem brings us into contact with the more general

properties of the square roots of tensors. TakeCCC= λλλ T ·λλλ , which is symmetric by construction. Since Det
(

CCC
)

=

Det
(

λλλ T ·λλλ
)

=
(

Det
(

λλλT
))2

> 0, the matrixCCC is also non-singular. A non-singular matrix has at least 2µ non-

similar roots, whereµ is the number of distinct eigenvalues (AAA andBBB are non-similar if they cannot be related by
AAA=WWW ·BBB ·WWW′ whereWWW andWWW′ are proper, orthogonal matrices). There are also not more than 2ν non-similar
roots, withν the number of Jordan blocks inCCC. At least one of these roots is a polynomial inCCC. Since in this

caseCCC is symmetric, then so will the polynomial roots be symmetric. Denote such a symmetric root byλλλ R. Now

construct a matrixUUU = λλλ · (λλλR)−1. Then test whether this matrix is proper orthogonal by consideringUUUT ·UUU :

UUUT ·UUU =
(

λλλR
)−1

·λλλ T ·λλλ ·
(

λλλ R
)−1

=
(

λλλR
)−1

·CCC ·
(

λλλ R
)−1

(4.28)

≡
(

λλλR
)−1

·
(

λλλ R
)2

·
(

λλλR
)−1

= δδδ (4.29)

which confirms thatUUU is indeed orthogonal. Inverting the definition ofUUU , we recover the desired decomposition

λλλ = UUU ·λλλR. Thus the utility of constructing Cauchy tensors fromλλλ and that of roots of tensors are intimately
related.
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Nematic networks can be highly rubbery, that is capable of large extensions and composed of molecules with
liquid-like mobility. The difference between nematic and classical elastomers is principally only that of molecular
shape anisotropy induced internally by the liquid crystalline order, Fig. 5.1. The simplest description of nematic
rubber elasticity is essentially an extension of classicalmolecular rubber elasticity, reviewed in Chapter 3. We
shall accordingly call this nematic rubber elasticity theory ‘neo-classical’, referring to the identity of approach.It
will be introduced in this chapter phenomena not involving rotations of the director and complex strains explored.
Its further richness is explored in subsequent chapters when director rotation is considered.
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m

Figure 5.1: Chain shape changes drive the shape
changes of the network as a whole. The de-
tailed chains of Fig. 3.3 have been replaced by
spheroids characterising their (anisotropic distribu-
tion of shapes. For example, a chain extending
from on average a sphere to a prolate spheroid in-
duces a macroscopic elongationλm > 1. For a
chain that flattens to an oblate shape, the shape
change would be a contraction,λm < 1, along the
principal axis, that is along the nematic directornnn.

5.1 NEO-CLASSICAL THEORY

The number of configurations of a test strand, connecting twocrosslinks separated by a distanceRRR in a nematic
network, is proportional to the anisotropic Gaussian distribution we saw in Chapter 3, eqn (3.19):

p(RRR) ∝

(

1
Det(ℓℓℓ)

)1/2

exp

(

− 3
2L

RRR· ℓℓℓ−1 ·RRR
)

. (5.1)

The effective step length tensorℓℓℓ reflects the current nematic ordering in the network. At formation however,
the span between the links wasRRRf , say, and the shape of the chains at that time was described bya Gaussian
distribution similar in form to eqn (5.1) but with a step-length tensorℓℓℓ

o
. One reason the distributions might differ

is that the temperature, and hence the nematic order, of the two states differs. If the formation condition was
nematic, another reason might be the current director adopting a direction different from the director orientation
at formation.

The probability of having crosslinked the current spanRRR into the network ispo(RRRf), that is the probability
of finding at formation the spanRRRf that RRR derives from. The distributionpo is of the same form as eqn (5.1),
but instead governsRRRf and has the step length tensorℓℓℓ

o
. For the moment we take the subscripto to denote

formation which we identify with the conditions before deformation is imposed. As in Chapter 3, we assume
affine deformation: the total deformation tensorλλλ

t
from the formation to the current state is what took the initial

spanRRRf to becomeRRR, that isRRR= λλλ
t
·RRRf . The subscriptt on λλλ denotes total deformation, which is needed in

case there were several deformation steps between formation (RRRf) and currently (RRR). For instance there could be
a spontaneous distortion associated with changing conditions, followed then by an imposed distortion. The free
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energy of a strand,Fs, averaged over formation conditions, is then:

Fs = −k BT〈ln p(RRR)〉po(RRRf)

=
3k BT

2L
〈Riℓ

−1
i j Rj〉+

k BT
2

ln

(
Det(ℓℓℓ)

a3

)

≡ 3k BT
2L

〈RRR· ℓℓℓ−1 ·RRR〉+ . . . . (5.2)

The ln(Det)-term arises from the normalisation of the probability, theprefactor in (5.1). Inserting thea3 in
the normalisation logarithm gives an arbitrary, additive constant. It is done simply to make the argument of
the logarithm dimensionless. The ln Det contains the nematic order, via the step-length tensorℓℓℓ, but not the
deformationλλλ . We shall generally only display it when it plays a role, thatis, when themagnituderather than
directionof nematic order changes. The free energyFs can be simplified by usingλλλ

t
andRRRf for RRR:

Fs =
3kBT

2L
〈RRRf ·λλλ T

t
· ℓℓℓ−1 ·λλλ

t
·RRRf〉po . (5.3)

The average over the initial span is easy – the second moment of the Gaussian distribution is〈RRRfRRRf〉po(RRRf )
= 1

3ℓℓℓo
L

whence the free energy of a strand is finally:

Fs =
1
2k BT Tr

(

ℓℓℓ
o
·λλλ T

t
· ℓℓℓ−1 ·λλλ

t

)

+ 1
2k BT ln

(
Det(ℓℓℓ)

a3

)

. (5.4)

This is what we call the neo-classical free energy of an average network strand since it is a simple generalisation
of classical, Gaussian rubber elasticity. To convert it to afree energy densityF we should simply count the
number of such network strands,ns, per unit volume:F = nsFs. We have seen that the combinationnsk BT is µ ,
the linear shear modulus of an isotropic rubber with this density of network strands. The free energy density is
then

F = 1
2µ Tr

(

ℓℓℓ
o
·λλλT

t
· ℓℓℓ−1 ·λλλ

t

)

(5.5)

All the nematic rubber phenomena we describe will arise fromthis free energy and some non-ideal deviations
from it. The deviations will arise from entanglements, compositional fluctuations, crosslinks of finite size and
related random field effects. We shall frequently refer to itas theTrace formula. Ideally, it is valid for all,
including very large, deformations and is only limited by extensions sufficient to so stretch network chains that
they violate Gaussian statistics. It records, viaℓℓℓ

o
andℓℓℓ, the initial and current directorsnnno andnnn of the elastomer,

unlike the free energy of a liquid nematic whereF depends only on the current director. The initial and current
magnitudes of the local nematic order parameter,Qo andQ, are also contained inF through the anisotropy ofℓℓℓ

o
andℓℓℓ.

Smectics have an underlying nematic order and in a moleculartheory of such elastomers we again employ
this free energy, but heavily modified by the dominating influence of the layers.

The free energy (5.5) has a very rich structure compared withthe classical result Tr
(

λλλ T ·λλλ
)

. The distortions

appear now not as simple formsλλλ T · λλλ , but rather in the combinationλλλ T · ℓℓℓ−1 · λλλ . Thus the current (after

deformation) nematic state of the body is encoded into the elastic energy via the sandwiched factor ofℓℓℓ−1. The

main principal direction ofℓℓℓ−1, the directornnn, is not necessarily along a principal direction ofλλλ . Diagonal
elements ofλλλ (simple extensions and compression) can now couple with off-diagonal elements (shears), for
instance giving terms likeλxxλzx in the free energy. This does not occur in classical rubber elasticity. The
structureλλλT ·ℓℓℓ−1 ·λλλ also allows local torques and rotations to be applied to nematic elastomers, thereby coupling

mechanical effects to the internal nematic freedom. Finally, the combinationλλλ T · ℓℓℓ−1 ·λλλ couples toℓℓℓ
o
, that is to

the original directornnno of the state before deformation, thereby coupling the current strains and director to the
original anisotropy of the solid matrix, see Chapter 1, page3.
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At first sight F seems rather tensorial, but it is easily dissected with a fewexamples where directions are
unchanging (for instance that of the director and the step length tensors) and where the tensor structure is always
diagonal and hence trivial. Most trivially, if the formation and current states are both isotropic, that isℓℓℓ

o
= aδδδ and

ℓℓℓ−1 = a−1δδδ , then (5.5) collapses to the classical resultF = 1
2µ Tr

(

λλλ T ·λλλ
)

. For the remainder of this chapter,

we shall consider simple examples not involving director rotation: We defer until the next chapter questions of
shear, of continuous rotations of the director induced by fields, and of torques in general. These lead to yet more
new phenomena and in effect a new elasticity.

5.2 SPONTANEOUS DISTORTIONS

Consider an elastomer formed in the isotropic state, that iswith ℓℓℓ
o
= aδδδ . It is cooled to its current, relaxed,

monodomain nematic state. The chains now have a natural shape described by the tensorℓℓℓ
r
, the subscript{r}

denoting ‘relaxed’. No stresses or constraints have been applied to it and thus anyλλλ
t
is aspontaneousdistortion,

λλλ
m

. From the symmetry of the phase that has developed on cooling, the distortion must be uniaxial and directed
alongnnn. It must also be volume preserving. Taking the director to bealongzzz, that isnnn = zzz, the deformation
tensorλλλ must have its principal extension element alongzzz. Call this componentλ , whence the whole matrixλλλ
can only be:

λλλ =





1/
√

λ 0 0
0 1/

√
λ 0

0 0 λ



≡ λλλ T . (5.6)

The inverse step length tensorℓℓℓ−1
r

in the same system of coordinate axes is:

ℓℓℓ−1
r

=





1/ℓr
⊥ 0 0

0 1/ℓr
⊥ 0

0 0 1/ℓr
‖



 . (5.7)

Evaluating the free energy reduces to the trivial problem ofmultiplying four diagonal matrices that form
[
(aδδδ ) ·

λλλ T · ℓℓℓ−1
r

·λλλ
]

and then tracing the result, that is summing along the diagonal. We take

Tr





a/(λ ℓr
⊥) 0 0

0 a/(λ ℓr
⊥) 0

0 0 aλ 2/ℓr
‖



→ 1
2µ

(

λ 2 a
ℓr
‖
+

2
λ

a
ℓr
⊥

)

. (5.8)

The free energy is close to that of a classical elastomer undergoing uniaxial extension, but there are separate
factorsa/ℓr

‖ anda/ℓr
⊥ for the parallel and the two perpendicular directions – the imbalance between the directions

induces shape change.
Unconstrained, the system will adopt a spontaneous extension λ minimising the elastic free energy density

(5.8). Taking∂F/∂λ = 0, we immediately conclude that on cooling from formation tocurrent conditions, there
must be a spontaneous uniaxial elongationλm, of (Abramchuk and Khokhlov, 1987; Warneret al., 1988):

λm =
(

ℓr
‖/ℓ

r
⊥
)1/3

≡ r1/3 , (5.9)

defining the anisotropyr, the ratio of the step lengths. The result offers possibilities for temperature controlled
actuation. We have assumed in this example a chain elongatedby its nematic order to a prolate shape. If by
contrast the chain backbone were flattened by nematic order to an oblate shape, then the above elongation on
leaving the nematic state would become instead a contraction.

Does the solid that the chains form allow them to become isotropic in shape on average when they leave the
nematic state? One might doubt whether this is possible since the rubber is constrained to preserve volume as it
reacts to changing order by deforming. De Gennes (de Gennes,1969) posed this problem; for ideal chains it is
possible — see WT Ex. 5.2 for a discussion. Ideal chains have an isotropic shape distribution after entering the
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Figure 5.2: (a) Spontaneous distortion,λ , and nematic order parameter,Q (Clarkeet al., 2001), plotted against
temperatureT; (b) the optical birefringence,∆n, against temperature (Finkelmannet al., 2001a). Q is measured
from X-ray scattering, mainly from the aligned pendant side-chain rods. The birefringence is also a direct
measure ofQ, expressing the ordering of the most polarisable componentof the elastomer, the mesogenic rods.

orientationally isotropic state. There is therefore no memory of the chain shape anisotropy that pertained at the
crosslinking of such chains. An important theorem due to Golubovic and Lubensky (Golubovic and Lubensky, 1989),
about the attainability of deformationwithout energy costfor nematic elastomers, rests upon being able to obtain
such perfectly isotropic states despite topological constraints. We explicitly construct such soft deformations for
nematic elastomers.

Exercise5.1: If the formation state was nematic, with anℓℓℓ
o

characterised by principal valuesℓo
‖

andℓo
⊥, and the current state is also nematic (withℓℓℓ

r
), show that the spontaneous distortion in going

from formation to current states would beλm =

(
ℓr
‖

ℓr
⊥

ℓo
⊥
ℓo
‖

)1/3

. Check that for prolate elastomers there

is indeed spontaneousextensionon further cooling.

The spontaneous distortionλm =
(
ℓ‖/ℓ⊥

)1/3
from the isotropic state turns out to be central to all of nematic

rubber elasticity. Indeed, after relaxation has occurred,it is the only input to neo-classical rubber elasticity.
For Gaussian chains it is a direct, and indeed the only, measure of chain anisotropy at current conditions. Since
chains must be Gaussian to be rubbery, and since Gaussians are entirely determined by their second moments, the
ratio of these second moments,r = ℓ‖/ℓ⊥, is in Gaussian rubber elasticity theonlymeasure of chain anisotropy.
In discussing the shape anisotropy of nematic polymers, e.g. in Eq. (3.21), we denoted the ratio

(
ℓ‖/ℓ⊥

)
by

r. The step length ratio can be thus deduced from thermal expansion measurements,r = λ 3
m, see 5.9. It can

be correlated with direct measurements from neutron scattering from labelled chains in nematic elastomers at
the same conditions. This is a demanding situation for theory since there are finally no phenomenological free
parameters in this theory of ideal nematic rubber elasticity.

