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PREFACE

These notes are loosely based on the liquid crystals, pajrakasticity and nematic elastomers sections of the
book “Liquid Crystal Elastomers” by Warner and Terentje®(paperback edition 2007).

Liquid Crystal
Elastomers

M. WARNER
i

and
E. M. TERENTJEV

Figure 1: Warner and Teren-
tiev: “Liquid Crystal Elas-
tomers”: cover of the paper-
back edition 2007.

OXFORD SCTIENCE PUBLICATIONS

The notes have many exercises, some of which are solved hadsaif which have hints for their solution.

It is suggested to the reader that these will help in undedstg the subject, in particular where it diverges from
classical elasticity theory (for instance when rotatiomsiaportant in the elastic response because of the internal
rotational degree of freedom, the director). The approadfidsticity is with the deformation gradient tensor
because non-linear elasticity is used throughout (rubdrersapable of huge deformations). We use this tensor,
rather than Cauch-Green tensors, also because it mordyliemords rotations which are so important.

The first chapter of the notes is a birds eye view of the whold.fik mentions areas not covered here, for
instance smectic elastomers. Their elasticity is esggeiah because the constraint of constant layer spacing is
hard on the energy scale of elastomers. We thus have thiharmbhstraint of constant volume governing the
large deformations of those unusual elastomers.

The supersoft deformations of isotropic genesis nematicomain elastomers will hopefully be addressed
in aresearch lecture after the material in these notes oatheaiastomers has been covered.

Mark Warner
Cavendish Laboratory, University of Cambridge.
April, 2011
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CHAPTER 1. AN OVERVIEW OF LIQUID CRYSTAL ELASTOMERS

Liquid crystal elastomers bring together, as nowhere éfsege important ideas:orientational orderin amor-
phous soft materialsiesponsive molecular shapéd quenched topological constraintécting together, they
create many new physical phenomena that are the subje@s# tiotes. This bird’s eye view sketches how these
themes will come together.

Initially we introduce liquid crystals and polymers sinbey are our building blocks. A fuller primer for an
undergraduate or graduate student embarking on a studyyehpoor liquid crystal physics, or on complex fluids
and solids, is found in the initial chapters of our book, “lid Crystal Elastomers| (Warner and Terentjev, 2007),
hereafter referred to as WT. Then elastomers are discusghdrbm the molecular point of view, and briefly
within continuum elasticity. We need to understand how maerespond at very large deformations for which
only amolecular approach is suitable. Also one needs torgtadel the resolution of strains into their component
pure shears and rotations, the latter also being imponahieise unusual solids. WT also provides a primer for
the basics of these two areas that are otherwise only foudifficult and advanced texts.

Classical liquid crystals are typically fluids of relatiyedtiff rod molecules with long range orientational
order. The simplest case is nematic — where the averagdmgadgrection of the rods, the directar is uniform.
Long polymer chains, with incorporated rigid anisotropigts can also order nematically and thus form liquid
crystalline polymers. By contrast with rigid rods, theseifiée chains elongate when their component rods
align. This results in a change of average molecular shap®,$pherical to spheroidal as the isotropic polymers
become nematic. In the prolate anisotropy case, the lorggaithe spheroid points along the nematic director

n, Fig.[1.1.

n

Figure 1.1: Polymers are on average spherical
in the isotropic (l) state and elongate when they
are cooled to the nematic (N) state. The direc-
tor n points along the principal axis of the shape
spheroid. (The mesogenic rods incorporated into
the polymer chain are not shown in this sketch,
only the backbone is traced.)

So far we have no more than a sophisticated liquid crystain@bs in average molecular shape induced by
changes in orientational order do little to modify the pndies of this new liquid crystal. Linking the polymer
chains together into a gel network fixes their topology, dredhhelt becomes an elastic solid — a rubber. Radically
new properties can now arise from this ability to change b shape while in the solid state. To understand
this we have to consider rubber elasticity.

In rubber, monomers remain highly mobile and thus liqukéli Thermal fluctuations move the chains as
rapidly as in the melt, but only as far as their topologicalsstinking constraints allow. These loose constraints
make the polymeric liquid into a weak, highly extensible enet. Nevertheless, rubber is a solid in that an
energy input is required to change its macroscopic shap(itrast to a liquid, which would flow in response).
Equivalently, a rubber recovers its original state where! influences are removed. Systems where fluctua-
tions are limited by constraints are known in statisticath@ics as ‘quenched’ - rigidity and memory of shape
stem directly from this. It is a form of imprinting found inadsical elastomers and also in chiral solids, as we
shall see when thinking about cholesteric elastomers.

Can topology, frozen into a mobile fluid by constraints, adtiprint liquid crystalline order into the system?
The expectation based on simple networks would be ‘yes’s Gihestion was posed, and qualitatively answered,
by P-G. de Gennes in 1969. He actually asked a slightly mguhisticated question: Crosslink conventional

1



2 CHAPTER 1. AN OVERVIEW OF LIQUID CRYSTAL ELASTOMERS

polymers (not liquid crystalline polymers) into a networkthe presence of a liquid crystalline solvent. On
removal of the solvent, do the intrinsically isotropic aaremember the anisotropy pertaining at the moment of
genesis of their topology? The answer for ideal chains tirikea nematic solvent is ‘no’! Intrinsically nematic
polymers, linked in a nematic phase of their own making, dao alude their topological memory on heating.
How this is done (and failure in the non-ideal case) is a maj@me of these notes.

Second, what effects follow from changing nematic order #ru$ molecular shape? The answer is new
types of thermal- and light-induced shape changes.

The third question one can ask is: While in the liquid-cristate, what connection between mechanical
properties and nematic order does the crosslinking topoleduce? The answer to this question is also re-
markable and is discussed below. It leads to entirely neactff— shape change without energy cost, extreme
mechanical effects and rotatory-mechanical coupling. We g preview below of these effects in the form of a
sketch — details come later.

Rubber resists mechanical deformation because the nethaiks have maximal entropy in their natural,
undeformed state. Crosslinking creates a topologicaliogldetween chains that in effect tethers them to the
solid matrix they collectively make up. Macroscopic defation then inflicts a change away from the nat-
urally spherical average shape of each network strand, lame@ntropy,S, falls. The free energy then rises,
AF = —TAS> 0. This free energy, dependent only on an entropy changi diseen by molecular shape
change, explains why polymers are sometimes thought ofrésojgic springs’. Macroscopic changes in shape
are coupled to molecular changes. In conventional rublieeitvays the macroscopic that drives the molecular;
the induced conformational entropy of macromoleculesrsffiee elastic resistance.

Nematic polymers suffer spontaneous shape changes assbwigth changing levels of nematic (orienta-
tional) order, Figl_LI1. One now sees a reversal of influeclcanges at the molecular level induce a correspond-
ing change at the macroscopic level, that is induce mechbsti@ins, Figl_1]2: a block of rubber elongates by a

n
Figure 1.2: A unit cube of rubber in the isotropic I heat %
(1) state. Embedded in it is shown the average ol | ha m
the chain distribution (spherical). The block elon- cool
gates by a factok, on cooling to the nematic (N) J |
state, accommodating the now elongated chains. N

factor ofAm > 1 on cooling or ¥Am < 1 on heating. This process is perfectly reversible. Stguitithe nematic
state, chains become spherical on heating. But mechamiaal snust now accompany the molecular readjust-
ment. Very large deformations are not hard to achieve, sg€IF3. Provided chains are in a broad sense ideal,

= <] ' |
=  |=ET|E 7] = =2
= = = ° ===
= 1— 1= 1=—"=F
Figure 1.3: A strip of nematic rubber ex- I | —
tends and contracts according to its temper- e e ;
ature. Note the scale behind the strip and _ |
the weight that is lifted! Isotropic =~ €—— Heating - Cooling —>  Nematic

it turns out that chain shape can reach isotropy both forttginted case of de Gennes (on removal of nematic
solvent) and for the more common case of elastomers fornaed fiquid crystalline polymers (on heating).
Chains experiencing entanglement between their crogstintoints also evade any permanent record of their



Rotation
by 90°

o—0
(b)

Figure 1.4: (a) Rotations of the director and matrix by as§lendQ, respectively. From (b) to (c) the director,
and thus chain shape distribution, is rotated by f86m n, to n. The rubber is mechanically clamped and hence
the chains in (c) that would be naturally elongated alangust be compressed: the dotted spheroid in (c) is
compressed to the actual solid spheroid.

genesis. Many real nematic elastomers and gels in pradtaselg conform to these ideal models. Others are
non-ideal — they retain some nematic order at high temperss a result of their order and topology combining
with other factors such as random pinning fields and comiposit fluctuations. They still show the elongations

of Fig.[1.3, but residues of non-ideality are seen in thetielaffects we review below.