Side chain nematic elastomers spontaneously distort, Fig.5.2. Simple models of nematic polymers (freely
jointed for instance) relater to Q. Figure 5.2(b) shows thatQ andλm can be superposed, just as such models
propose they are closely related. We are interested in new mechanics and don’t pursue these molecular models
here; see WT§6.2 for that connection. Most anisotropic of all in shape arenematic elastomers composed purely
or partly of main chain polymers. Figures 5.3 show spontaneous shape changes of 350% are easily achievable.

Fromλs = 3.5= r1/3, we can conclude thatR‖/R⊥ = r1/2 = λ 3/2
s must give a ratio of the radii of gyration of

6.5. This large value is consistent with the values that emerge for main chain polymers from neutron scattering,
Fig. 3.7(a).
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Figure 5.3: Large shape changes (∼ 300%) in a mixed main-chain side-chain nematic monodomain elastomer,
with the director aligned along the vertical axis. (a) Contraction with temperature depicted as a series of stills. (b)
Quantitative measure of changing natural length; different curves correspond to the sample lifting an increasing
weight (Tajbakhsh and Terentjev, 2001), and work is done. Self-assembling thermoplastic nematic elastomers
allow drawing of thin fibers with a very high nematic alignment (Ahir et al., 2006), giving spontaneous length
changes of 500% and more.

Monodomains

To obtain spontaneous distortions one requires a uniform director field, that is a monodomain elastomer. They
result from several procedures: One can (Laceyet al., 1998) align a nematic polymer melt with a strong magnetic
field and then crosslink it. Two-step crosslinking (Küpferand Finkelmann, 1991) first lightly crosslinks to form
a weak gel which is then uniaxially stretched in either the isotropic phase atT > Tni or in the nematic phase.
The stretched sample is second crosslinked, which fixes the enforced uniaxial alignment. Provided the strain
imposed between the two crosslinking stages is great enough, the final elastomer will be a nematic monodomain
below a clearing temperature,Tni. Figure 5.4 (Küpfer and Finkelmann, 1991) shows both poly-and monodomain
versions of the same elastomer. The polydomain is opaque because of the strong light scattering by random
director textures. The monodomain is optically clear, withits birefringence axis (nematic directornnn) uniform
over the whole sample. This is in contrast to monodomains of ordinary nematic liquid crystals, which are cloudy
and turbid, because of director fluctuations. Nematic rubber elasticity is very different from liquid nematics.
Chapter 1, page 3, briefly discusses this difference betweenliquid and solid nematics. In elastomers, the director
is anchored to the rubbery matrix and there is an energy penalty even for long wavelength (nearly uniform)
director distortions. In ordinary liquid nematics these distortions are of vanishing energy and thus uncontrolled,

Figure 5.4: A monodomain nematic elastomer prepared by two-step crosslinking and the corresponding polydo-
main sample, which was not stretched before the second crosslinking stage (Küpfer and Finkelmann, 1991). The
free monodomain elastomer is perfectly transparent , whilethe polydomain sample is opaque unless stretched.
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whereupon they strongly scatter light.

5.3 NEMATIC PHOTOELASTOMERS

Figure 5.5: (a) The effect oftrans-
cis isomerisation on the nematic or-
der. Bentcis rods dilute the straight
trans rods and reduce the order. For
azobenzenes, photon absorption is
around 365 nm; reversecis-transiso-
merisation is either by thermal re-
laxation, or stimulated by light at
465 nm. (b) Potential landscape of a
dye moiety withcis andtransstates
and an intermediate absorption state.
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Photoisomerisable rod-like molecules undergo a moleculartransition from thetransto cisstate on absorbing
an appropriate photon, Fig. 5.5. Azo benzene is the most studied. They strongly bend and no longer contribute to
the nematic ordering; in fact, they act as an impurity and destabilise the nematic order. In effect illumination plays
a role equivalent to temperature elevation in reducing nematic order. One might then expect UV illumination to
induce contractions in nematic elastomers containing suchrods analogous to those observed thermally, which is
indeed observed (Finkelmannet al., 2001b; Hoganet al., 2002). Figure 5.6(a) shows a sizeable (> 20%) photo
contraction and subsequent dark-state thermal recovery, while Fig. 5.6(b) shows the same photoelastomer exhibit-
ing the usual uniaxial thermal contraction, for comparison. In this photoelastomer (Finkelmannet al., 2001b),
the rods that bend and thus disrupt the order are the crosslinkers. Irradiation and temperature increase play equiv-
alent roles; the common element between photo and thermal response is the dependence of length onQ, be it
changed by heat or illumination. Figure 5.7 shows stress andorder parameter changing together on illuminating
a clamped sample. Stress is a measure of the contraction werethe sample to be free. Photo-effects can be simply
modelled, for instance by mapping photo-response on to a known thermal response. Equally, the dynamics of
the response is simply and accurately modelled by describing the dynamics of photo transitions in the population
of dye molecules and assuming that the mechanical state follows these changes in dye population. See WT§6.4.
With photo-elasticity it is easier to obtain a new element — aspatially varying response since light is necessarily
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Figure 5.6: (a) The retractionλ against timet of a nematic photoelastomer, on exposure to UV radiation at
various temperatures (Finkelmannet al., 2001b). The reference state,λ = 1, is at high temperatures. (b) The
underlying thermalλ (T): arrows indicate the temperatures of the UV-experiments in(a).
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Figure 5.7: (a) The build up and decay of the fraction ofcis monomers on illumination with appropriate UV
light (Eisenbach, 1978). (b) The simultaneous plot of the exerted mechanical stress,∆σ – left axis, of a clamped
irradiated sample and the material birefringence∆n – right axis, which is a direct measure of order parameterQ
(Cviklinski et al., 2002).

absorbed and hence its intensity varies with depth. There can be significant bending of photoelastomers due to
the gradient of contractile strain across the sample thickness, associated with the gradient of light intensity in the
sample, Fig. 5.8. It is possible if light is being converted into heat at each dye molecule that some of the response

Figure 5.8: Bending of a nematic elastomer
doped with a photoisomerising rod-like dye
molecules. The full range of motion, on il-
lumination, is achieved in fractions of a sec-
ond (image: P. Palffy-Muhoray).

is also thermal, but temperature too clearly varies with depth, if diffusion is not too fast, and adds to the bend.
How thin the absorption region must be relative to the elastomer thickness to optimise bend is an interesting
question (Warner and Mahadevan, 2004). Too thin means that most of the volume is unaffected by the light and
resists the contraction of the upper skin and thus also frustrates bend. Too thick, and the elastomer contracts
uniformly with depth and there is overall contraction in favour of bend. Theory suggests that the absorption
length optimal for bend is about 1/3 of the sample thickness,in the case of exponential decay of intensity.

So far we have considered monodomain elastomers – for instance in Fig. 5.8 the director is along the long
dimension of the sample. The contraction in this direction determines the direction of bend. Polydomain nematic
polymer glasses have been shown (Yuet al., 2003) to bend too, the direction of bend being in the direction of
the light’s polarisation. The direction of bend readily changes as the plane of polarisation of the light is rotated.
Such photo-actuation in the equivalent elastomer polydomains would offer a greater degree of control than in
the monodomain case. The specificity of bend direction to polarisation suggests strongly that such mechanical
response is indeed due to photo-response and not simply a contraction in response to optically-generated heat
which would be nugatory in a polydomain. The mechanism for contraction of polydomain photo-elastomers is
thought to be subtle (Corbett and Warner, 2006). Contraction cannot be monotonic with increasing light intensity
since the isotropic sample achieved at very high light intensity must have the same shape as its polydomain parent
state that too is effectively isotropic. Contraction by director rotation of the passive domains with director at an
angle to the light polarisation to accommodate those domains affected by the light is a possibility – the following
Chapter addresses the role of director rotation and it will be a recurrent theme in all of these notes.





CHAPTER 6. SOFT ELASTICITY

Nematic elastomers possess a mobile internal degree of freedom, the rotations of a director. We now investigate
their elasticity allowing director rotations and shears. These influences render them unlike any other solid.
Director orientation allows a significant reduction in the elastic energy cost of shape change. For example a
nematic-mechanical instability occurs (Mitchellet al., 1993) where the director jumps discontinuously to allow
a nematic network to accommodate an imposed perpendicular strain. See the cartoon of Fig. 6.1; if the chain
distribution (aligned withnnn) rotates byπ/2 without change of character, the sample elongates perpendicular
and contracts along the original director direction. But there has been no essential distortion of the polymer

Figure 6.1: Accommodation of
chains by the shape changes of
the embedding solid. A solid with
dimensions in proportion to chain
dimensions changes by the given
factors when the director jumps by
90o.

network and hence no energy cost associated with this shape change. This transition is reminiscent perhaps of
the Freedericks transition in nematic liquid crystals where an electric field is applied perpendicular to the director
and induces rotation at a critical voltage, see WT§6.7 for discussion of this mechanical analogue in elastomers.
[Since the anchoring will turn out to be in the bulk and not at surfaces, and the field (stress) is applied at the
surfaces and not in the bulk, this should perhaps be called an“anti-Freedericks transition”.]

In this chapter we initially illustrate the role of rotationby discussing the relative rotation coupling con-
stantD1 (briefly mentioned in Chapter 1). The analogous couplingD2 of symmetric network strains to relative
rotations is also discussed. More generally, the director rotates in a continuous fashion. We then address the
observed singular nematic rotational response to strains and the apparent liquid-like mechanical response (low
storage moduli) observed for some strain geometries. We call this effect ‘soft elasticity’. Experiments confirm it
is indeed nematic rotations that make the new elasticity possible.

When softness occurs, its effect can extend up to 50-60% strain and much more than that (> 300%) in highly
anisotropic main-chain nematic elastomers. Then, ideally, even an infinitesimal applied stress will induce such
large strains before any elastic resistance is felt that theresponse to a stress is always non-linear – far beyond the
validity of linear theory. The full non-linear possibilities of the Trace formula offer the simplest way forward.

6.1 DIRECTOR ANCHORING TO THE BULK

Non-classical elasticity arises when the director rotatescontinuously during distortion; as preliminaries we con-
sider rotation either with no deformation, or with symmetric shears, the latter giving the first pointers to soft
elasticity.

6.1.1 DIRECTOR ROTATION WITHOUT STRAIN

Let the director rotate relative to the fixed matrix by an angle θ about they axis. The free energy density

with λλλ = δδδ is thenFel =
1
2µ Tr

(

ℓℓℓ
o
· ℓℓℓ−1

)

. Ignoring changes in the magnitudeQ, we have the current step-

length tensorℓℓℓ = UUUT
θ · ℓℓℓ

o
·UUUθ , rotated byθ from its original configuration before deformation. Recallthat

ℓℓℓ= ℓ⊥δδδ +(ℓ‖− ℓ⊥)nnnnnn. If we take out a factor ofℓ⊥, we haveℓℓℓ= ℓ⊥(δδδ +(r −1)nnnnnn) wherer = ℓ‖/ℓ⊥ measures
the anisotropy of the average chain shape spheroid, that is the deviation from a sphere. Equally, the inverse is
ℓℓℓ−1 = 1

ℓ⊥
δδδ +( 1

ℓ‖
− 1

ℓ⊥
)nnnnnn and one can take out a factor of 1/ℓ⊥ to give 1

ℓ⊥
(δδδ − (1− 1

r )nnnnnn) where again there is

a negative deviation from spherical(1− 1
r ) for the inverseℓℓℓ−1 of a prolate (r > 1) spheroid. Back in the Trace

formula theℓ⊥ and 1/ℓ⊥ factors cancel and the whole result is characterised by the single parameter, the ratior.

43
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Using such step-length tensors reduced byℓ⊥ factors,

Fel = 1
2µ
(

3+(r +
1
r
−2)(1− (nnno ·nnn)2)

)

(6.1)

= 3
2µ + 1

2µ
(r −1)2

r
sin2 θ ≡ 3

2µ + 1
2D1sin2 θ . (6.2)

For smallθ we get, apart from the ground state constant value3
2µ ,

Fel ∼ 1
2µ

(r −1)2

r
θ 2 ≡ 1

2D1θ 2 . (6.3)

The coefficient is identified asD1 = µ(r−1)2/r, giving the harmonic penalty for small rotationsθ of the director
with respect to the matrix.

The distribution of chain conformations (and hence its principal axis, the directornnn) is rotated with respect
to the background as in Fig. 6.2 and without the shape of the solid changing to accommodate the spheroid as it
rotates, there is clearly an elastic penalty to be paid. Whenthe rotation is byθ = π , in the nematic sense the

Figure 6.2: Rotation of the anisotropic part(r −1)
of the step-length tensor with respect to the fixed
rubber matrix; (a)→ (b) hasℓℓℓ

o
→ ℓℓℓ. Axis yyy is

into the paper; the director is rotated abouty in the
positive sense.

x

z

( )r-1 q

l=1(a) (b)

system has recovered its initial state and the energy returns to zero, as we indeed see in1
2D1sin2 θ . We require

the full non-linear form of the nematic rubber-elastic energy involving sin2 θ rather thanθ 2.
As the rubber becomes isotropic,r → 1, the rotation of anisotropy loses its meaning andD1 ∼ (r − 1)2

vanishes, as it must. Note also that both prolate (r > 1) and oblate (r < 1) elastomers have a positive cost,
D1 > 0, of rotating their respective anisotropy directionsnnn with respect to the rubber matrix, Fig. 6.2.