This extreme thermomechanical effect, and the phenomeRaysf 1.5 and1]7, can only be seen in mon-
odomain, well aligned samples. Without very special préoas during fabrication, liquid crystal elastomers
are always found in polydomain form, with very fine texturedoector orientations. The great breakthrough in
this field, developing a first method of obtaining large, petfmonodomain nematic elastomers, was made by
Kupfer and Finkelmann in 1991.

Nematic-elastic coupling was the third question we posetgives rise to new rotational phenomena ubig-
uitous in liquid crystal elastomers. It is possible to rettdte director and the rubber matrix independently, see
Fig.[1.4 (a). Such relative rotations of the body and of itsiinal anisotropy axis show that nematic elastomers
are not simply exotic, highly-extensible, uniaxial cryste&Such materials belong to a class displaying so-called
Cosserat elasticity, but with the distinction that defotioras and rotations can be large in elastomers. Imagine
now rotating the director while clamping the body so its shdpes not change, Figs. 11.4(b) and (c). The natural,
prolate spheroidal distribution, when rotated by @@ be alongn, has a problem. Chains do not naturally fit,
since the clamped body to which they are tethered is not sporaingly elongated alongto accommodate
their long dimensions. Chains in fact must have been corepda® fit, at considerable entropy loss if they were
very anisotropic. A rotation of 180recovers the initial state, so the free energy must be periadd turns
out to beF = %Dlsinz(e — Q). The rotational modulu€)1, was first given by de Gennes in the infinitesimal
form %Dl(e —Q)2. Arotation of the director in Fig._114(b) would lead to a ial’ intermediate state depicted
by dotted lines in Fig._1]4(c). Subsequent squeezing to aek the actual body shape demanded by the clamp
condition (full lines) of Fig[ZT.¥(c) costs an energy prajmmal to the rubber modulugi, and to the square of
the orderQ, (sinceQ determines the average chain shape anisotropy). Dhus uQ?. In contrast to ordinary
nematics, it costs energy to uniformly rotate the direatdependently of the matrix.

In liquid nematics it is director gradients that suffer Htatastic penalties, and thus long-wavelength spatial
variations of the rotation angle cost vanishingly smallrggeThermal excitation of these rotations causes even
monodomain nematic liquids to scatter light and to be turtdt so monodomain nematic elastomers which
are optically clear because even long wavelength direotations cost a finite rubber-elastic ene@?le2 and
cannot be excited, see Fig. 11.5. The excitations have afjaimass, in the language of field theory.

Local rotations, so central to nematic elastomers, yieldl#ls and spectacular new elastic phenomenon
which we call ‘soft elasticity’. Imagine rotating the ditec but now not clamping the embedding body, in
contrast to Figd._114(b) and (c). One simple response woeltblrotate the body by the same angle as the
director, and this would clearly cost no energy. Howevent@ry to intuition, there is an infinity of other
ways by mechanical deformation to accommodate the anfgotdistribution of chains without its distortion
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Figure 1.5: A strip of monodomain ‘single-crystal’ nematidber. It is completely transparent and highly
birefringent (image: H. Finkelmann).

as it rotates. Thus the entropy of the chains does not chamgpite of macroscopic deformations. Figlirel 1.6
illustrates the initial and final states of a®irector rotation. They are separated by a path of statesacterised
by an intermediate rotation angfeand by a corresponding shape of the body, one of which is shdwis 6-
state is shown in the sketch (b) accommodating the spheritibut distorting it. A special combination of
shears and elongations/compressions is required, buihg twt not very difficult to achieve in experiment!

One of the traditional ways to rotate the director in liquigstals is by applying an electric (or magnetic) field
and generating a local torque due to the dielectric anipgirBue to the nematic-elastic coupling, the director
rotation is very difficult if an elastomer sample is mechatyjcconstrained. Apart from a few exceptions (all
characterised by a very low rubber-elastic modulus, suahlgghly swollen gels) no electrooptical response can
occur. However, if the elastomer is mechanically uncoivstid the situation changes remarkably. In a beautiful
series of experiments, Urayama (2005,2006) has confirnegartidiction of soft elasticity: that the field-induced
director rotation has no energy cost, can easily reachrétation angles and has associated mechanical strains
that almost exactly follow the sketch in Fig.1L.6.

Practically, when dealing with rubbers, one might insteaddse a mechanical distortion (say an elongation,
A, perpendicular to the original director) and have the otteenponents of strain, and the director orientation,
follow it. The resultis the same — extension of a rubber cogtslastic energy and is accompanied by a character-
istic director rotation. The mechanical confirmation of taetoon is shown in stress-strain curves in Eigl 1.7(a)
and the director rotation in Fif._1.7(b).

We have made liquid crystals into solids, albeit rather waalids, by crosslinking them. Like all rubbers,
they remain locally fluid-like in their molecular freedomdamobility. Paradoxically, their liquid crystallinity
allows these solid liquid crystals to change shape withaetgy cost, that is to behave for some deformations
like a liquid. Non-ideality gives a response we call ‘semits There is now a small threshold before director
rotation (seen in the electrooptical/mechanical expemisief Urayama (2005,2006), and to varying degrees in
Fig.[1.7); thereafter deformation proceeds at little dddl resistance until the internal rotation is complete.
This stress plateau, the same singular form of the directation, and the relaxation of the other mechanical
degrees of freedom are still qualitatively soft, in spitedhreshold.

There is a deep symmetry reason for this apparently mysiesgoftness that Fig. 1.6 rationalises in terms
of the model of an egg-shaped chain distribution rotating solid that adopts new shapes to accommodate it.
Ideally, nematic elastomers are rotationally invariardemseparate rotations of both the reference state and of

[T
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Figure 1.6: Rotation of chain shape distribution, fragtto n, with an intermediate sta® shown. The uncon-
strained rubber deforms to accommodate the rotating diregthout distorting the chain distribution.



the target state into which it is deformed. If under some @@rts, not necessarily the current ones, an isotropic
state can be attained, then a theorem of Golubovi¢ and lakyeshows that in consequence soft elasticity must
exist. It is a question of care with the fundamental tenetlaétecity theory, the principle of material frame
indifference. We shall examine this theorem and its consecges many times in these notes, including what
happens when the conditions for it to hold are violated, ithathen semi-softness prevails.

Elastic softness, or attempts to achieve it, pervade muttectlasticity of nematic elastomers. If clamps or
boundary conditions frustrate uniform soft deformati@jectories, microstructures will evolve to allow softness
with the cost of interfaces being a relatively smaller pticgay. There are similarities between this so-called
‘gquasi-convexification’ and that seen in martensite an@ioghape-memory alloys.

Cholesteric liquid crystals have a helical director digition. Locally they are very nearly conventional ne-
matics since their director twist occurs typically over mits, a much longer length scale than that associated
with nematic molecular ordering. They can be crosslinkefdtm elastomers which retain the cholesteric direc-
tor distribution. Several phenomena unique to cholest@nicerge: Being locally nematic, cholesteric elastomers
would like on heating and cooling to lose and recover origmtal order as nematic elastomers do. However,
they cannot resolve the requirement at neighbouring peingpontaneously distort by, but in different di-
rections. Accordingly, their chains cannot forget thepdtmgically imprinted past when they attempt to reach a
totally isotropic reference state (the second de Genneslighion of 1969). Thus cholesteric rubbers also can-
not deform softly in response to imposed strains. Theirogptnd mechanical responses to imposed stress are
exceedingly rich as a result. They are brightly colouredtduselective reflection and change colour as they are
stretched — their photonic band structure changes witinstf&ey can emit laser radiation with a colour shifted
by mechanical effects. Further, the effect of topologiogbiinting can select and extract molecules of specific
handedness from a mixed solvent. Such rubbers can act ashanies separator of chirality — a new slant on a
problem that goes back to Pasteur.

We have sketched the essentials of nematic (and cholgstebicer elasticity. This survey leaves out many
new phenomena dealt with in later chapters, for instanadrelmechanical Freedericks effects, photo-elastomers
that drastically change shape on illumination, and so on.

Smectics are the other class of liquid crystal order. Thexelpdane-like, lamellar modulation of density in
one direction (SmA), or additionally a tilt of the directo~vay from the layer normal (SmC). Many other more
complex smectic phases exist and could also be made intmelass. In many smectic elastomers, layers are
constrained not to move relative to the rubber matrix. Defations of a rubber along the layer normal are thus
resisted by a layer spacing modulis,of the order of 18 times greater than the shear modulus of the matrix.

100
Gc(MPa) 0 @eg) .
0.09 80 i
s 60
0.06 -
- 40 - L
0051 [ et o 20
:A o] 0 ;‘.@:-v.' . . ; - - -
R N 1Ll 12 13 14 15 16 17 5
(a) (b)

Figure 1.7: (a) Stress-deformation data of Kuipfer and &limiann (1994), for a series of rubbers with the same
composition and crosslinking density, but differing in paeation history: some show a normal elastic response
while others are remarkably soft. (b) The angle of direattation on stretching nematic elastomer perpendicular
to the director for a variety of different materials, froormkélmannet al. (1997). The solid line from, theoretical
modeling, accurately reproduces singular points and cheniatic shape of data.
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Figure 1.8: In-plane fluidity and parallel rigidity in a sntiecA elastomer|(Nishikawat al., 1997). The Young
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Figure 1.9: (a) A SmA elastomér (Hiraokaal, 2005). (b) Spontaneous shéay in achieving the SmC state.

Distortions in plane, either extensions or appropriatashere simply resisted by the rubber matrix. Thus SmA
elastomers are rubbery in the two dimensions of their lajangs, but respond as hard conventional solids in
their third dimension. Fid._118 shows this behaviour. Sudhetne mechanical anisotropy promises interesting
applications.

The director tilt associated with the transition from SmASmC induces distortion in the polymer chain
shape distribution. Since chain shape is coupled to mechkstiape for an elastomer, one expects, and sees in
Fig.[1.9, spontaneous distortion. This response to ordamgé is analogous to the elongations associated with
orientational order of chains on entering the nematic shatehere we instead have shear. The amplitude is also
large, of the order of 0.4 in the figure. As in the nematic cése broken symmetry suggests a mechanism for
SmC solids richer still than that of SmA elastomers, inahgdEmC soft elasticity equivalent to that of Hig.11.6.

The tilted, SmC, liquids also exist in chiral forms which rhum symmetry grounds be ferroelectric. Their
elastomers are too. Ferroelectric rubber is very speciathanically it is soft, about faimes lower in modulus
than ferro- and piezoelectrics because, as sketched ait®wveolecules are spatially localised by topological
rather than energetic constraints. Distortions give figddéion changes comparable to those in ordinary ferro-
electrics. But the response in terms of stress must nedgdsad 0* times larger than in conventional materials.
In these notes lack of space means we will not treat smettid¥T their underlying liquid crystalline properties
are reviewed in some detail. In Chapter 12, molecular pgodfismectic elastomers valid to large distortions with
strong layer constraints is given and the principal phemanterived and discussed along with experiment. In
Chapter 13 their continuum mechanics, which is also verypier) is developed.

We end our preview as we started — solids created by top@bgimstraints are soft and highly extensible.
Liquid crystal elastomers share this character with tiepartant cousins, the conventional elastomers. But their
additional liquid crystalline order gives them entirelywnkinds of elasticity and other unexpected phenomena.



CHAPTER 2. LIQUID CRYSTALS

Liquid crystalline rubbery solids are polymer networkshwmitematic or smectic order. They display most of
the complexities of conventional liquid crystals: direcial but not translation long range order, optical bire-
fringence and phase transitions. In fact they are liquigtedg with the exception that they cannot flow. Liquid
crystal networks have many properties in addition to sinm@matics and smectics, but to start understanding
them, we briefly review conventional liquid crystals. WT (iar and Terentjev, 2007) reviews more of the
basics of what is a large and subtle subject. Excellent m@pdg exist, such as (de Gennes and Prost,| 1994)
and (Chandrasekhar, 1977). More specialist reviews axplainers of the field, for instance Landau theory or
polarisational effects.

What are the essential differences when nematic liquidtalysre ‘solidified’ to form elastomers or gels?
We shall see that rubber has all the mobility of liquids Ibcalt not in a bulk sense — they cannot flow. The
ordering thus remains mobile, albeit with some tetherintheosolid matrix. All liquid crystal properties other
than flow are manifested. We shall dwell here on propertiesrople nematics, cholesterics and smectics that
will be radically changed in networks.

Detailed molecular models play little role in nematic etaseérs, apart from describing phase transitions and
behaviour close to them, and for details of photoelastom®@tkerwise nematic, cholesteric and smectic elas-
tomers, like conventional rubbers, are remarkably unaler§Ve shall see that the properties of conventional
elastomers depend essentially on the density of crossiindson temperature, much like an ideal gas. Liquid
crystal elastomers depend upon these two factors, but plso the shape anisotropy of their constituent poly-
mer chains. This anisotropy is liquid crystalline (molexlilin origin, but can be measured directly or derived
from macroscopic shape changes, a path we shall mostlynmfolfr this reason we do not dwell on detailed
microscopic models of liquid crystals, and also not on medépolymers.

2.1 ORDERING OF ROD AND DISC FLUIDS

Nematics are anisotropic fluids. They derive their name fthenthread-like defects in their anisotropy, i.e.
disclinations that are observed under the microscope. TeelGvordvn pa for thread was taken by G. Friedel
for the name of this phase. Molecular asymmetry is a pre¢iomddr macroscopic anisotropy. Weak asymmetry,
for instance in the B molecule is insufficient to lead to spontaneous orderingcrdasing either the shape
anisotropy (astericinfluence), or the anisotropy of polarisabilitytteermotropianfluence), results in anisotropic
liquids with long range directional ordering. The archétgb mesogenic molecule that forms such a fluid is
para-azoxyanizole (PAA), see F[g. P.1. Its shape is rogldikd its conjugated chemical bonds render it more
polarisable along its long axis.

(PAA) CH3O®NN®OCH3
O
(MBBA) C&OOCHN@ ng /ng

CH, CH,
(5CB) N;chz /C{IZ /CH3
CH, CH,

Figure 2.1: The chemical structure of para-azoxyanizad&\|PThis, and many other mesogenic (liquid crystal
phase-forming) molecules are characterised by the sanmeraerattern of two para-substituted aromatic rings
rigidly linked into a rod-like structure. The terminal gquaioften vary, from a simple CGHn PAA, to longer
flexible chains in MBBA, or dipolar units, e.g. a CN group iracypbiphenyls (5CB).
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Figure 2.2: (a) The distribution of molecular axes arouradkierage alignment direction (b) The Legendre
polynomialP, as a function of anglé in the range 0 to 180 Note that it varies between 1 and -0.5, that angles
6 andmr— 6 are equivalent, and that positive and negative valu®s affer to geometrically very different states.