6.1.2 COUPLING OF ROTATIONS TO PURE SHEAR

Apply a symmetric (rotation-free) shear,λλλ S, to a nematic elastomer in a plane that includes the directornnn.
Sect. 4.3.2 and Fig. 4.4 show that such shears are represented by a local combination of extensions and compres-
sions and induce director rotation toward the extension diagonal despite having no rotational component.

To preserve volume, the tensor of pure shear must be written as

λλλ S =

(√

1+λ 2
xz λxz

λxz
√

1+λ 2
xz

)

,

diagonal elements ensuring that Det
(

λλλ S
)

= 1; nothing is assumed to happen in the third direction, out ofthe

shear plane – see the exercises in Sect. 4.3. We take terms ofO(λ 2
xz) in the Trace expression forFel, so retain

the
√

1+λ 2
xz contributions. Multiply the tensorsℓℓℓ

o
·λλλ S ·ℓℓℓ−1 ·λλλS and take the trace, for instance by taking diadic

forms such asλλλ S is
√

1+λ 2
xz (xxxxxx+ zzzzzz)+λxz(xxxzzz+ zzzxxx), andℓℓℓ

o
= ℓ⊥(δδδ +(r −1)nnnonnno) etc. One obtains:

Fel = 1
2µ
[

1+ r +2(r +1)λ 2
xz−

r −1
r

(

(r − (r −1)sin2 θ )(1+λ 2
xz)+

(1+(r −1)sin2 θ )λ 2
xz+2(1+ r)λxz

√

1+λ 2
xzsinθ cosθ

)]

.
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Expanding to take terms at harmonic order, that isλ 2
xz, θ 2 andλxzθ only, one obtains terms in the energy:

1
2µ

(r +1)2

r
λ 2

xz≡ 4C5λ 2
xz

1
2µ

(r −1)2

r
θ 2 ≡ 1

2D1θ 2 µ(r − 1
r
)λxzθ ≡−D2λxzθ . (6.4)

The imposed shear induces the director to rotate with respect to the unrotating background matrix with an energy
costD1. There is also a purely elastic penalty, 4C5λ 2

xz to symmetric shears in a plane encompassingnnno. The shear
modulus, calledC5 in small strain elasticity, does not vanish asr → 1; in isotropic solids pure shear still costs
energy 4µλ 2

xz, as we saw in Ex. 4.2.
The new coupling−D2λxzθ between the elastic shear and the director rotation demandsa new elastic constant

(de Gennes, 1982),D2 = µ(1− r2)/r. As expected,D2 → 0 as isotropy is approached,r → 1, and there is nothing
to rotate. On going from prolate (r > 1) to oblate (r < 1) chains, the sign ofD2 reverses – in contrast to the always
positiveD1. This means that the sign of a rotationθ induced by a givenλxz will be the opposite for prolate and
oblate elastomers. Prolate elastomers have their directorrotated byλλλ S to the extension diagonal, as is suggested
by Fig. 4.4. Oblate elastomers have their director attracted to the contraction diagonal – it allows them to put a
long dimension of their shape ellipsoid along the extensiondirection and thereby lower the elastic energy.

We see another astonishing elastic effect. The term−D2λxzθ in the last of eqn (6.4) is bilinear which means
its overall sign can always be made negative by a suitable choice of the sign of the responseθ to a given
imposedλxz. For instance forD2 > 0, taking bothθ andλxz to be positive, or both negative, lowers the energy
by −D2λxzθ < 0. Thus, although theC5λ 2

xz andD1θ 2 terms are positive, theD2 term offers a mechanism for
reducing these penalties. The next section derives this effect for general geometries and large amplitudes. It
is found ideally that the three terms can cancel overall to give no net energy cost to such symmetric shears
encompassing the director! We call this soft elasticity andthis rotation-dominated response drives most nematic
and cholesteric rubber elastic phenomena.

6.2 SOFT ELASTICITY

A gas adopts the volume and shape of its container. A liquid adopts its container’s shape but has its own volume
which then costs energy to change. A solid has both its own volume and shape, both of which cost energy to
change. Let us see how nematic elastomers fit into this classical categorisation of the states of matter.

Consider the deformation gradient represented by the expression (Olmsted, 1994)

λλλ = ℓℓℓ1/2 ·WWWα · ℓℓℓ−1/2
o

, (6.5)

whereWWW is an arbitrary rotation by an angleα. The current and initial chain step-length tensorsℓℓℓ and ℓℓℓ
o

specify the current state, characterised by its directornnn and order parameterQ, and the initial state withnnno and
Qo. Considering the rotations connectingnnn andnnno and those associated withWWWα , this λλλ represents a large
number of potential distortions. If we insert such a deformation into the Trace formula, as well as its transpose
λλλ T = ℓℓℓ−1/2

o
·WWWT · ℓℓℓ1/2 since theℓℓℓ are symmetric, we obtain:

Fel =
1
2µ Tr

(

ℓℓℓ
o
· ℓℓℓ−1/2

o
·WWWT

α · ℓℓℓ1/2 · ℓℓℓ−1 · ℓℓℓ1/2

︸ ︷︷ ︸

δδδ

·WWWα · ℓℓℓ−1/2
o

)

≡ 1
2µ Tr

(

δδδ
)

= 3
2µ . (6.6)

The middle sectionℓℓℓ1/2 · ℓℓℓ−1 · ℓℓℓ1/2 gives the unit matrixδδδ , by definition. The rotation matrixWWW then meets

its transpose to also give unity:WWWT ·WWW = δδδ . Likewise disposing of theℓℓℓ
o

terms, one obtains the final value

Fel =
3
2µ . This is identical to the free energy of an undistorted network. The non-trivial set of distortionsλλλ of

the form eqn (6.5) have not raised the energy of nematic elastomer!
We see in Fig. 6.3 snapshots of soft response as director rotation proceeds. On applying a extension perpen-

dicular to the initial director, rotation of the chain distribution is accommodated by the very elongation we have
applied, together with a shear. Two remarkable consequences of nematic elastomer response via rotation follow:

• All the distortions accompanying e.g. an imposed extensionλxx must be in the plane of rotation, that is a
transverse contractionλzz and a shear (onlyλxz is evident in the figure, butλzx would also accommodate
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Figure 6.3: Soft deforma-
tions of a nematic elastomer,
anisotropy r = 2.78. Di-
rector rotationsθ paramet-
rically generate the distor-
tions: snapshots atθ = 0,
π/6, π/4, π/3, 5π/12 and
π/2. The embedded distribu-
tion of chains, embedded in
the deforming solid, can be
accommodated without dis-
tortion when rotated byθ .

the rotation of the distribution). No distortions perpendicular to this plane, that is involving they-direction
(λyy,λyx, . . . etc.), are needed. For a classical isotropic elastomerλyy = λzz= 1/

√
λxx is demanded by

incompressibility, whereas in soft elasticity there is no shrinkage in they direction (λyy = 1 and the appro-
priate Poisson ratio is zero).

• Softness must come to an end when the rotation is complete andthe z dimension has diminished in the

proportionλzz=
√

ℓ⊥/ℓ‖ and thex dimension extended in the proportionλxx=
√

ℓ‖/ℓ⊥. The original sizes
√
ℓ‖ and

√
ℓ⊥ have transformed to

√
ℓ⊥ and

√
ℓ‖ respectively. Thus softness would cease and director

rotation be complete atλxx = r1/2 ≡ λ 3/2
m . The familiar characteristic deformationλ m = (ℓ‖/ℓ⊥)

1/3 is the
spontaneous extension suffered on cooling to the nematic phase, see Sect. 5.2. This final deformation, we
denote byλ2 = r1/2, is that associated in Fig. 6.1 with change in extent perpendicular to the director, and
for the same reason, namely that the long dimension of the chain shape distribution now points there.

Likewise one can imagine starting from one of the oblique shapes in Fig. 6.3, that is the initial directornnno

(the long axis of the shape ellipsoid) is not at 90o to the imposed strain. Then rotation and thus softness is
complete at a smallerλxx < λ2.

Shape change without energy cost suggests that nematic elastomers fit the classical category of liquid! However
their non-soft deformations are rubbery, that is at least notionally solid-like.

6.2.1 SOFT MODES OF DEFORMATION

We now explore the general character of soft modes.

Exercise6.1: What distortion does the soft modeλλλ
soft

= ℓℓℓ1/2
θ · ℓℓℓ−1/2

o
represent? (The arbitrary

rotation matrixWWWα is absent in this example.)

Solution:The soft mode is characterised parametrically by the angleθ by whichℓℓℓ
o

is rotated toℓℓℓθ ,
that is by whichnnno is rotated tonnn:

λλλ
soft

= (δδδ +(
√

r −1)nnnnnn) · (δδδ +(
1√
r
−1)nnnonnno)

= δδδ +(1/
√

r −1)nnnonnno+(
√

r −1)nnnnnn+(nnn·nnno)(2−
√

r −1/
√

r)nnnnnno . (6.7)
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If nnno is alongzzz and is rotated byθ towardxxx, it becomesnnn= zzzcosθ + xxxsinθ . We can write down a
particular representation ofλλλ

soft
:

λλλ
soft

= (1− (1− 1√
r
)sin2 θ )zzzzzz+(1+(

√
r −1)sin2 θ )xxxxxx+ yyyyyy

+(1− 1√
r
)sinθ cosθ xxxzzz+(

√
r −1)sinθ cosθ zzzxxx

≡





1+(
√

r −1)sin2 θ 0 (1−1/
√

r)sinθ cosθ
0 1 0

(
√

r −1)sinθ cosθ 0 1− (1−1/
√

r)sin2 θ



 (6.8)

which is illustrated in Fig. 6.3.

The distortions are parameterised by the director rotation, θ , which ranges between 0 andπ/2. Thex-extension
is λxx = 1+(

√
r −1)sin2 θ ≥ 1 and the perpendicular contraction isλzz= 1− (1−1/

√
r)sin2 θ ≤ 1. Both are

proportional to sin2 θ . Thus the infinitesimal diagonal strain componentsǫzz= λzz−1 andǫxx = λzz−1, at small
rotationsθ , are proportional toθ 2. By contrast the shearsλxz andλzx are proportional to sinθ cosθ and hence
the infinitesimal strainsǫxz andǫzx are linear in small rotation angleθ – a lower order thanǫxx andǫzz. The soft
mode, eqn (6.7), starts at no strain,λλλ = δδδ , and as the director rotates fromθ = 0 all the way toπ/2, the soft
regime eventually ends atλλλ = Diag(

√
r,1,1/

√
r), that is ax-extensionλxx =

√
r, a z-transverse contraction

λzz= 1/
√

r and no remaining shear.
Director rotation is taken up by shape change so that there isno entropically expensive deformation of the

chain distribution as when a conventional elastomer deforms. The anisotropy of step-length tensorr = ℓ‖/ℓ⊥
characterises the ratio of the mean square size along the director to that perpendicular to the director. The square
root of this ratio,

√
r, gives the characteristic ratio of average (r.m.s.) dimensions of chains in the network.

During a soft deformation, the solid must change shape such that the rotating ellipsoidℓℓℓ1/2, characterising the
physical dimensions of the distribution of chains1, is accommodated without distortion, Fig. 6.3.

In the isotropic limit (r = 1) both chain step-length tensors,ℓℓℓ
o

andℓℓℓθ , reduce to a unit matrix and the general
soft deformation matrix (6.5) reduces toWWWα , an arbitrary body rotation. Certainly, we would expect no elastic
energy rise when we turn and rotate the sample as a whole! The soft modes become real, non-trivial deformations
when the material becomes a nematic elastomer.

The nematic order, so crucial for the availability of internal orientational microstructure leading to soft defor-
mations, does not change through such a distortion. At the outset the valueQ minimised the nematic component
of the free energy. Since the elastic component of the energydoes not rise, then the initial optimal magnitude
of Q remains optimal during the soft deformation. UnchangingQ implies an unchanging distribution of chain
shapes, that isℓℓℓ is strictly a rotated form ofℓℓℓ

o
. Thusℓℓℓθ = MMMT · ℓℓℓ

o
·MMM whereMMM(θ ) is a rotation, represented by

an orthogonal matrix with Det
(
MMM
)
= 1. Note that one cannot simply take an orthogonal matrix,MMMT = MMM−1,

without Det
(
MMM
)
= 1. Even though such matricesMMM would also generate a volume-preserving deformationλλλ

yielding Fel =
3
2µ , they would at the same time change the shape ofℓℓℓ from that ofℓℓℓ

o
which already has the

optimal aspect ratio. The consequent change inQ during such a deformation means the thermodynamic nematic
part of the free energy,Fnem, would rise and deformation could not be soft.

Thus elastomers can be soft through a changing macroscopic shape of the elastic body by rotating the distri-
bution of chains at constant average shape of network chains. This implies that chain entropy, normally at the
root of rubber elastic response, does not drop. Equally there is no change of the nematic order; it has merely
been rotated in alignment direction. The energy change is zero. The overall change in free energy density,
∆F = ∆U −T∆S, is thus also zero (U andSbeing the internal energy and entropy).

Alternatively, the soft deformations of the cartoon Fig. 6.3, λλλ
soft

= ℓℓℓ1/2
θ · ℓℓℓ−1/2

o
, can be viewed as two mul-

tiplicative deformations (since they may correspond to large strains); Fig. 6.4 illustrates their successive action.
The first,ℓℓℓ−1/2

o
, takes the original solid to a cube and the anisotropic chaindistribution to the isotropic spherical

1The ellipsoid is described by the conditionRRR· ℓℓℓ−1 ·RRR= 1, or in the initial principal frame,x2+ y2+ z2/r = 1, that is, thexz-sectional
ellipse has semi-major axes of 1 and

√
r.
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Figure 6.4: Soft deformationsℓℓℓ1/2
θ ·ℓℓℓ−1/2

o
of

a nematic elastomer can be broken down
into two component deformations that re-
duce the initial anisotropic state to isotropy
and then recreates it again at angleθ with
its associated deformation.

q
q

-1/2 1/2

ol l

one. The intermediate distribution, being isotropic, can be rotated through an angleθ without energy cost or
physical effect. The second,ℓℓℓ1/2

θ , then restores the current anisotropic distribution, but at the new angleθ . The
cube suffers a non-trivial distortion to the new shape whichexscribes the rotated ellipsoid.