When long-range van der Waals forces of anisotropic aitnactre the dominant ordering influence, a re-
duction in temperature will lead to nematic ordering. Sugsteams are known abermotropic PAA is a good
example of these. At a temperatdre- 135°C, even at the highest densities (in the melt, with no solveallp
shape effects are insufficient to produce the nematic phhgdwan only result from cooling.

We shall be interested in directionally ordered molecutesspective of the mechanism by which they order
(generally it is both). Rod-like molecules, similar to PAégntinue to order when incorporated into polymer
chains and thereby create the essential alignment we eetfubtain nematic (and later) smectic elastomers.
For all the reasons given above, anisotropic disc-like mgdés will generate nematic (and other) phases too. In
some cases liquid crystal polymers have been created froongorating discs into polymer chains.

2.2 NEMATIC ORDER

The sketch Fig_2]2(a) of a nematic fluid shows rods corrélatith a directionn, the nematic director. The
director is a unit vector, only showing the principal axisadfjnment. In a fluid of rods, as in Fif_2.2, the
direction ‘up’ is not distinguished from ‘down’; indeed ibald not be since the rods drawn are not themselves
capable of making the distinction. For this reasos drawn as a double headed vector. In practice rods do have
an internal direction, for instance a dipole moment alomgyflong axis, but the up-down (quadrupolar) symmetry
of nematics is not broken. If it were, we would have ferroglemematics with a spontaneous polarisation from
the predominance of, say, ‘up’ molecular dipoles over thdsen’. In nature uniaxial nematics are not polar
but quadrupolar, with the symmetry described by the poiotigD.p, (a symmetry of a simple cylinder).

The orientational order can now be defined. In Eigl 2.2(ajparte’s spine is drawn with an angéto n.
The nematic order parameter is defined via the average ohdéamendre polynomidlas

Q= (P(cos)) = (3cog 0 - 1) (2.1)

where(...) denotes an average over rod directighsFrom Fig.Z.2 one can see hady= 1 corresponds to
perfect nematic order with rods directed (b= 0) or down(8 = 7). Q = 0 is when rods are randomly oriented,
that is the phase is isotropic afcbs ) = 1/3. Moderate nematic order 6f = 1/2 sees rods with an average
angle of@ ~ 35°, wherea®Q = —1/2 has all rods confined to the plane perpendiculan, tinat is all rods have
(6 =m/2).

1 The Legendre polynomialB,(cosf) naturally describe orientations since they are the eigemions of the angular momentum
operator (actually, its square) which is the generator @ftians. Dipolar order is described ) (cosf)) = (cosf). Since equal numbers
of rods in a nematic have an andleasm— 6, and since cdst— 8) = —cos6, the dipolar order of a nematic vanishéB;) = 0. P is the
next function to try.



2.2. NEMATIC ORDER 9

Figure 2.3: The coordinates of a rod used to define the ordanpeter tensor.

Nematic order can be measured directly by nuclear magrestisiance (de Gennes and Prost, 1994), or more
macroscopically, the fluid of aligned rods in Hig.12.2(a) hasfractive indexn; alongn typically greater than
that, m,, in all the perpendicular directions. This is because rege Fig[2]1) are mostly more polarisable
along their lengths and their long axes in a nematic are lzde with the director. Again ‘up’ and ‘down’
are not distinguished and the differents& = m —m, depends on the nematic ord@ras: Am = AmeQ. The
intrinsic anisotropyAm,, depends on molecular factors and can be calculated, onagstil by extrapolation to
low temperatures where the nematic order becomes Qigh,1.

We shall often deal with nematic order viewed from a genayatdinate frame, not simply along the director
as in the above example of refractive index. In fact, nen@tiler is tensorial in character and we have viewed
in a principal frame where the director is along #eis:

m; 0 0
m 0 mg O | = Diag(m ,m;,my) . (2.2)
0 0 mH

(For brevity we shall often denote diagonal tensors by thadgDform). For a general orientation afwe have
for the refractive index tensor:
mj :mLaj—y(mH—ml)ninj (2.3)

The microscopic definition of the order parameter tensdnésanalogous extension from the scaarlLet
u be the unit vector describing the axis of the test rod. Uit ¢ coordinates of Fid. 213, the projections of
the rod areu, = cosf, uy = sinf cosp anduy = sin@sing. The mean square projections &wgu,) = (cog ),
(uxly) = (sin? 8cog @), (uyly) = (sin Bsin? @) and all otheruju;) with i # j vanish. Since we are interested in
angular distributions rather than in the physical exterdroéxtended object, we have taken a unit veetpfor
which one has % (u)? = ((u)?) = (uxuy) + (uyuy) + (UU;) = Tr((uu)). The above averages certainly satisfy
this identity. In fact the identity adds nothing to the caritef the tensouju;j, so we subtract out the spherical
part3 Tr((uu)) 8 = 38 from the tensofuu). Then the equivalent of eqi(2.3) is:

Qi = (3uu; — 38)) (2.4)
(see FigLZB). One can check tiigt is indeed the averag®,(cosh)) = Q we defined before, if the coordinate
axiszis chosen along.
The other element@uuy) and(uyuy) are related tqu,u,) since the average over the free anglés trivial
in the case of uniaxial ordercog @) = (sir? ) = 1/2. They can thus be written dsiyUy) = (uyty) = (1 —
(o 8))/2=(1—(uu,))/2 = (1—Q)/3. For this orientation af we have for the matrix representing the order

parameter:
—Q/2 0 0
0 9P g , (2.5)

Q
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while in general the order parameter is

Qj =Q(3nin; - 38)). (2.6)
The order parameter tensor is, by construction, traceledsagrees with any of the macroscopic definitions of
the ordering (for instancm) if they too are made traceless. Let the average value ofetnactive index be
M= 3 Tr(m) = 3(m; +2m,). Then the new tracelegs fecomes

m-m 0 0 -3 0 0
m = 0 m-m 0 |=2m|0 -1 o]=3amQ. (2.7)

The phase we have described is uniaxial. All angpeis Fig.[2.3 are equivalent and, as we have seen, for
such nematics macroscopic average quantities such asfthetires index take the same values in all directions
perpendicular ta. Here this meansyx = myy = m,. In optics, the distinguished direction (along the directo
n) is called extraordinary (e) and the others ordinary (0)e Téfractive index tensor described bygoverns
the passage of the variously polarised light beams througltiquid crystal. It is known as the refractive index
indicatrix and precisely mirrors the local nematic ordetgpaeter.

When there is no symmetry abautthat is where all the perpendicular directiagmare not equivalent, then
we have a biaxial fluid with a more complex order paraméter®n and Straley, 1974) Such phases have not
yet been observed in nematic elastomers and we do not dismmgurther here; see WT for how biaxial order
can be mechanically induced in nematic elastomers by apgliesses.