In fact ℓℓℓ1/2 is related to the spontaneous elongation on cooling,λλλ
m

, by a simple constant. Likewiseℓℓℓ−1/2
o

is
related to the inverse spontaneous deformation on heating:

ℓℓℓ1/2 =





√
r 0 0

0 1 0
0 0 1



≡ r1/6





r1/3 0 0
0 r−1/6 0
0 0 r−1/6



≡ r1/6λλλ
m

ℓℓℓ−1/2
o

=





1/
√

r 0 0
0 1 0
0 0 1



≡ r−1/6





r−1/3 0 0
0 r1/6 0
0 0 r1/6



≡ r−1/6λλλ−1
m

. (6.9)

The two tensors are expressed in their principal frames, thefirst being rotated byθ with respect to the second.
The prefactors cancel when we take their product and we obtain:

ℓℓℓ1/2
θ · ℓℓℓ−1/2

o
= λλλ

m
(θ ) ·λλλ−1

m
=UUUT(θ ) ·λλλ

m
·UUU(θ ) ·λλλ−1

m
. (6.10)

The notationλλλ
m
(θ ) means we take the spontaneous distortion along a director that has been rotated byθ .

The final form of eqn (6.10) explicitly displays the rotationmatrices. The existence of a (virtual) intermediate
isotropic state, as in Fig. 6.4, is the basis of symmetry arguments that prove the soft response associated with
Fig. 6.3 is universal. This state is often taken as the reference state, although it is far from the physical reference
state associated with experiment.

6.2.2 SYMMETRY ARGUMENTS FOR SOFT RESPONSE

Golubovic and Lubensky (1989) first demonstrated that some solids must, on general symmetry grounds, possess
soft elastic modes. Imagine an initially isotropic elasticbody, where all material points are labelled by a vectorXXX
in the laboratory frame. The reference state possesses fullrotational symmetry, that is, the state described by the
set of pointsXXX is completely equivalent to the setUUUφ ·XXX which have been rotated byφ (withUUUφ a rotation matrix).

On transition into a uniform single-domain nematic these material points undergo a spontaneous deformation, see
Sect. 5.2. They are nowRRR= λλλ

m
·UUUφ ·XXX. Another nematic state may be obtained from the isotropic reference state

without such a rotation,RRRo = λλλ
m
·XXX. Inverting this we find an expression for the reference point, XXX = λλλ−1

m
·RRRo,

which we insert in the expression forRRR. The latter now gives a matrix relation between the states,RRRandRRRo, that
is: RRR= λλλ

m
·UUUφ ·λλλ

−1
m

·RRRo. The deformation gradient tensor that connects these two states is therefore

λλλ = ∂RRR/∂RRRo = λλλ
m
·UUUφ ·λλλ

−1
m

. (6.11)

When the intermediate state is truely isotropic, then the two nematic states must be physically equivalent and the
deformationλλλ between them costs no energy. Figure 6.5 shows the routes to these equivalent deformations and
a picture ofλλλ (Warner, 1999; Lubenskyet al., 2002). Equations (6.11) and (6.10) are of the same form. Thus
this symmetry argument yields the detailed soft modes as before and explains thereby their universality.
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Figure 6.5: The paths to two nematic states differ
only by a body rotation,φ , of the isotropic ref-
erence state from which a spontaneous distortion
has occurred. The nematic states, although equiv-
alent in energy, differ in shape (see the cartoon
Fig. 6.3) and are connected by a softλλλ parame-
terised by rotations of the isotropic reference state.

6.2.3 FORMS OF THE FREE ENERGY ALLOWING SOFTNESS

Symmetry arguments show softness exists in solids with an internal degree of freedom and where an isotropic
reference state is accessible. The underlying reason is theinvariance of the free energy under both rotationsVVV of
the reference stateRRRo and UUU of the target stateRRR. Recall, eqn (4.3), that the deformation tensor transformslike:

λλλ ′ =UUU ·λλλ ·VVVT .

The first index, see eqn (4.2), ofλλλ refers to target spaceRRRs which transform byUUU and the second index refers
to reference spaceRRRos which transform byVVV. There are thustwo sets of symmetry operations, referring to the
reference and final states independently. One route to elasticity theory we saw in Sect. 4.1 was to construct the
Cauchy Green tensorsCCC = λλλ T ·λλλ andBBB= λλλ ·λλλ T which transform as second rank tensors under reference state

rotations asCCC′ =VVV ·CCC ·VVVT or under target state rotations asBBB′ =UUU ·BBB ·UUUT. They can be used to form suitable,
scalar expressions for the energy. In nematic elastomers there are now other tensors to draw upon, namelyℓℓℓo and
ℓℓℓ with the character{RRRoRRRo} and{RRRRRR}.

Invariant expressions now include Tr
(

λλλ T ·λλλ · ℓℓℓ
o

)

and Tr
(

λλλ ·λλλ T · ℓℓℓ
)

. The first non-trivial expression that

records the structure of both initial and current states is our fundamental Trace formula, Tr
(

ℓℓℓ
o
·λλλT · ℓℓℓ−1 ·λλλ

)

.

More complex possibilities exist that have the correct invariance properties underUUU andVVV, for instance the trace

of a product Tr
[(

λλλ · ℓℓℓ
o
·λλλ T

)m
·
(
ℓℓℓ−1)n

. . .
]

and other scalar functions constructed from combinations of powers

of the tensor expressionsλλλ · ℓℓℓ
o
· λλλ T andλλλT · ℓℓℓ · λλλ . These all have the capacity to possess soft elasticity. Such

more complicated forms arise when one considers deviationsfrom the concept of an ideal Gaussian network
– for example the effect of finite chain extensibility, that is where chains are sufficiently short and extensions
sufficiently large that they no longer behave as Gaussians. Other even more more complex forms arise when
considering the effect of entanglements in nematic elastomers, see WT§6.8. The above symmetry considera-
tions show these elastomers must remain soft despite these new constraints. Indeed the precise form of the soft
response, eqn (6.19)-(6.22), emerges independently of theform of the free energy adopted, see Sect. 6.2.2.

6.2.4 PRINCIPAL SYMMETRIC STRAINS AND BODY ROTATIONS

The soft deformations in Fig. 6.3 and eqns (6.7) and (6.8) of the body are in general non-symmetric;λλλ
soft

is
neither simple nor pure, but a mixture of pure shear times rotation. The element of body rotation, irrelevant
for conventional solids, is vital for nematic elastomers. Results (4.26) and (4.27) of exercise 4.4 break the soft
modes down into a symmetric shearλλλS followed by a body rotationUUUΩ through an angleΩ about the axis
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perpendicular to the shear. Thus,λλλ
soft

=UUUΩ ·λλλ S. Parameterising the soft modes by the director rotationθ , the

body rotation is throughΩ = tan−1
[

(
√

r−1)2 tanθ
2
√

r+(r+1) tan2 θ

]

. For small director rotation, body rotation is also small,

Ω ∼ θ (
√

r−1)2

2
√

r
. For large rotations,θ → π/2, the rotationΩ vanishes as we have seen in Fig. 6.3. Inbetween,

body rotation helps to accommodate the rotating chain distribution. The corresponding symmetric shear strain,
the off-diagonal component ofλλλ S, is

λxz≡ λ S =
sinθ cosθ (r −1)√

r(4+ sin2 θ (r −1)2/r)1/2
∼ θ

(r −1)
2
√

r
for small distortions.

Symmetric shear also vanishes at the end of the soft regime, Fig. 6.3 (θ = π/2), where no further accommo-
dation of the shape tensor by body rotation and shear is possible.

More general soft deformations have the arbitrary rotation, WWWα , embedded in the form of soft deformation
eqn (6.5). Its effect is trivial if its rotation axis is alongyyy or nnno. If the axis vector has components not along either
of these directions, then it gives shears involving they direction.

6.3 OPTIMAL DEFORMATIONS

Having seen soft deformations generally and a little of their shear and rotational character, we now look at two
methods for calculating their form in more practical situations. The first is more general and offers insight
into how the director angle follows the best direction set byimposed and relaxational strains. The second is a
concrete example of how the best deformations are found for the practically important geometry of extension
imposed perpendicular to the director.

6.3.1 A PRACTICAL METHOD OF CALCULATING DEFORMATIONS

In some situations the nematic elastic free energy is straightforward to calculate and to optimise. For instance,
the Freedericks transition of Fig. 7.1 has only a single (simple shear) distortion and a director rotation. Others
we have seen to be more complex. Section 6.3.2 calculates soft modes by a direct attack in a practical geometry,
but seems quite involved since one minimises over a large number of components ofλλλ and the director rotation.
A more elegant way is to describe the distortionλλλ parametrically by the associated director rotation, the method
of Olmsted in Sect. 6.2, but then one does not have control over aspects of the distortion that may be constrained.
A more straightforward way exists to evaluate the optimal free energy and this offers insight as to how the final
director rotation is achieved. Moreover, for planar distortions (with, in general, relaxation in the third direction)
finding the free energy only involves solving a quadratic equation.

Consider the Trace free energy density, with its tensor components conveniently cyclically permutated:

F = 1
2µ Tr

(

λλλ · ℓℓℓ
o
·λλλ T · ℓℓℓ−1

)

. (6.12)

The first three tensors can be combined to form a tensor,SSS, that is symmetric by construction and thus also has a
frame in which it is diagonal:

SSS= λλλ · ℓℓℓ
o
·λλλ T →





s1 0 0
0 s2 0
0 0 s3



 , (6.13)

the latter form displaying the three eigenvaluessi of SSSwhich have been ordered so thats1 ≥ s2 ≥ s3. The principal
frame ofSSS is in general rotated a reference frame aligned with the nematic order in whichℓℓℓ

o
is then diagonal

and in which we conveniently defineλλλ . We now have to multiplySSSby ℓℓℓ−1 and take the trace in order to find the

free energy. The trace will be minimised by aligningℓℓℓ−1 =

(
1/r
0
0

0
1
0

0
0
1

)

(as it appears in its own principal frame)

with the principal frame ofSSS such that the smallest element ofℓℓℓ−1 (that is 1/r) meets the largest element ofSSS
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(i.e. s1). This is equivalent to demanding that the final directornnn (which describes the orientation ofℓℓℓ and hence

ℓℓℓ−1) is aligned with the eigenvector ofSSScorresponding tos1. The free energy is

F = 1
2µ (s1/r + s2+ s3) . (6.14)

The difference between this approach and others is thatnnn simply follows the direction established bySSS, that is by
the distortions combined with the original director. It is aslave to these and is not minimised over. NowF can
be minimised over the elements ofλλλ that were not imposed or clamped, but which are allowed to relax. Only
after this should the eigenvectors ofSSSbe explicitly determined in order to determinennn. This is best illustrated by
an example:

Exercise6.2: Find the relaxations and director rotation associatedwith an extensionλ imposed
perpendicular to the initial director. Only shears consistent with displacements along the extension
direction are allowed.

Solution:As before, take the general strain and initial (reduced) step-length tensors:

λλλ =





λ 0 λxz

0 1/(λ λzz) 0
0 0 λzz



 ; ℓℓℓ
o
=





1 0 0
0 1 0
0 0 r



 .

From these we constructSSS:

SSS =





λ 0 λxz

0 1/(λ λzz) 0
0 0 λzz









1 0 0
0 1 0
0 0 r









λ 0 0
0 1/(λ λzz) 0

λxz 0 λzz





=





λ 2+ rλ 2
xz 0 rλxzλzz

0 1/(λ 2λ 2
zz) 0

rλxzλzz 0 rλ 2
zz





and the determinant condition for its eigenvalues:

Det
(

SSS− sδδδ
)

= 0=
(
1/(λ 2λ 2

zz)− s
)[

s2− (λ 2+ rλ 2
xz+ rλ 2

zz)s+ rλ 2λ 2
zz

]

where we have gathered terms in and simplified the final factorsomewhat. Because shears were
limited to thexz-plane, the matrix is blocked and one eigenvalue emerges trivially and the other two
can only come from the roots of a quadratic. They are

s1,2 =
1
2

[

λ 2+ rλ 2
xz+ rλ 2

zz±
√

(λ 2+ rλ 2
xz+ rλ 2

zz)
2−4rλ 2λ 2

zz

]

and s3 = 1/(λ λzz)
2 (6.15)

whence the free energy density is:

F = 1
2µ
[

r +1
r

(
λ 2+ rλ 2

xz+ rλ 2
zz

)
− r −1

r
√
. . .

]

+
1

λ 2λ 2
zz
.

This is most easily first minimised with respect toλ 2
xz, yielding:

(r +1)− (r −1)
λ 2+ rλ 2

xz+ rλ 2
zz√

. . .
= 0

which on squaring and simplifying gives:

λ 2+ rλ 2
xz+ rλ 2

zz= (r +1)λzzλ (6.16)
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the left hand side of which pervadesF and can clearly be used to advantage. Returning this com-
bination toF then givesF = 1

2µ
[
2λzzλ +1/(λ 2λ 2

zz)
]
. The optimalλzz is then triviallyλzz= 1/λ .

Returning thisλzz to eqn (6.16) forλxz givesλ 2
xz =

1
rλ 2 (λ 2 −1)(r −λ 2); compare with eqn (6.20)

below for the shear generated during the soft response to simple stretch imposed perpendicular to
the initial director. The matrixSSS is now:

SSS=





λ 2+ rλ 2
xz 0 rλxz/λ

0 1 0
rλxz/λ 0 r/λ 2





and its eigenvalues are:

s1,2 =
1
2

[

(r +1)±
√

(r −1)2

]

= r or 1 ands3 = 1

on returning the left hand side of eqn (6.16) andλzz= 1/λ to eqn (6.15).
The eigenvectorseeei can now be trivially found. That corresponding tos1 = r, and thus tonnn, is

(x,0,z) wherex andz are related byz(r/λ 2− s1)+ xrλxz/λ = 0 using the bottom line of the matrix
equationSSS·eee1 = s1eee1. Each of the three equations inSSS·eee= seee is equivalent whens is set equal to a
particularsi . The simplest can be chosen to find the connection between thex andz components of
the associatedeeei .

Sincex/z= tanθ = (λ − 1
λ )/λxz, it is straightforward to find eqn (6.19) for the director rotation

angleθ , that is

sin2 θ =
r

r −1
λ 2−1

λ 2 .

This method offers the advantage thatθ , the director rotation angle, is not a variable to be optimised over. It
emerges naturally as the director rotates towards the direction of biggest extension.

6.3.2 STRETCHING PERPENDICULAR TO THE DIRECTOR

Although it has been easy to construct soft deformations parametrically throughθ , it is not easy this way to
visualise strains imposed in practical experiments. Usually one component is directly imposed by clamping and
stretching the sample. The other strains, plusnnn, relax to their optimal values.

To the long rectangular strip of nematic elastomer of Fig. 6.6 we impose anx-extensionλxx= λ perpendicular
to the initial director,nnno, which is alongz (Verweyet al., 1996). The cartoon of Fig. 6.3 suggests that soft

Figure 6.6: The extension of a long strip of ne-
matic elastomer perpendicular to its initial di-
rector. One shear component,λxz, develops.
The other,λzx, is suppressed by the counter
torque that would develop from such a distor-
tion in the field of a force applied along thex
axis.

z

x

x

z

x

x

l (=l  )

l

zzl

n
0

n

deformation requires rotation ofnnno towardx and that shearsλzx andλxz accompany the imposedλ . We limit
ourselves toλxz which derives fromx-displacements,ux. Shearλzx is suppressed by the turning moment,fxuz,
generated by anyz-displacement,uz, in the presence of anx force, fx (should it arise on extension in thex-
direction). Equally, the large length to width ratio of the strip in Fig. 6.6 allows us to defer to Chapter 7 the effect
on shear of the clamps gripping the sample when imposingλ . Assume there are no impediments to any simple
shearλxz necessary for optimising deformations. The vanishing of the shearλzx (and also the shears involving

yx, yzetc.) means the incompressibility, Det
(

λλλ
)

= 1, is ensured by takingλyy= 1/(λ λzz). The reduced inverse



6.3. OPTIMAL DEFORMATIONS 53

step-length tensor, on director rotation aboutyyy of θ from thez axis, isℓℓℓ−1 =

(
1+( 1

r −1)sin2 θ
( 1

r −1)sinθ cosθ
( 1

r −1)sinθ cosθ
1+( 1

r −1)cos2θ

)

.

Considerℓℓℓ−1 andℓℓℓ
o

as 2× 2 matrices spanning(x,z) since only theirx− z components mix during rotations

about they-axis;ℓyy = ℓ−1
yy = 1 (sinceℓℓℓ is reduced byℓ⊥).

The free energy density, puttingℓℓℓ−1 andλλλ in the Trace, becomes (in units of1
2µ):

Fel
1
2µ

= λ 2+λ 2
zz+

(
1

λ λzz

)2

+ rλ 2
xz− (r −1)

[

2λzzλxzsinθ cosθ +

(
1
r

λ 2−λ 2
zz+λ 2

xz

)

sin2 θ
]

. (6.17)

The first group is the energy of deforming an isotropic rubber(r = 1). The second group represents additional
effects due to rotating the anisotropy (r −1). The elastomer relaxes its transverse dimension,λzz, and its shear,
λxz, to minimise this elastic energy. See WT§7.3.2 for the straightforward algebra leading to the free energy, at a
fixed imposed extensionλ , now a function only of the director rotation angle (throughsin2 θ ):

Fel(λ ,θ ) = 1
2µ



λ 2(1− r −1
r

sin2 θ )+
2
λ

1
√

1− r−1
r sin2 θ



 . (6.18)

On symmetry grounds rotations,±θ are not distinguished - the extensionλ is imposed at 90o to the initial
director and it does not matter which way it rotates. Being a nematic,θ = 0 andθ = π states are also identical.

The optimal angle condition, best examined as the derivative with respect to sin2 θ rather thanθ itself, yields
the director rotation angle,θ (λ ) and the accompanying shear and transverse relaxations on using thisθ :

θ = sin−1

√

r
r −1

λ 2−1
λ 2 (6.19)

λ 2
xz =

(λ 2−1)(r −λ 2)

rλ 2 (6.20)

λzz =
1
λ

; (6.21)

λyy = 1 . (6.22)

These results giveFel =
3
2µ for the free energy density, which is also the value in the relaxed state (λλλ = δδδ ), even

though the mechanical shape of the elastomer has manifestlychanged.
The shearλxz and the angleθ both start at zero in a singular fashion whenλ = 1. When the extension reaches

λ =
√

r, the rotation is complete:θ → π/2. The shearλxz returns to zero since off-axis shape accommodation
associated with oblique director angles is no longer required. Director rotation,θ (λ ), is central to the new effects
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Figure 6.7: (a) Director rotation
θ against the imposed extension,
for anisotropiesr = 2.78 andr =
10, see eqn (6.20). (b) The shear
λxz and transverse relaxationsλzz

and λyy, for r = 2.78. The soft
region is λ = 1 to λ =

√
r =

1.67, beyond which the response
is conventional.

and is of a distinctive form. Its singular form atλ = 1 arises from the square root. The singular form atλ =
√

r
and the saturation levelθ = π/2 arises from the sin−1 function. This reflects sinθ , rather than the angle itself,
being the natural variable of the elastic free energy (6.18). The accompanying shear is also singular atλ = 1 and
λ =

√
r. Theθ response, Fig. 6.7(a), is seen in experiments which we discuss in Sect. 6.4.

In the soft interval, thez-transverse relaxation isλzz= 1/λ and they-dimension is unchanged,λyy = 1, see
Fig. 6.7(b). As in the cartoon, Fig. 6.3, the shape spheroid rotates in thexz-plane, Noy-dimensional change is
needed since noy molecular shape change has to be accommodated. The free energy is constant and thus the
stress is zero – ‘soft deformation’, see Fig. 6.8.
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Figure 6.8: Deformationλ applied perpendicular
to the initial director, that is along thex direction,
does not cause the free energy density,F, to rise
until λ =

√
r . Thereafter the energy density rises

as for a classical elastomer, of apparent natural
elongation alongx of

√
r, see eqn (6.23). 1 1.5 2 2.5

l
r3

2
m

F

Whenλ >
√

r the rotation is complete (θ = π/2) and the imposed shape change cannot be further accom-
modated by directing the long dimension of the molecules towardx. In eqn (6.18) set sinθ = 1, whence

Fel =
1
2µ
(

λ 2

r
+2

√
r

λ

)

. (6.23)

The free energy now rises withλ and the stress is non-zero. The rubber responds as a normal elastomer, but with
an apparent natural length of

√
r . If the strain along thex axis is measured asλ ′ with respect to this state, that is

if we apply and extension
√

r first followed byλ ′, then overallλ = λ ′√r. We can rewrite the free energy density
asFel(λ ′) = 1

2µ(λ ′2+2/λ ′), which appears entirely conventional.

6.4 SEMI-SOFT ELASTICITY AND EXPERIMENT

Softness is a delicate phenomenon. It depends on being able to rotate a chain distribution at constant en-
tropy by accommodating anisotropic chains with suitable extensions and shears of the body the chains com-
prise. We would partially lose softness if for instance we had a mixture of chains in the network with differing
anisotropies. An optimal softλλλ for one population might not be optimal for another and such chains would
then cost energy to deform along the trajectory selected forthe first population — compositional fluctuations
(Verwey and Warner, 1997a). Other causes of semi-softness could for instance be crosslinks being themselves
rod-like and therefore able to record orientational order (Verwey and Warner, 1997b; Popov and Semenov, 1998).
See WT§7.4 for a discussion of more general aspects of semisoftnessand its causes.

The general soft modesλλλ
soft

= ℓℓℓ1/2 ·WWWα · ℓℓℓ−1/2
o

are intimately related to the structure of the Trace formula
for the elastic free energy density. Some additions or modifications to the Trace formula preserve softness, others
(see Sect. 6.2.3) lead to deviations from ideality, while still preserving the lower-energy path of deformations –
which we call semi-softness.

The requirement for softness is that an isotropic referencestate be in principle achievable. If there is always a
residual anisotropy, even at high temperatures, then the nematic phase cannot be truly soft. We will see that that
chemically identical networks with differing thermomechanical histories can have drastically different stress-
strain characters; the softest networks were formed in the isotropic state, the least soft were prepared in the
nematic state and had more anisotropy permanently imprinted into them. Imprinting means only the gradual loss
of nematic order atTni for some nematic elastomers compared with the discontinuous jump to zero order for the
melt at this point.

The phenomenon of a threshold strain is related. Nematic rotation induced by an imposed extension and with
it a nearly completely flat soft stress plateau do not onset directly atλ = 1, as the stretch starts, but instead at a
small but noticeable thresholdλ1 > 1. It is as if the matrix first holds back the rotation of chains: the memory of
an intrinsic or imprinted anisotropy must first be overcome.However, despite any non-ideality and partial loss
of softness, elastomers nevertheless retain the qualitative aspects of soft elasticity, namely the same universal
form of the director rotationθ (λ ) and the non-classical transverse contraction characteristic of the soft state:
λzz∝ 1/λ andλyy = const.
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One can derive from models (WT§7.4) additional terms, weighted by non idealityα, that cause the Tr(—)
result to be non-ideal:

Fss=
1
2µ Tr

(

ℓℓℓ
o
·λλλ T · ℓℓℓ−1 ·λλλ

)

+ 1
2µ α Tr

(

δδδ (tr) ·λλλ T ·nnnnnn·λλλ
)

(6.24)

whereδδδ (tr) = δδδ −nnnonnno is a perpendicular projector and inhabits the plane perpendicular tonnnonnno. The form of
the additional term is in fact the most general possible (Bigginset al., 2008) at second order inλλλ : consider a
non-ideal nematic elastomer subject to a deformationΛij from a reference to a target state. We useΛΛΛ because
we reserveλλλ for deformations from relaxed states, and this reference state may not be relaxed. If it is not
relaxed, there is first relaxing deformation,ΛΛΛ

r
. Functions ofΛΛΛ can be recast in terms of deformations from the

relaxed state (λλλ ) by substitutingΛΛΛ = λλλ ·ΛΛΛ
r
. The first subscript onΛij (i) lives in the target state and can only

be contracted with subscripts from other target state variables. The second (j) lives in the reference state and
must be contracted only with reference state subscripts if rotational invariance is to be observed. Therefore the
most general free energy we can write down that is quadratic in Λ is, if we assume that the reference state is
characterised by a single directionnnn0 and the final state by a single directionnnn (so both states are uniaxial),

F = Tr(HΛΛΛTΛΛΛ+ JnnnonnnoΛΛΛTΛΛΛ+KnnnonnnoΛΛΛTnnnnnnΛΛΛ+LΛΛΛTnnnnnnΛΛΛ). (6.25)

Relaxation at constant volume over theΛΛΛ
r

component ofΛΛΛ reduces the number of coefficients to 3 which can
then be re-caste to give Eq. (6.24) which also has 3 parameters,µ , r andα.

The symmetry of deformations relevant to the additional,α term is determined byδδδ (tr). For instance thexy-

plane is perpendicular tonnno and the projector takes the formδδδ (tr) = xxxxxx+yyyyyy. It selects out thex andy components
of objects it encounters, see Ex. 6.3 for shears important tosemi-softness.

Exercise6.3: What shears are vital to the semi-soft fluctuation term?Assume for concreteness that
nnn rotates in thexz-plane.

Solution: As nnn rotates in thexz-plane starting fromnnno = zzz, it becomes cosθ zzz+ sinθ xxx. Sincennnnnn
is sandwiched betweenλλλ T andλλλ in the new semi-soft term of eqn (6.24), the·nnn andnnn· operations

bind it to thezor x legs ofλλλT andλλλ . There are noλxy, λzy, λyx andλyz elements ofλλλ . But δδδ (tr) lives

in the xy-plane and thus the only part ofδδδ (tr) that can be active isxxxxxx. Recall that the diadic form
of λλλ is λλλ = xxxxxxλxx+ xxxzzzλxz+ . . . . The vectornnn ·λλλ = (λxxsinθ +λzxcosθ )xxx+(λxzsinθ +λzzcosθ )zzz
contracts withxxxxxx, selecting out the shearλzx and the imposed extensionλxx. The non-ideal term in
Fss, eqn (6.24), is then:

1
2µα(λ 2

xxsin2 θ +λ 2
zxcos2 θ +λxxλzx2sinθ cosθ ) . (6.26)

The extensionλxx perpendicular tonnno and the shearing displacements alongnnno generate semi-
softness.

6.4.1 A PRACTICAL GEOMETRY OF SEMI-SOFT DEFORMATION

Reconsider the long strip of Fig. 6.6 with anx-extensionλ = λxx imposed (Verweyet al., 1996). Shearsλzx are
suppressed. In this case the non-ideal correction of eqn (6.26) is simplyα sin2 θ λ 2. It does not change the
minimisation overλzz andλxz and simply adds to the soft free energy eqn (6.18):

Fss=
1
2µ



λ 2(1− r −1
r

sin2 θ )+
2
λ

1
√

1− r−1
r sin2 θ

+αλ 2sin2 θ



 . (6.27)

Optimising over sin2 θ gives

r −1
r

sin2 θ = 1− 1
λ 2

(
r −1

r −1−αr

)2/3

≡ 1−
(

λ1

λ

)2

. (6.28)
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The solution for sin2 θ is exactly as before, but as a function of the reduced extension, (λ/λ1), instead ofλ .
Accordingly, the onset of director rotation and all other features of soft regime will now take place not atλ = 1
but at a thresholdλ = λ1, with

λ1 =

(
r −1

r −1−αr

)1/3

≥ 1.