2.3 FREE ENERGY AND PHASE TRANSITIONS OF NEMATICS

In Fig.[2.2 we saw that an order parameteQof 1/2 represented a nematic with a moderate degree of typical
alignment of rods. By contrast a state wigh= —1/2 is geometrically very different and physically very impla
sible in conventional nematics. The val(fe(cosf)) = f% implies that all the rods would then be confined to
the plane perpendicular to Both the van der Waals and the excluded volume contribstiorthe free energy
would be most unfavourable. Thus a system free energy dépeod the equilibrium order paramet@must
distinguish between states 61, in contrast to magnetic (polar) systems where there is stindtion between
positive and negative states. The general, Landau-de Gexpansion of the free energy in powers of the full
tensor order parametd, is

Frem=3ATr (Q-Q) ~¢BTr(Q Q- Q) +3CTr(Q-Q-:Q-Q) +.... (2.8)

InsertingQ, from eqn[Z.5) orf(216), into eqh{(2.8) yields the usual f@ergy density expressed as a function of
the scalar order paramet€), As an important consequence of nematic symmetry, the Liaegipansion of the
nematic free energy density contains odd powei@:of

Frem= 3AQ? — 3BQ®+ 1CQ*+ .- — fQ (2.9)

The linear term- fQ represents the effect of an external field, for instaﬁee%éeeoE2 whereE is an applied
electric field (which also has the effect of defining the dii@t of alignment, that is the directaw) and where
Jde 0 Qs the anisotropic part of the relative dielectric const&¥ithout an applied field, the free energy density
expansiorFemis schematically shown in Fif.2.4. As the temperature ielad, a metastable minimum with
Q > O first appears ai,. At T, the absolute minimum & = 0 jumps discontinuously to an ordé, > 0.
The transition is thus of the first order. The existence okiximg isotropic and nematic states around this
transition creates the possibility of thermal hystereEige nominal transition poinky,; is defined where the two
minima have equal depth. The second minimur®at# 0 exists in addition to the first = 0 because of the
—%BQ3 term, that is because of the need to distinguish betweessstét-Q. This deep connection between the
requirements of alignment geometry and the first order dteraf the phase transition was first recognised by
Landau|(Landau and Lifshitz, 1986).

In fact nematics are only weakly first order. Their latentrepy at the transition is very small. The sign
of this is the smallness of the coefficidBit Normally the vanishing oB yields a so-called critical point where
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Figure 2.4: The Landau free energy densitym of a nematic liquid plotted against the scalar magnitudedéo
paramete. The plots correspond to characteristic points on the teatpee scale: (a) the first appearance of
Qm on cooling afT = Ty, (b) the transition poinTy;, (c) at some temperature beldy the order paramet&dy,
(shown by arrow) increases and the ordered phase has a legezriergy; (d) at the supercooling polne T+

the disordered phase @t= 0 is no longer a metastable state.

a second order phase transition occurs, with the attendgicatdivergence of many physical properties, for
instance the specific heat and the correlation length ofuatimns. In nematics there is an incipient critical
behaviour associated with a hidden second order transitiantemperaturé* just belowT,;, see curve (d) of
Fig.[2.4. The most sensitive temperature behaviour in thblpm can encapsulated by writidg= Ao - (T — T*).

A full discussion of Landau theories applied to nematicgluding their foundations, can be found in
(Gramsbergeet al,, 1986) and in[(Hornreich, 1985). Landau descriptions diéaiweakly) first order systems
are of qualitative rather than quantitative significanceic8y, the Landau free energy is an expansiorfF¢Q)
for small Q, valid for second order systems close enough to the transithere the order parameter becomes
indefinitely small. First order systems, such as nematiage however a discontinuous jump to a finite order
parameter. Qualitatively, however, the Landau energy doesthe right behaviour. The exercise shows that
Ao, T*,B andC determine the transition and can be fixed from measureméfig,cof T,i — T* (from observing
critical properties), off,; and of the latent entropy. It is better to take this phenortagical approach té(Q)
here than to attribute any deeper significance to the coafii€i

The minimum inF,em at Q = 0 becomes a maximum at= T* (the quadratic coefficierh reverses sign).
ThusT* is the limit to supercooling of the isotropic state. The otmnimum atQm > 0 is lost wherA(T) >
B2/4C or equivalently whe, = T* + %(BZ/AOC), the limit to superheating of the nematic state, see[Fig. 2.4
Superheating and supercooling are of course charactasfsdifirst order transition.

A large number of experiments have been performed to imyegstithe nematic-isotropic phase transition,
which is often called the ‘clearing point’. The reason fasthame will become clear in later sections of these
notes. There is a degeneracy and the fluctuations of nemiatictar n are very large at long wave lengths.
Becausa is also the axis of optical birefringence, the light is stylyrscattered by its fluctuations in the nematic
phase — and so the material appears turbid. In the isotrdEsethere is no director, no birefringence, no
significant scattering of light — and so the liquid is cleaansparent. The mentioned degeneracy, when long
wavelength director fluctuations are not penalised by ielasiergy, is removed in nematic elastomers.

An external field, the- fQ contribution in eqn[{Z219), can induce order at high tempeest (the paranematic
state, in analogy to the effect of magnetic fields on spinggdt temperatures). A linear term added to the curves
of Fig.[Z.2 shifts to highe® both the minimum a@Q = 0 and those at finit€. The transition is also shifted to
higher temperatures since the mimimum initially at fif@és deepened (stabilised). The transition eventually
disappears at a critical poififc, Tc). The critical order paramete®,, is half the order parameter jumg;, at the
zero-field transition. See the sequencd of 0 curves in Figl_2J5. Usually magnetic fields have a weak etfac
the nematic transition. Electric fields are stronger, batragthe critical point is still difficult{(Hornreich, 7985)

In contrast, mechanical fields can exert a powerful influemtéhe nematic behaviour of nematic elastomers;
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Figure 2.5: The order parameit®r(T) against temperature. The dashed line shows the metastable solution
Qm < 0, dual to the principal order parameter brafghcorresponding to the deep minimumAgenin Fig.[2.4.
The upper and lower limits of the transitidp andT* and the direction of hysteresis are shown by arrows; the
zero-field transition point is af = Ty;. The subsequent plots show the evolutiorQaf when an external field
—f is applied: the paranematic phase at high temperaturesrit@scmore pronounced dsncreases, while the
discontinuous jump o®,, becomes smaller and disappears at the critical point.

see WTE6.6 — they are comparable in effective strength to moledigtats. Indeed many nematic elastomers
appear to be in a supercritical state from the internal stiethey suffer. They do not have discontinuities in their
order parameter at any temperature.

Nematic elastomers are much more complex than simple nesnatowever, they possess the same uniaxial
quadrupolar symmetry. ‘Up’ and ‘down’ are not distinguidter its director(n — —n). Thus Landau theory,
which is based on symmetry considerations, tells us thattthermal properties will be qualitatively the same as
those of simple nematics. We shall find that the free energyenfatic elastomers have a critical temperaiftire
and the coefficienl modified from the values taken by the corresponding nematigper (uncrosslinked) melt.
The modification depends on the network’s thermal and meacakhistory. Networks are solids and thus the
director can resist aligning along external fields, mosstically a mechanical (stress) field, even in the absence
of anchoring at the boundaries. In simple nematics, wheretlentation of the directar is readjusted without
resistance, ignoring anchoring at surfaces and other tayedfects for the moment, the external field (generally
E or B) sets this orientation. For more details and molecularrthesee WT§2

2.4 DISTORTIONS OF NEMATIC ORDER

Ignoring the effect of boundaries, the free energy of a nanflatid is degenerate with respect to the direction
of n, which can be swung around by an infinitesimal guiding fieitthez E or B. However, since nematic fluids
have long range directional order, there is a penalty aasegtivith spatially varying the directax(r). We stress
both aspects in this section. In the next section we showtltealoss of this degeneracy is central in nematic
elastomers. Non-uniform directors will figure in a novel wlayer when we discuss instabilities in nematic
elastomers.

The director can be splayed, twisted or bent, see[Fig. 2.@{aand (c) respectively. The penalty for such
distortions is the Frank elastic free energy density:

Fre = 3Ka(divn)? + 3Ko(n-curin)? + $Ks(n x curin)? (2.10)

with theK; being the corresponding splay, twist and bend curvatustieleonstants respectively. Deriving this
expression (de Gennes and Prost, 1994) requires care thgyis all symmetry requirements, the most obvious
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Figure 2.6: Three principal distortion modes in Frank ét#tgt splay (a), twist (b), and bend (c) of the director
n.

being invariance with respect b— —n. With the simplificatiork,; = Kz = K, the Frank free energy denskgy,
reduces to
1Ky (divn)? + 1K (curln)?,

apparently only quadratic in, but even then this free energy is not at all innocent. Theirement than(r)
remains a unit vecton?(r) = 1 at all pointsr, means thalg, yields highly non-linear problems. Only few prob-
lems can be solved exactly; these special cases are catdloga series of beautiful and instructive illustrations
(de Gennes and Prost, 1994).

In general is the full tensor order parame@y that is the proper field variable in the nematic phase. More
than just the director is spatially varying; it is also thegniude of the order. The Landau free energy density
of the fluctuating nematic liquid crystal should be written a

Frem = 3ATr(QQ) - $BTr(QQ-Q) +iC Tr(Q.Q)z

—i—%Kl(DjQij)z—i—%Kg(Dinj)z. (2.12)

Linear gradient terms lead to spontaneous developmentatiaspariation of the nematic order — cholesteric
phases; see WJ2.8 andg9.

The energy density cost of spatial variation over a distdrise- K /€2 whereas the energy density associated
with elastic distortions i, the rubber shear modulus. The rapidity of variation at White energy costs are
comparable i€ = /K /u. For representative valués~ 10~ 1IN andu ~ 10°J/m? one has ~ 10-°m, a very
short length scale and we almost never meet Frank effectastoeners.






CHAPTER 3. POLYMERS, ELASTOMERS AND RUBBER ELASTICITY

In polymer melts, chain conformations are non-excludidgal random walks and thus are Gaussian. The self-
avoidance problem of polymer solutions does not arise Isscailexcluded volume screening. Elastomers too are
conformationally ideal too and thus their statistical meauhs is relatively straightforward. Chains may however
be entangled and these constraints will be felt when chaegmexended. Polymers, and liquid crystal elastomers,
are universal in most of their physical properties, whichetel only weakly on their detailed structure — their
complex chemistry can be at first neglected: for instancestigar modulus of a rubber is well described by
U = nskpgT whereng is the number of network strands per unit volume. A probletrfjrat sight of great
complexity, has been reduced to counting) @nd an energy scale set by temperatugl. The relationship
of ideal, equilibrium rubber elasticity has the same status simplicity as the perfect gas lgww= nkgT and
it is to this level of simplicity that we shall aspire in dissing the molecular basis of liquid crystal elastomers.
The latter's properties are so radically different fromeemtional solids, to start with we don’t need to consider
entanglements, finite extensibility etc. that are needdth&stune descriptions of classical elastomers. Books
that cover all aspects of polymers that we require are dagsi Flory, de Gennes and Edwards (Flory, 1953;
[Flory, 1969;[ de Gennes, 1979; Doi and Edwards, 1986), therlato being directed toward more advanced
topics in polymers such as entanglements, dynamics antaswiu

Rubber is also capable of very large deformations and stnalhselasticity is entirely inadequate. In liquid
crystal elastomers many new phenomena emerge at largesstaich is why we shall require a molecular
theory.

3.1 CONFIGURATIONS OF POLYMERS

The classic example of a polymer is polyethylene, a longrcbhéisegments shown in Fig_3.1. The degree of
polymerisationN, may be quite largeN = 10°— 10%). The C-C bonds are nearly tetrahedral (90®ut there

is a significant degree of crank motion generated in expiotfie three possible positions of the nexCH,—
group. This generates an enormous number of equivalengewafions, 8 in total, for an ideal single chain of
—(CH2 — CHp)n—. For any chain, especially those with a complex chemicatstre, the effective step length

¢ over which the chain can essentially bend may be equivatemany monomers. However, the principle of
polymer chains possessing a vast number of conformatigmesgrved so long as the total number of monomers,
N, is large compared with the number of monomers per effestise length. The rubbery response of networks
(and indeed the characteristic response of polymers inrghrdepends on this separation of scales (the total
length of a chain, often called the arc lengithbeing much greater than the effective step lerdytihe opposite
limiting case, ofL <« ¢, corresponds to an almost completely rigid rod moleculengthL (something that we
have discussed in relation to ordinary nematic liquid algdt We shall confine ourselves to sufficiently long
chains where the entropic properties of polymers are proced. Figuré 312 shows three schematic snapshots
of such a chain with considerable internal flexibility in tjugnts. By considering the distributiop(R), of

Figure 3.1: The molecular unit (monomer) of a polyethyleim@ic. Covalent bonds of carbon make a tetrahedron
— arrows on the two outgoing bonds show where this unit is eoted to other identical monomers, thereby
specifying the position of two more C atoms. (a) Trensconformation with the—C — C— links in one plane.

(b) One of thegaucheconformations where the first or last C atom is out of plane.

15
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Figure 3.2: A random walk composed of freely jointed segmavith N = 100 such rods or ‘steps’. Three
different trajectories in space are illustrated. The emé+td vectorR, is the sum of the stepsof the component
rods.

the chain’s end-to-end vect®, one can make the idea of an effective jointed unit and tleéeivency of local
structure more precise.

Let us take a chain composedMfrods of lengtha freely jointed together as in Fif_3.2. The whole chain
conformation traces a path of a random walk with a fixed stegtlea (in this simple model, evidently = 7).
Equivalently, this is a trajectory of a Brownian particléfdsing in space under the influence of a fixed-magnitude
stochastic force. The mean square end-to-end vector foraw@ndom walk oN steps is, in each direction,

(Re) = (R) = (R) = §(RP) = JaPN = JaL (3.1

whereL = Nais the actual arc length of the chain and corresponds to thetime of the analogous Brownian
diffusion. In terms of the joint vectors; of lengtha, the end-to-end distand® is given byR = 3;u;. Since
vectorsy; are uncorrelated with each other in their direction, theaye(uu;) = %djaz and the result fotR?)
follows immediately.

Let the total number of possible conformations of such arghai the number of possible random walks
with no restrictions on their starting and ending points,Zge(this is 3" in our simplistic 3-state model for
polyethylene). Since energy plays no role in this idealise@in model, this number of conformations is also the
partition function for the chainZy = ¥ configs€XP(—-¢"/ksT) with the energy#” of each configuration equal to
zero or an irrelevant constant. The number of configuratigtisthe ends fixedZy(R), is a great deal smaller:

ZN(R) = pn(R) 2y (3.2)

the pn(R) expressing the probability a given conformation will haveesmd-to-end vectdR. It is easy to show
from the central limit theorem thaty (R) is a Gaussian distribution:

3 \¥? —3R2/2R2
pn(R) = (Z—RRg) e (3.3)
characterised by its varian&. The product of two parameters expressing the detail of a@structure of a
polymer, its step length, and the arc length, appears simply as the single parameter of probabilityidigion
p(R), namely asal = RZ, reproduce eqri{3.1). This combinatiBg is the only significant quantity associated
with an idealised chain. It is directly measurable by neutsoattering in the melt and by light and neutron
scattering in solution, as the average radius of chain gyrat

For a non freely-jointed chain, the effective step length e increased beyond the physical length of a
monomeia and, given a fixed overall arc lengththe number of effective steps in a chain will decrease friwen t
full number of monomerBl to a lower value. We now more precisely define an effective egth, denoted by
Lo, from the measurable quantitiBg andL:

lo=R2/L (byanalogy withR2 = aL). (3.4)