The threshold is the measure of the non-ideality. Below it a semi-soft nematic elastomer responds exactly as a
conventional rubber. The transverse contraction is the usual 1/

√
λ for bothy- andz-directions and neither shear

λxz nor director rotation arise. The semi-soft regime starts atλ = λ1 and is complete atλ =
√

rλ1. The strains
and the director rotation take forms very similar to those ineqns (6.22):

θ = sin−1

√

r
r −1

λ 2−λ 2
1

λ 2 ;

λ 2
xz =

(λ 2−λ 2
1)(rλ 2

1 −λ 2)

rλ 2λ 3
1

;

λzz =
λ 1/2

1

λ
;

λyy =
1

λ 1/2
1

. (6.29)

Both θ andλxz have exactly the same singular response as in the ideally soft case. All the strains and rotations
are thus as in Fig. 6.7, ifλ is scaled byλ1. Soft and semi-soft response are qualitatively the same, except that the
elastic energy rises slightly in the latter case (see below).

The threshold strain depends generally on the form of correction to the ideal free energy of the typeα in
eqn (6.24). For the particular model of compositional fluctuations that we have chosen as an illustration,α and
r are connected withλ1 as:

α =
r −1

r
λ 3

1 −1

λ 3
1

(6.30)

wherer is a mean anisotropy〈r〉=
〈
ℓ‖/ℓ⊥

〉
. It is extracted experimentally from the reduced width of the semi-

soft interval, the ratio between the final and the initial threshold strain of the semi-soft regime≡ (
√

rλ1)/λ1.
More anisotropic chains compel greater shape change of the rubber before their rotations are complete.

ELASTIC FREE ENERGY

Before there is nematic rotation,λ < λ1 (region A of Figs. 6.10), the response must be classical, that is θ =
0,λxz = 0,λzz= λyy = 1/

√
λ , with FA = 1

2µ(λ 2 + 2/λ ). Between the semi-soft thresholdλ1 and the end of
semi-softness,

√
rλ1, we express the elastic free energy densityFel(λ ,θ ) in terms ofλ 3

1 rather thanα, as these
two parameters measuring the degree of semi-softness are directly related in a fluctuations model by eqn (6.30).
Thus re-expressing eqn (6.27) one has instead

Fss=
µ
2



λ 2
(

1− r −1

rλ 3
1

sin2 θ
)

+
2
λ

1
√

1− r−1
r sin2 θ



 .

Using the optimal director rotation from eqn (6.29), the semi-soft free energy density in the region B of Fig. 6.10
takes the form:

FB = 1
2µ
(

λ 2(1− 1

λ 3
1

)+
3
λ1

)

. (6.31)

For λ1 = 1, the case of ideally soft rubber, one recovers the unchangingF = 3
2µ as in Sect. 6.2. The larger the

thresholdλ1, the harderFB becomes; the modulus, the coefficient of1
2λ 2, is µ(1−1/λ 3

1).

Exercise6.4: What is the free energy forλ > λ1
√

r, that is when the director rotation is complete?
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Solution: Recall that the free energy is(Ideal Trace)+αλ 2sin2 θ . The rotation ofnnn by 90o to
align along the stretching directionx interchanges the non-trivial diagonal element entry 1/r in ℓℓℓ−1

from thezzto thexx position. Theλλλ matrices in the ideal trace formula are diagonal as well; after
a rotation ofπ/2 in ℓℓℓ there are no remaining shears. Adding on the semi-softα-term withθ = π/2
yields overall:

FC = 1
2µ
(

1
r

λ 2+ rλ 2
zz+

1
λ 2λ 2

zz

)

+ 1
2µαλ 2

≡ 1
2µ
(

λ 2

r
(r − r −1

λ 3
1

)+
2
√

r
λ

)

. (6.32)

To obtain the last formula one needs to minimise overλzz to give λ 2
zz= 1/(

√
rλ ) and then return

this strain to theFC expression.FC looks almost classical, withλ 2 and 1/λ terms but with modified
factors, as does the idealFel in eqn (6.23).

ELASTIC STRESS

We imposed an extensionλxx = λ in the x direction, with other strains and rotations being a naturaloptimal
response of the nematic elastomer under a uniaxial extension. What is the stress needed to make this imposition?
Taking a sample of initially unit dimensions (and hence alsounit volume), the work done by a force normal to the
x surface in extending the sample bydλ is−σxxλzzλyydλ . The(λzzλyy)-factor is the cross-section area reduction
which, when multiplying the force per unit areaσxx (the stress), yields an actual force which does the work. The
(−) sign indicates the reduction in energy when the system extends (dλ > 0) in the direction of the force. If this
work is added to the change in free energy per unit volumedF, thendF−σxxdλ/λ must vanish in equilibrium
for the body (volume conservation givesλzzλyy = 1/λ ). Thus the true stress is:

σxx = λ
(

∂F
∂λ

)

(6.33)

σA
xx = µ

(

λ 2− 1
λ

)

→ µ
(

λ − 1
λ 2

)

σB
xx = µλ 2

(

1− 1

λ 3
1

)

→ µλ
(

1− 1

λ 3
1

)

σC
xx = µ

(

λ 2(1− r −1

λ 3
1 r

)−
√

r
λ

)

→ µ
(

λ (1− r −1

λ 3
1 r

)−
√

r
λ 2

)

. (6.34)

where the latter in each case are the nominal or engineering stresses, that is, the force per unit initial area. Without
correcting for transverse shrinkage as strain proceeds, the nominal stress from eqn (6.33) isσe

xx = ∂F/∂λ ≡
σxx/λ for our deformation.

One can easily confirm that the true stress is continuous on deforming between regions A, B, C, that is
σA

xx(λ1) = σB
xx(λ1) andσB

xx(
√

rλ1) = σC
xx(

√
rλ1).

Equally important is that the free energy is everywhere convex, especially in the semi-soft region B. Here the
curvature is∂ 2FB/∂λ 2 = µ(1−1/λ 3

1)≥ 0. Convexity rules out strain-necking and related classical instabilities
known in the polymer physics that might otherwise be invokedto explain the semi-soft constitutive relation in
region B.

STRESS EXPERIMENTS

Nominal stress-strain data (Küpfer and Finkelmann, 1994;Clarkeet al., 2001), Fig. 6.9, is qualitatively as in
Eqs. (6.34), that is essentially piecewise linear. On extension perpendicular to the initial nematic director, the
measured nominal stress initially rises withλ . Then at a certain threshold it reaches a plateau or a region of lower
slope. Finally, after the plateau, the stress increases again. Such experimental data unambiguously illustrates
the effect of soft elasticity and allows extraction of the two key material parameters. The value of semi-soft
threshold strainλ1 is directly related to the residual non-zero slope on the stress plateau, Eq. (6.34), while the
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Figure 6.9: Nominal stress (in units of kPa for all three graphs) is plotted against deformation for three different
nematic elastomers (experimental data from Freiburg and Cambridge groups). The composition of side-chain
polysiloxane rubbers in (a) and (b) is very similar, but the materials differ in thermal history of crosslinking, i.e.
residual order, resulting in different threshold and stress plateaux, while the chain anisotropyr is similar. The
main chain sample in (c) has a much higher chain anisotropyr ∼ 25-30, and hence a plateau endλ2 =

√
r ∼ 5.

The straight lines are fits to the nematic elastomer constitutive relations, eqn (6.34).
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Figure 6.10: (a) Director rotationθ after a strainλ applied perpendicular to the original directornnno, see Fig. 6.6.
Curves correspond to different crosslinking densities of the same polymer, and therefore also to different thermo-
mechanical histories, or to elastomers of differing chemical composition (Kundler and Finkelmann, 1995). (b)
The functionf (θ ) = [(r−1)/r]sin2 θ of the director rotation plotted against the reduced deformationλ/λ1. Data
from the wide range of samples in (a) collapse onto a master curve when plotted according to eqn (6.22).

average chain anisotropyr = ℓ‖/ℓ⊥ can be estimated from the plateau end position. Three quantities (threshold,
plateau slope and plateau extent) are determined by two parameters,α andr, and the latter actually relates also to
the separate experiment of spontaneous elongation on cooling. Thus the match of theory to experiment is vastly
over-constrained, and the agreement therefore remarkable.

ROTATION EXPERIMENTS

The director rotation expected after the threshold is indeed found, see Fig. 6.10(a) (Kundler and Finkelmann, 1995).
Different samples have different thermo-chemical histories and henceλ1 thresholds, and different molecular
anisotropies and hence differing lengths of plateau. Eachθ (λ ) curve however has initial and final singular be-
haviour (√) and an inverse sine shape. Then plotted according to Eqs. (6.29),θ (λ/λ1) adopts its universal form
— all elastomers behave in essentially the same way. Fig. 6.10(b) instead plots the function of the rotation angle
given in eqn (6.28). The thresholdλ1 is taken out viaλ scaling, the anisotropy by the(r −1)/r factor, the sin−1

and the√ by the sin2 θ factor.



CHAPTER 7. HOW NEMATIC ELASTOMERS DISTORT

Soft or semi-soft deformations are energetically the best response to shape changes imposed on a nematic elas-
tomer. When the director can be rotated, for instance when elongations are not simply along the director, then
an elastomer will always deform softly if the necessary accompanying relaxations can be reconciled with the
boundary conditions. We examine distortions of nematic elastomers where the imperative to deform softly is in
conflict with the external constraints imposed on them. There are generically two ways to resolve this conflict.

Nearly soft deformationA sample may deform almost but not quite softly because of constraints, for instance
with an energy cost quartic in the deformation or the director rotation (and not quadratic, as usual). For small dis-
tortions, the rubber is thus essentially soft or semi-soft,the anchoring effect of the matrix being first felt at large
amplitudes. The Freedericks effect for nematic elastomersis an example, see experiments (Changet al., 1997),
the analysis of WT§8.3, and simulations (Ska ˇcej and Zannoni, 2006). See Fig. 7.1 for the set up and the contrast
with the liquid case. Some deformation, limited by the need for the boundary plates not to move in their own

E
q l zx

z

x

(a)

n

(b)

Figure 7.1: Field-induced director rotation in a
conventional, liquid nematic (a) and in a nematic
elastomer (b). The liquid has its director anchored
at the surfacesx = 0 and x = d to be alongz.
The solid has its initial director everywhere aligned
alongz. The electric fieldE is applied across the
cell. The shear strainλzx accompanying the di-
rector rotation in nematic elastomers is shown on
the right. The conventional Freedericks effect has
one half wavelength of director rotation between
the plates, while the solid nematic Freedericks ef-
fect has the full wavelength. The shear has to pass
through a full cycle of variation — otherwise there
is a netz-displacement of the upper boundary with
respect to the lower.

plane and relative to each other, still has to occur otherwise the rubber-elastic penalty, giving bulk anchoring
of the director, leads to prohibitively high electric fieldsto induce dielectric response: equating the elastic and
electric field energy densities,ǫo∆ǫE2 ∼ D1 givesE ∼ (r −1)(µ/ǫo∆ǫ)1/2 ∼ 107V/m, for typical values of rub-
ber moduli, of chain anisotropy and of dielectric anisotropy ∆ǫ. It is as if there were effectively a very strong
aligning fieldµ acting along the axisnnno, unless the sample is mechanically unconstrained and an appropriate
soft deformation can be found (Terentjevet al., 1994). The Freedericks effect is different from classicalliquid
crystals since the transition occurs at a critical field rather than critical voltage since the anchoring is in the bulk.

Soft or semi-soft deformationA sample deforms softly, but with a local strainλλλ
soft

that differs from region to
region. For example a given soft extension,λ of Sect. 6.3.2, comes with simple shears of eitherδ (λ ) or−δ (λ ),
and director rotations±θ (λ ). By judiciously putting together neighbouring regions with shear deformations
of opposite sense, one can obtain an extension that overall has no net shear and hence may satisfy zero-shear
boundary conditions in some gross sense. Fine microstructures are required in mechanical experiments to achieve
global softness. We examine such microstructures in a refined treatment of a clamped version of the simple
extension of Sect. 6.3.2 which produces the stripes first seen by Finkelmann and coworkers.

Coexisting neighbouring regions of differingλλλ
soft

create inhomogeneous interfaces in the nematic elastomer.
Their energetic cost turns out to be extremely small and doesnot hinder elastomers resorting to microstructures
to eliminate the otherwise considerable elastic costs of deformation. Ignoring interfacial energies and reducing
elastic energy by judicious choices of sets of coexisting strains is called ‘quasi-convexification of the free en-
ergy’. It was invented in a more difficult problem of discretesets of low energy crystallographic distortions in
martensite, a shape-memory alloy (Ball and James, 1992).
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The same geometric and physical ideas were independently applied (Verweyet al., 1996) to the very much
simpler problem of a nematic elastomer with an ideal form of clamping. We shall examine this problem in this
chapter, including the details of the interfaces. We then review the formal quasi-convexification of the nematic
elastomer free energy and describe the general microstructures that arise (DeSimone, 1999). The method has
been applied to give a full numerical solution of the extension of a nematic elastomer strip and the evolution of
its complex microstructures (Contiet al., 2002), in effect a multi-scale analysis.

We conclude with a modern application of the ideas of DeSimone to extreme softness found in isotropic
genesis polydomain nematic elastomers.