Flory’s coefficientC., = ¢o/a (Flory, 1953) is a direct measure of just how much local clwafrstructure can
stiffen and extend a chain beyond what it would be, if freeinied. Whatever the stiffeninds, remains the
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single measure of the chain size distribution. This is tfuke is long enough compared witfy so that the
distribution is Gaussian.
The free energy of the single polymer chain we have descabese is# = —kgT InZy(R), where we use

eqn [3:2) and(3]3) foZ to obtain:
Z(R) = Fo+ksT (3R?/2R%) +C. (3.5)

%, = —kgTInZy is the free energy of an unconstrained chain and is an additiastantC is another additive
constant arising from the normalisation of probabilitytdisition py. .%, andC simply make a reference point
of free energy and we neglect it, since it does not dependealthin end-to-end distanée

We have obtained” (R) by simply counting configurations, assuming that they alehequal internal energy.
The free energy(3l5) is purely entropic, the prefactdtgf being a signal of this. However, energy is involved
in the distortion of chemical bonds. If the internal energy molecule associated with bond distortion were
7% (R), then we would instead have:

F(R) =% R -TZ(R)

with . the entropy per molecule. The classical freely jointed nhedilently had) = 0 and an entropy
Z(R) = —kg (3R?/2R?) . (3.6)

In fact the free energy(3.5), quadratic as it isRnrepresents Hooke’s law for the extension of a single chain.
One indeed thinks of polymers as entropic springs with Hsogenstant 8T /R2. The stored (free) energy
is entropic, because it measures a change (reduction) inuttmoer of possible conformations (and thus — the
entropy) when the ends of such a chain are pulled aparidreases). Ultimately one would reach a state of a
fully extended chain witlR = L and, thus, onlynepossible configuration. This very unfavourable situat®n i
of course, well beyond the limit of applicability of the Gaian law [3.3) for a truly random walk. In addition
to this very basic argument, there is some residual temyreraiependence iR, in eqn [3.5) and(3]6) since
thermal energy determines the effective stiffness of chahiionds and hence the effective step lengtiihe
dependence is weak compared with the dramatic effects ohtienrdering leading, for instance, to spontaneous
shape changes of between 10 and 400% in elastomers. Morémverost of these notes, we only require that
chains have some anisotropy. As usual in polymers, mosttefae universal and do not depend on specific
chain properties. We accordingly mostly discard stiffnesation effects.

The free energy for an isolated polymer chain with free endisreled by a distand® is a paradigm for a
polymer network where the macroscopic deformation ultglydeads to the extension of constituent chains. The
internal energy contribution t& turns out to be small and we can consider network chains adypeitropic
springs.

In the melt and in elastomers chain configurations are thiggeamtom, single Gaussian chains (Arrighial, 1992).
However, despite their ideal conformations in the con@gatt state, chains are not really phantoms - they are
entangled with each other. In networks, as chains are egtktiekir configurations are restricted more power-
fully than simply by their ends being fixed. The fixing of chainds to other chains means that, unlike in the
corresponding melt, knots cannot be untied and their frézgapology must be respected. One can examine
(Deam and Edwards, 1976, Bali al, 1981) topological effects in networks in order to expldie £xperimen-
tal deviation from classical predictions. For sufficiedtiyg chains crosslinked in the melt such deviations are
important. However, we shall find that liquid crystal ordeadis to deviations from classical behaviour that are
much more significant than the role of entanglements, evshant solution-crosslinked chains.

3.2 (QLASSICAL RUBBER ELASTICITY

Let us now return to the classical picture of simple, isoita@nd long polymer chains. Most of the unusual,
characteristically polymeric properties we associatd witlymers of high molecular weight derive from their
resistance to distortion of their average shape. The entba single chain, eqi.(3.6), is lowered as the distance
between its ends is extended. Fewer conformations impiestie free energy rises. This stored elastic free
energy is at the root of the entropic-mechanical effectaibber elasticity. We present the classical picture of
rubber here, because we aim to develop an analogous singulefer nematic elastomers — a straightforward
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extension of the classical approach describing isotropigmer networks. Consider a network of crosslinked
chains sketched in Fi.3.3. The number of crosslinks iscefft to ensure a percolating path of elastically
active chains across the whole block of rubber. Distortibthe block causes the component strands between

Figure 3.3: A block of rubber with the underly- % ( -
ing polymer network. (a) The chains of the net- e
work are shown linked. A test chain (heavy curve) |
has a span at formatioR; between two succes-

sive crosslinks along its contour. (b) The block
of rubber is extended by factows in the three R,

principal directions. The test network span is now N\

LeR
R=A-R. @ 0 P\

crosslinks to distort with respect to their equilibrium eage shapes, which costs a free energy due to the loss of
configuration entropy. Departure from equilibrium corresgs to a reduction from the maximal entropy allowed
by network constraints. The material is thereby a solideathan a liquid, which would accommodate any
distortion in its shape at constant energy. We shall retuthis rather obvious remark later, since we shall find
that it is not true for some distortions of nematic elast@ner

Returning to simple rubber: without crosslinks it would bpaymer melt — a fluid that would eventually
flow under stress. Relatively so few monomers are locallystamed by crosslinking that chains continue to
have great mobility and explore the myriad of conformatioharacteristic of such a melt. Rubber is in effect
a liquid in all regards except that it cannot flow! In nematitworks this observation is of central importance
since the associated mobility of the direciois also great and will largely determine the mechanicaloasp.

The mobility of chains means, in particular, that they cond to explore many conformations and the drive to
maximise entropy outweighs other influences. Change obgecshape continues to be resisted, as in the single
chain example given above. Consider the junction pointsgriZ3 to be fixed relative to the body. This implies
that a selected strand’s end-to-end vector, connecting afpaosslinks, will deform in geometric proportion to
the body’s deformation (the affine deformation approxim@}i Suppose a selected strand at network formation
has been given an end-to-end distaRgeThe deformationd, is defined such that any separation vector in the
body, e.qg. initiallyR;, will deform to a new valu® given by:

R:A'Rf. (3.7)

For instance in Fig_3]3 if the sides are initially of unit ¢gh and deform to dimensionky, Ay, Az in the
directionsx,y andz respectively (and no shear deformations are present),aheln dimension of the chain is
multiplied by the same geometric factors:

RX = AXXRIU Ry = Any; and RZ = AzzRfZ .

The one test strand of Fig_3.3 is shown in the deformed bodtg iaffinely deformed state. The free energy of
this particular strand is, as in the corresponding €qd (3.5)

Fo(R) =kgT (2—2;) .

Recall that the mean square siRg, is the single parameter describing the Gaussian chaistatal properties.
Using the affine relationship(3.7), we obtain

 3keTR-ATAR
== =

Several constants, exposed and then neglected inCedn $8d3),as the consta@ from the normalisation of
the Gaussian chain probability, have also been suppressedThe current free energy of the selected network
strand depends on the deformatiband on the initial end-to-end separatin(the subscript denotes the state

o‘*s(

(3.8)
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at the network formation). The overall elastic free enerfggne block of rubber adds together contributions like
eqn [3.8) for all other network strands. All different stdarnave their own initial end-to-end distariRe but we
know the proportion of chains with any giv& among the whole ensemble — it is the probability distributd
chains having this end-to-end distance before crosslnkinthe moment of network formation:

R)= > Y 29—3<Rf>2/2R% (3.9)
PRI =\ 22 ' :
Naturally, it is the same Gaussian as in Seci. 3.1, [egh (Bi)s, the summing of individual chain free energies
@.8) in the deformed body is equivalent to theeragingof .%5 over their distribution and then multiplying
the resulting average free energy per strand by the totabeuwf network strands in the system. SilRés
derived fromR, the probability to find a strand currently with end-to-eegaratiorR is simply the probability

of finding the appropriate spd®& at the moment of network formation, thatps (Ry). The average free energy
per strand,%, is:

_ 3kpT
=R
This amounts to averaging of a quadratic formRi) with the corresponding Gaussian distributip(Ry) . The
integration is of the forny x2e-dx and yields the appropriate averages:

(RIR) = 1R . (3.11)

We have assumed here that the mean square chain size atitorisathe same as that which is curreRf,
when we are distorting the rubber, efn{3.8). If for instanemperature were to change between formation and
current conditions, then the mean square sRfe,at formation might be different from the current valiRs,
Substituting the average (3]11) back in to dgn (3.10) andiphyihg by the average number of strands per unit
volumens, the free energy density (the free energy per unit volume)déformed rubber becomes

g

(R-AT-A-Ri)pr) - (3.10)

F = inkgT Tr (ATA) = 3nskaT (AijAji) (3.12)

= nkeT (AG+A5+A2) . (3.13)

[We follow the Einstein convention of summation over therpaif repeated indices in expressions involving
matrices — such as ii(3]12).]