7.1 STRAIN-INDUCED MICROSTRUCTURE: STRIPE DOMAINS

Elastomers elongated perpendicularly to their director deform (semi) softly if they shear. The cartoon in Fig. 6.3
shows graphically how elongation must be accompanied by shear if energy cost is to be eliminated. However
clamps, through which stretch is imposed, prohibit shear intheir vicinity. Then microstructure, in the form of
stripe domains, offers the best compromise between the drive for soft deformation and the constraining boundary
conditions. Figure 7.1 in the Freedericks case illustratesthe solution to the problem when the shears are less
complicated: the upper plate is fixed with respect to the lower plate. If shear is required to soften the response (to
make it quartic in that case), there must be two compensatingshears in order that they create no net displacement.

For imposed mechanical fields, such as uniaxial extension, semi-soft simple shear is a good example with
which to illustrate the emerging microstructure. See Fig. 7.2 where a strip is extended beyond the semi-soft
threshold for director rotationλ = λ1. In the bulk of the strip, the local shear and director rotation follow the
optimal, semi-soft values consistent with the extensionλ . A compensating pair of stripes is shown magnified;
on traversing the pair (in thez-direction, along the initialnnno) the totalx-displacement averages out. Real systems
have a collection of many stripes stretching along the elongated elastomer strip, see Fig. 7.3. The elastic softness
is unattainable only at the ends and in the sharp interfaces between stripes. The bulk of the elastomer deforms
softly, at least until the director rotation is complete at the extensionλ2. This is seen macroscopically in the
stress-strain and opto-mechanical relations.

The precise details of the clamp constraints will determinehow the stripe domains evolve. In general the
problem with simple, realistic constraints is extremely complex, see Sect. 7.2.3. A simplification is to consider
rigid but sliding/rolling constraints or clamps that themselves deform at a compensating rate. Shear is suppressed
at the end while allowing any necessary transverseλzz relaxation required to conserve volume while extension
λxx proceeds, see Fig. 7.4. Some residual curvature at the ends of the rubber strip may still occur even ifz-motion
in the clamp is free: in the bulk the relaxation isλzz∼ 1/λxx, as with all soft modes, whereas at the ends it is only
λzz∼ 1/

√
λxx, since the response is hard in the absence of shear. Additionally, the extensionλxx is itself smaller

at the ends than in the bulk because the nominal stress has to be conserved. We ignore curvature in the clamp

n

n
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n

n

n

prohibited shear

local shearclamp

ll
h

x

z

Figure 7.2: Microstructure in a nematic elastomer strip being extended perpendicular to its initial directornnno,
assumed along thez-axis. A section with only two neighbouring stripes of widthh and opposing shear,λxz, and
rotation is shown. At the ends the displacement associated with soft shear is shown suppressed by the clamps.
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Figure 7.3: Stripe domains in a nematic elastomer extended as in the schematic Fig. 7.2. All three images are the
same stripe system at a fixed extension but viewed at different angles (0o,15o and 77o) with respect to a crossed
polariser-analyser pair. Different details of the stripe substructures then emerge (images: I. Kundler).

x

z

Figure 7.4: Ends of a strip are rigidly constrained, forbidding shear but allowing for transverse relaxationλzz .

region and use the idealisation of Fig. 7.4 as a model for how the uniform texture of Fig. 7.2 is finally terminated
far enough from the ends that the complications of static clamps can be ignored. The problem is examined in
more detail in Sect. 7.2.3.

If the imposed elongational deformation in thex-direction isλ (greater than the rotation thresholdλ1), the
optimal semi-soft shear and director rotation within the individual alternating stripes are±λxz andθ± =±θo(λ ),
with

λ 2
xz=

(λ 2−λ 2
1 )(rλ 2

1 −λ 2)

rλ 2λ 3
1

θo = sin−1

√

r
r −1

λ 2−λ 2
1

λ 2 , (7.1)

see Sect. 6.4.1, eqn (6.29). We now see how alternating stripes can be fitted together.

STRIPE STRUCTURE AND ENERGY

The director generally responds to an imposed strain. Non-uniform mechanical distortions such as in the coars-
ened stripe structure of Fig. 7.2 generate regions of non-uniform directors which in turn cost a Frank nematic
elastic penalty. We therefore, indirectly, have an energetic cost to non-uniform elastic strain. As usual in elas-
ticity, we ignore the direct elastic cost of gradients of strain (∂λi j /∂xk). Since the elastic cost of not deforming
softly is so high compared with Frank effects, the a rather sharp interface region must separate two domains of
optimal deformations obtaining in one sense (+) and in the opposite sense (−). An areaA of interface has an
energy∆F ∼ γA whereγ is an effective interfacial tension, which we now estimate.A full treatment combines
Frank elasticity with nematic rubber elasticity. Strains that can relax are set equal to their minimal value, subject
to a givenθ and to the strain components that are imposed. The total elastic energy, depending onθ for the
elastic part and on∇θ for the Frank part, must be minimised; see WT§8.3 for a full analysis.

Take strains and director rotations to vary in thez-direction, but to be basically of the simple shear type we
have already considered in Sect. 6.4.1 The director varies with z in going between stripes. It rotates in thexz-
plane, making a local angleθ with thez-direction,nnn= (sinθ ,0,cosθ ). The Frank energy density involves only
splay(K1) and bend(K3) in this geometry, see Sect. 2.4. It is:

FF = 1
2

(
K1 sin2 θ +K3cos2 θ

)
(

dθ
dz

)2

→ 1
2K

(
dθ
dz

)2

.
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The latter simplification arises in the single constant approximationK1 = K3 = K.

Consider the interfacial width to beξ where all theθ -variation occurs and thus is also where the elastic
energy density is∼ µ since there the soft deformations of the bulk of each stripe are not achieved. The cost of
an areaA of interface isγA∼ Aξ µ +Aξ K/ξ 2 sinced2θ/dx2 ∼ π/ξ 2. Optimising overξ , thenγ/dξ = 0 gives
ξ =

√

K/µ ∼ 10−8m andγ =
√

Kµ ∼ 10−3N/m if we take some typical values,µ ∼ 105Pa andK ∼ 10−11N.
The interfacial energy scaleγ is relatively small. The surface tensions of liquids, by comparison, are in the
range 40×10−3N/m (benzene) and 72×10−3N/m (water), at least an order of magnitude higher. We callξ the
nematic penetration depth — director variation is confined to length. ξ if there is an appreciable rubber elastic
penalty∼ µ otherwise being paid for not having an optimal (soft or semi-soft) distortion. This is why stripes are
always coarsened and their interfaces play no role in macroscopic elastic response.

Experimentally it is indeed found that in stretched nematicelastomer the stripes are immediately coarse when
they form (Kundler and Finkelmann, 1998; Zubarevet al., 1999), that is the majority of the sample is taken by
the regions of relatively uniform director rotation, alternating in neighbouring stripes, with interfaces narrow
(∼ ξ ) compared with stripe width.

7.2 GENERAL DISTORTIONS OF NEMATIC ELASTOMERS

The Freedericks and stripes examples have shown nematic elastomers deforming softly (or with energy quartic
in strain) even when soft modes are in conflict with boundary conditions. The answer is to satisfy boundary
conditions on average, by the establishment of inhomogeneous microstructure. The ideal clamps of the above
example allowed the whole sample, except in a small volume near the clamps, to deform softly – for instance the
elongationsλ and the transverse relaxationsλzz were uniform. Shears differed between stripes, but averaged to
zero, as demanded by the clamps.

Figure 7.5: Successive steps in the
elongation of a rubber strip.

A more realistic clamping and extension scenario is sketched in Fig. 7.5. The clamps do not permit transverse
relaxation in their vicinity. The sample develops curved edges and a complicated shear pattern as a result. Com-
binations of soft shears to give a soft, non-uniform response are now more complex than in our example above.
Moreover we have spatial non-uniformity both at the scale ofthe stripes and on the scale of the whole sample
strip – it now becomes a problem of multiscale compatibility. We discuss the general problem of constructing
the appropriateλλλ from combinations of variousλλλ

soft
, to achieve a macroscopic situation that is also nearly soft–

so-called ‘quasi-convexification’. We then sketch the fullnumerical solution to the problem of general distortions
and compare it with experiment.

7.2.1 ONE-DIMENSIONAL QUASI-CONVEXIFICATION

In the previous section we have, in effect, presented an example of quasi-convexification of the nematic free
energy, considering stripe modulation of the sample only along thez-axis. This serves as an illustration of a more

general problem. Suppose one wants to achieve a deformationλλλ =
( λ

0
0

0
1
0

0
0

1/λ

)

without paying any energy cost.

Without shear, this deformation is only without cost at the deformationsλ = 1 and forλ =
√

r, that is at the two
positions (of equal energy) in Fig. 6.1, that is at theλ values where the soft plateau starts and finishes in Fig. 6.3.
For all intermediate deformations with 1< λ <

√
r, we have achieved, Fig. 7.2, an overall soft deformation by
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splitting into equal volumes with opposite shears,±λxz, and rotation:

λλλ =





λ 0 0
0 1 0
0 0 1/λ



=
1
2











λ 0 λxz

0 1 0
0 0 1/λ



+





λ 0 −λxz

0 1 0
0 0 1/λ











= 1
2

{

λλλ
soft

(+λxz)+λλλ
soft

(−λxz)
}

λλλ = 〈λλλ
soft

〉±λxz
(7.2)

The effectively soft outcomeλλλ is achieved by a suitably weighted mean of ‘real’ locally soft strains. If we make
the microstructure sufficiently fine, then this overall strain λλλ has the status of a uniform deformation that is soft,
despite having no visible shears associated with it as one might have expected. With this assumption of indefinite
fineness (certainly finer than any scale of the problem one will later attempt to address) one has:

FQC(〈λλλ soft
〉±λxz

) = 〈F(λλλ
soft

(λxz))〉 = 0 (7.3)

(the additive constant of32µ being ignored). One ignores the cost of interfacial energy of the narrow regions that
separate the individual soft domains. In practical cases there is only a negligible volume of hard deformation
associated with the interfaces.

The free energyF is said to have beenquasi-convexifiedto FQC. Finally, in a sense theFQC points to more
general ‘low roads’, elastic trajectories between the initial and the final states of deformation,FA(λ ) andFC(λ ),
of Fig. 6.1. In the soft-deformation expressionℓℓℓ1/2 ·WWW · ℓℓℓ−1/2

o
, eqn (6.5), we were able to identify an infinite

number of such deformations, the cartoon of Fig. 6.3 being a special case where the matrix matrixWWW is simply
WWW = δδδ . However withFQC one creates more freedom, for instance to eliminate shears from soft modes.

One further preliminary consideration is required; the pairs of deformationsλλλ
soft

must be chosen to be
kinematically compatible. Deformation gradientsλλλ displace the material pointsRRRo of the initial body to new
positionsRRR in the target state,RRR= λλλ ·RRRo. Figure 7.2 shows two stripes within the sample, separated by an
interface. The accumulatedx-displacement is only that corresponding to the externallyimposedλ , while the
additional modulation due to local shears averages to zero,in going from the bottom of the lower stripe to the
top of the upper stripe. One sees this also in Fig. 7.1 for the Freedericks effect, where there is no overall shear
generated between the lower and upper plates which are imposing the overall boundary conditions. Moreover, at
the interface between the stripes, the positionRRR is given equally by the displacement in going from the top of the
upper stripe or from the bottom of the lower stripe - the deformations are compatible. The decomposition of the
deformation gradient presented in eqn (7.2) trivially satisfies this condition. In general theλλλs on the two sides
of the interface must be “rank-1 connected”, that is, the deformations applied using eitherλλλ on a material point
in the interface must agree so that the interface’s deformations are uniquely defined (Bhattacharya, 2003).

The compatibility requirement on theλλλs of the quasi-convexification arises less trivially already in the simple
example (Verweyet al., 1996) where the initial directornnno is not perpendicular to the imposed extensionλ along
x, but has a pre-tilt angleφ , see Fig. 7.6. The concept of soft deformations as a low energy route for director

no
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Figure 7.6: A strip of nematic elas-
tomer with initial director,nnno, at an-
gle φ to the z-axis (a). On exten-
sion byλ alongx it breaks up into a
microstructure which avoids macro-
scopic shear (b). Pairs of stripes suf-
fer soft deformations with director
rotations to angles±θ , and shears,
±λxz, such that there is no netx-
displacement on passing through two
stripes (c).

re-orientation remains valid. For a uniform system generating only simple shear and the transverse relaxation
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1/λ in response to the imposed extension, the optimal director rotation to angleθ with respect tozzz, and the
associated shearλxz, take the form in alternating(±) stripes:

sin2 θ =
1

λ (r −1)

[
r(λ 2−1)+ (r −1)sin2 φ

]
(7.4)

λxz =
1

λ [r − (r −1)sin2 φ ]

(

−λ 2(r −1)sinφ cosφ ± (7.5)

±
√

r(λ 2−1)+ (r −1)sin2 φ
√

r −λ 2− (r −1)sin2 φ
)

.

Note there are two modes of shear in consecutive stripe domains for each value of sin2 θ , that isλ (+)
xz andλ (-)

xz

corresponding to director orientation angles+θ and−θ respectively. Before the deformation is applied (λ = 1)
one hasθ = φ , the initial orientation ofnnno. When director rotation begins, the ‘positive’ domain of shearλ (+)

xz > 0,
in which the existing director pre-tiltφ is in the same direction as the rotation can start its shear deformation
continuously fromλxz= 0. However, in order to form the ‘negative’ stripe with shearλ (-)

xz < 0 of opposite sense,
it is necessary to overcome a barrier. Stripes with−θ must jump to that state from the initial orientation+φ . If
the transition takes place immediately asλ exceeds 1, the jump inλ (-)

xz takes the value (Verweyet al., 1996):

∆λ (-)
xz (λ = 1) =− 2(r −1)sin2φ

r +1+(r −1)cos2φ
. (7.6)

To satisfy the requirement of no net transverse displacement after traversing a pair of stripes, see Fig. 7.6, one
needs the connection between the width,h, of stripes and their shear:

h+λ (+)
xz +h−λ (-)

xz = 0 . (7.7)

Thus, as extension begins andλ (-)
xz is effectively finite whileλ (+)

xz is still zero, then the ratio of stripe widths
h−/h+ =−λ (+)

xz /λ (-)
xz must be zero and increase asλ is greater than 1. However, the relative width of the opposite

stripe domains remains different – which would also be reflected in the different intensity of the two pairs of
X-ray scattering lobes, cf. Fig. 6.10

The mean deformation is still without shear, on average, butis composed as a mean of the two soft deforma-
tions with modified weights, according to their relative volume in the system:

λλλ =





λ 0 0
0 1 0
0 0 1/λ



=
h+

h++h−





λ 0 λ (+)
xz

0 1 0
0 0 1/λ



+
h−

h++h−





λ 0 λ (-)
xz

0 1 0
0 0 1/λ





≡ 1

λ (+)
xz −λ (-)

xz

{

λ (+)
xz λλλ

soft
(λ (−)

xz )−λ (-)
xz λλλ

soft
(λ (+)

xz )
}

= 〈λλλ
soft

〉
λ(±)
xz

. (7.8)

The quasi-convexified energy is volume-averaged over the energies of the two component distortions ofλλλ :

FQC(λλλ) =
1

λ (+)
xz −λ (-)

xz

{

λ (+)
xz F(λλλ

soft
(λ (−)

xz ))−λ (-)
xz F(λλλ

soft
(λ (+)

xz ))
}

= 0. (7.9)

The deformationλλλ =
( λ

0
0

0
1
0

0
0

1/λ

)

is still effectively soft since theF
(

λλλ
soft

(λ (±)
xz )

)

both vanish, but the details

of the microstructure are not as before – the volumes taken upby the two new types ofλλλ
soft

are now different
and the interfacial structure problem is modified. The full problem is much more difficult than simply taking an
initial director at an angle to the principal stretch. The third dimension becomes involved and sample shape as a
whole plays an important role.

7.2.2 FULL QUASI-CONVEXIFICATION

So far we have only dealt with planar soft problems. The director has rotated in thezx-plane and hence there has
been noy-relaxation:λyy= 1. We may need to make soft imposed deformations that are not restricted to this spe-
cial value ofλyy. For geometrical reasons (the ideal clamping), we so far only considered simple shears, whereas
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Figure 7.7: Schematic of the free energy densityF against (a) simple extension in two directions perpendicular
to nnn, with no shear. At the centre is the minimum associated with no distortion. The minimal values atλ =

√
r

corresponds to soft distortion associated with director rotation by 90o. The concave interval ofF connecting the
centre and the ring at

√
r can be flattened to zero by quasi-convexification via the creation of microstructure. An

example of a continuous soft path around the barrier was given in Fig. 6.3. (b) Soft paths using the component
deformations of eqn (7.2) are shown in a plot (S. Conti) usingλ andλxz as variables (with the other in-plane
strain 1/λ not shown). Two dots and the connecting path correspond to theλxz(λ ) curve in Fig. 6.7(b).

the full geometric representation of soft deformations, Fig. (6.3), tells us that more complex local strains may be
needed, even for the planar problem. The quasi-convexification problem has been solved in complete general-
ity for ideal nematic elastomers (DeSimone, 1999; DeSimoneand Dolzmann, 2002) and applied in a numerical
multiscale analysis of the response of a strip with realistic clamps and suffering extension (Contiet al., 2002).
Nematic elastomers admit of a fuller analysis of their soft deformations than Martensite and other crystalline
transformation problems (Bhattacharya, 2003) since theirsoft modes are described by the continuous rotations
of a director, rather than by discrete crystal symmetries. We sketch the philosophy of the quasi-convexification
of nematic elastomers and then examine the response of samples with practical geometries.1

It is difficult to represent the free energy density, even schematically, since it is a function of eight variables
(when deforming at constant volume). We attempt this in Fig.7.7 where we display a free energy density as a
function of externally applied extensionλ in any of the two directions perpendicular to the initialnnn (but with no
shear). The energy has a central minimum at(λxx,λyy) = (1,1) representing no distortion,F = 0 on ignoring the
3µ/2 constant. Without sympathetic shear relaxation, the freeenergy rises on distortion as it would in a classical
elastomer. At simple extensions ofλ =

√
r the free energy density is again naturally minimal; it is therotated

and again shear-free state of Fig. 6.1. These two states (λ = 1 and
√

r) have the same energy as the large space
of soft deformed states which are generally of greater complexity than these simple extensions and contractions.
Between the origin and the simple extension of

√
r, there is a finite energy costF > 0 since we do not allow shear

in this scheme. It would be obvious in a depiction ofF in higher dimensions that there are soft routes around
this barrier, the cartoon of Fig. 6.3 offering one of an infinity of such routes that require shear. One can therefore
replace this interval of concavity inF by FQC= 0 as in eqn (7.9). This introduces inhomogeneous microstructure
of no elastic cost, as we have seen in the previous sections. Our earlier, simple examples of convexification
corresponded to traversing along one axis only in Fig. 7.7. More complex geometry, including shears induced in
more than one direction, is required to quasi-convexifyF in all directions. Outside an ultimate distortion (at most
an extension of

√
r applied perpendicular to the initialnnn, and less for oblique directions) nothing more can be

done – the director is fully aligned with the direction of principal stretch and no mechanism of soft deformation
now exists: this elastically hard region is convex and cannot be quasi-convexified away. This is represented by
the large strain regions of Fig. 7.7, but is of course much more complex in eight dimensions.

The need for the most general quasi-convexification can be seen from Fig. 7.5. With extension and transverse

1We are grateful to A. DeSimone and S. Conti for their help in the material of these sections.
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contraction in the bulk of the sample, but not near the clamps, the sample develops curved edges and the local
principal stretch is not uniformly alongx; examples of where this is so are indicated by arrows on the figure. In
some regions, especially near the clamps, it may be impossible to find soft combinations of distortions at all –
the free energy density may then be quartic or even harder, for instance ifλzz is constrained to beλzz∼ 1 near a
completely rigid clamp. On the other hand, the obliquity of the local principal stretching direction may require
shears for softness that do not demand inhomogeneous microstructural variation at all: there could be regions of
soft response without stripes.

Figure 7.8: (a) The sequence of im-
ages illustrating the stretching of an
elastomer film. The middle image
shows the sample with stripe do-
mains strongly scattering light, the
bottom images shows the sample be-
yond the soft plateau, still retaining
scattering regions near the clamps.
(b) The expanded image of the clamp
region (atλ > λ2), showing the com-
plicated pattern of areas with local
stripe microstructure.

One can see that the precise pattern of deformation depends on the macroscopic shape of the sample, in
particular its aspect ratio (length to width ratio). Depending on this shape, oblique stripes will occur in different
places at different macroscopic extensions (externally applied λ , distinguishing these from the local extensions
in the material) and that the stripe pattern will shift spatially as extension continues. For instance, Fig. 7.8
shows an enhanced view of the clamp region of an elastomer that was stretched well beyond the end of the soft
plateau denoted byλ2, which was determined asλ2 =

√
rλ1 in Sect. 6.4; however, there are several regions

where the stripes remain (seen as white areas, strongly scattering light, in contrast to the transparent areas of
uniformly aligned nematic director). If there is a continuous path of regions across the sample that can deform
softly, then they will do so first until sufficient are exhausted that the path of soft regions across the sample is
broken. The macroscopically soft response will harden due to the non-soft regions through which stress can
now pass. Thereafter, other regions of the sample that did not initially have softness available to them will also
start deforming. In doing so there is a change of geometry andit is possible that some other regions can then
start deforming softly while others are deforming non-softly. Hard and soft deformations can coexist whenever
there is a path of non-soft deforming material along the sample so that there is an ultimate continuity of force
transmitted along the sample.

7.2.3 NUMERICAL AND EXPERIMENTAL STUDIES

A numerical solution of strip elongation (Contiet al., 2002) reveals the non-uniformities that arise because of
the clamp constraints and which are intensified when soft deformations in the bulk come to their end. In Fig. 7.9
they show the force against deformation for an ideal elastomer. The ‘affine curve’ corresponds to a model case
where no clamp effect is exerted on the stretched elastomer sample. Naturally there is no force until director
rotation is complete atλ2 =

√
r with θ =±π/2, depending on which stripe one is in. The clamped sample with

aspect ratio of 3 can get closer to the ideal soft cut off than that with the aspect ratio = 1 (the square shape),
since the former has a relatively smaller volume fraction influenced by the constraints exerted by the clamps. A
salutary lesson emerges – the apparent length of the soft region is a function of the macroscopic aspect ratio of
the sample. Fortunately experiments discussed before, Sect. 6.4.1, were carried out on samples with large aspect
ratios, long rubber strips with aspect ratio∼ 10-12. This sensitivity to aspect ratio was explored in experiments
(Zubarevet al., 1999) and revealed a spatial distribution of microstructure that depended on strain differently in
samples of different aspect ratios.

As we have seen in Fig. 7.8, when samples are stretched beyondthe onset of hard response,λ > λ2, the
stress patterns are non-trivial, especially near the clamps. Figure 7.10 shows larger stresses diagonally towards
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Figure 7.9: Force against extension calculated nu-
merically for an ‘affine’ sample, with no clamp ef-
fect, and for clamped samples of aspect ratio (AR)
of 3 and 1, respectively. The anisotropy parame-
ter was takenr = 2. The two arrows point at the
specific extensions examined in Fig. 7.12.

the corners and much less in the central clamp regions, as anticipated in Fig. 7.5. The macroscopic shape is also

Figure 7.10: Spatial distribution of stress
is indicated by levels of shading in a sam-
ple with r = 2, of initial aspect ratio = 3,
stretched toλ = 1.38, see Fig. 7.9.

rather different from that of a classical elastomer undergoing the same macroscopic extension. The edges near
the clamps tend much more directly and with less curvature tothe central, straight region. This is a consequence
of the microscopic constitutive relation and its macroscopic quasi-convexified form (Contiet al., 2002).

A

B

C

C C C

D

E123 Figure 7.11: Different labelled regions of an ex-
tending nematic elastomer with their correspond-
ingly labelled X-ray patterns, indicating the local
director orientation.

Inhomogeneous microstructure is evident not only by directmicroscopic observation, but also through X-ray
scattering. Since the beam area is generally large comparedwith the width of individual stripes, of several mi-
crons, both nematic directions are revealed in the somewhataveraged picture. Figure 7.11 shows X-ray patterns
taken from different regions of a sample at a fixed extension (Zubarevet al., 1999). Central regions of the rub-
ber strip (points C2 and C3) already have their director rotation complete. In the fringes of the clamp region,



68 CHAPTER 7. HOW NEMATIC ELASTOMERS DISTORT

where microstructure still exists, point C1, the rotation within stripes is not quite complete and so themaxima
associated with the directors in neighbouring stripes are not quite coincident, leading to an apparently broadened
nematic azimuthal distribution of scattered X-ray intensity. The extreme regions A and E along the rigid clamp
have the directors pointing along the maximum extension directions, that is towards the corners and there is no
microstructure. At the middle-point C, there are still fully developed stripes with directors at±π/4 to the exten-
sion direction,x, and thus four azimuthal maxima (see for comparison Fig. 6.10). The X-ray pattern is that of
two nematics with orthogonal directors. B and D represent more oblique regions. The distribution of extension
and microstructure emerges from the numerical solution of the problem. Figure 7.12(a) shows the microstructure
of the top right hand quarter of a stripe with the type of patterns developing at different places shown as insets.
The deformation is still soft overall (determined by the stress needed to deform the central region). Closer to the
clamp there is reaction but still not hardness at this valueλ = 1.31, see Fig. 7.9.

Figure 7.12: Numerical calculations
of the distribution of microstructure
in a sample of aspect ratio = 3,
stretched to (a)λ = 1.31, and (b)
λ =1.38, these strains being labelled
in Fig. 7.9. Levels of shading in-
dicate the extent of microstructural
development. Director rotation in
the stripes at the central clamp re-
gion is less than in the bulk which in
(a) is undergoing essentially uncon-
strained soft deformation with the
expected director rotation. In (b) the
rotation in the bulk is clearly com-
plete and the director apparently uni-
formly points alongx.

Beyond the hard threshold atλ = 1.38 , see Fig. 7.12(b), the director rotation at points along the centre of the
sample (bottom of the figure) is as found in experiment, Fig. 7.11. Where the director rotation is complete, that
is atθ = ±π/2, one might expect a homogeneous director distribution since in a nematicθ = π/2 is equivalent
to that atθ = −π/2. However, neighbouring stripes are separated by narrow inhomogeneous walls. Within
such walls there must be directors of intermediate angle that take the director field fromθ = π/2 to θ = −π/2
andvice versaon making the transition from stripe to stripe. A uniform nematic texture can be made to appear
completely dark under suitably oriented cross polarisers.With a dark background, any possible remaining regions
of deviating director will appear very bright and will be detected with great sensitivity. One could indeed see
bright, unresolvably thin lines where the separation wallsbetween stripes used to be, that were probably the
director traversing between the equivalent statesθ = ±π/2 over a short distance,w∼ ξ , this volume of sample
then not being dark under the polarisers.

The effect of initial sample aspect ratio has been seen in theforce extension curves, Fig. 7.9, and has also
been visualised in experiment. In a square sample (AR=1) onefirst finds pronounced stripe regions in the middle
(the region of highest local extension), which then grow andmigrate across the sample towards the clamps, as
strain develops (Zubarevet al., 1999). This is qualitatively the sequence of results seen in the numerical solution
(Contiet al., 2002), of which Fig. 7.12 (a) and (b) are examples at two strains.
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