Equation[(3.IB) is the result of the particular extensiawshin Fig[3.3, that is the case whekes diagonal,
with no shear deformations. Note that the mean square siezadh spatial directiorR2, has cancelled out
between expressions (3110) ahd (3.11) and, as promisedntrgy is juskgT times geometrical factors\¢,
the squares of the extensions). Nothing remains of thetsieiof the component chains, except that they must
be long enough (and flexible enough) to satisfy laws of Gansstiatistics.

Chaptei® is concerned with classical elasticity. We shavetthat the free energy density of a material
deforming at constant volume is of the form of efn (8.12) wehtbe coefficient i%u, with u the solids’s shear
modulus. Thus eqiiL(3.112) allows us to define, for the first fimbese notes, the characteristic rubber modulus:

U =ngkpT .

We shall constantly use this quantity. The magnitude ofgtasic, equilibrium rubber modulus may vary greatly
depending on the value of. It is, however, useful to give at least a crude estimatg.of he number of chain
strands per unit volume, is equal to the inverse volume occupied by an average cledivelen two connected
network crosslinks. Let us take a network of rather flexiléy/pthylene chains (see Flg.B.1) with, on average,
N = 100 units between crosslinks and a monomer size ofasay8 A. Thenns ~ 1/(Na®) ~ 3 x 10?%m~3,
This is a high estimate — it leads to a modujus- 10° Pa at room temperature. (The units of elastic moduli
are commonly taken as Pa, which is the same a8 dfmhl/n?). In practice, the rubber modulus is often much
lower. There are two common reasons, both serving to redhecdensity of strandss: simple flexible chains
with a small monomer sizea(~ 2-3 A) often have much lower crosslinking density and thus vengl chain
strands — often with monomer numbéts> 10* between crosslinks. Polymers with a more complex molecular
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structure, in particular with long rigid rod elements nesagyg for liquid crystallinity, have the monomer volume
10-20 times greater then that of, say, polyethylene. Adogig, one often finds rather weak rubbers wijttas
low as 1@Pa, but hardly less than that. This identifies the charatierange of possible magnitudes,

u~10t—10°Pa

At first sight the free energiels (3112) ahd (3.13) are unfate results. The lowest free energy density; 0
would apparently be atyx = Ayy = A= 0. Rubber should shrink to a point under the action of theogtr
springs of the network! Of course, the repulsion arising mvtiee molecules overlap eventually balances the
attractive forces, as in any liquid or solid. The bulk moduhas the same dimensions (Pa) as the rubber modulus
u, and for a polymeric liquid, as for simple liquids, is rougllf the order 18 — 10'° J/n. The characteristic
scale of rubber elastic energies is about4mes that of the compressional modulus. Thus entropictsfef
rubber elasticity are insignificant, compared with thosesgzg or penalising volume change, and distortions of
rubber must accordingly occur at constant volume (to withpart in 1@). The difficulty that the rubber should
shrink to a point under elastic forces is thus avoided. Tleargte of Fig[3.B is instructive. Assuming the sides
of the rubber block are along the coordinate axgsz, the constancy of volume requires that the product of
extensions is fixed:

ModyyAzz= Det(A) = 1. (3.14)

If we extend the sample by the factdrin the z direction @,z = A) and let thex andy dimensions simply be
slaves to the condition of constant volume, then the coin$tf&.14) demanday, = Ayy = 1/\/X and the free
energy density (3.13) becomes:

2
F—1u (/\2+X). (3.15)

Having put in the conservation of volume by hand, this of seuras\ =1 as its relaxed, undeformed state. The
higher energy scale associated with change of volume cagnioedd if we always choosk with the constraint
(312) in mind. Figuré3]4 shows the reduced energy derfBfBj, in units of} i, increasing from the ground-
state leveM? 4 2/A = 3 in both elongation) > 1) and compressior(< 1) modes of deformation.

FO i — extens;on 1
[| <—« compression ]
20j .

Figure 3.4: The plot of free energy density of
incompressible rubber under uniaxial elongation
and compression, in units of%u; the absolute

minimum isF = 3y atA = 1. Three curvescor- 10 |
respond to the classical rubber-elastic expression
(3.15), the middle solid line, and two its modifi- 5[
cations, due to the ‘finite extensibility’ (curve la- @; ................................................................. ]
belled by solid circles), and the chain entangle- o f, [ ., 7»
ments (solid squares). 0 1 2 3 4 5 6

15 -

The energy density as a function of deformation determinegdrce per unit area (see later for definitions
of stress) as deformation is imposed. Take for example sirextiension along the vertical ax of a classical
rubber, sketched in Fi§_3.3, that is initiallyuait cube. Its current length in thedirection isA. The forcef,
acting on thez ends of the body is the rate of change of energy, Eqnl(3.18),langthA, times the area of the
initial sample cross-section perpendiculartdirection:

oF 1
fo=Ags=Au ()\ - ﬁ> . (3.16)

Taking a unit cubeA = 1) allowed us to consider forces and stresses interchalygaadhis sketch.
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3.3 LIQUID CRYSTALLINE POLYMERS

Nematic and smectic elastomers are networks of polymenstveith intrinsic liquid crystalline ordering. Such
polymer liquid crystals (PLCs) combine the spontaneoweaition of liquid crystals with the entropically driven
behaviour of polymers. Creating a PLC is delicate; too mugdire stiffness eliminates the large number of
configurations of a chain that makes it an entropic springo Jiiff, it becomes a simple rod, albeit a long
one. Too little stiffness or too few nematic-forming rodsrehates orientational order and results in an ordinary
isotropic melt of chains.

Figure 3.5: Typical main chain polymer lig-
uid crystals with rod-like, nematic-forming sec-
0 ji @ " fions in the middle of each monomer, flexible
O N$N* OY(CH2)7 10 —(CHgz)n— spacers between the rods allowing for
(0] ’ N many conformations. Polymer (a) with the 10-
spacer is known as DDA-9, with the 7-spacer it

(b)y is AZA-9; their monomers are not unlike the ne-
O@ matic PAA, Fig[2.1. Polymer (b), with a different
_ O—(CH,) rigid rod structure, occurs in several main chain
N

nematic elastomers.

Two strategies can be followed. Rigid rod-like elements loariinked together in a head-to-tail fashion to
form a main chain (MC) polymer with linkages between the rgigisg sufficient flexibility to ensure a Gaussian
chain, and thus a random walk as in fig]3.2. Examples of temadal structure of main-chain PLCs are shown
in Figs[3.5(a)[(d"Alleskt al, 1988) and (b) (Percec and Kawasumi, 1991).
Rods can otherwise be pendant to a flexible backbone to giveh or side-chain (SC) PLC (Plate and Shibaev, 1987).
Again, nematic order and flexibility compete.

SHAPE OF LIQUID CRYSTALLINE POLYMERS

The average shape of the nematic polymer backbone, didtoytéhe nematic ordering of the associated rods,
generates the equilibrium elastic response of a netwodkvittich it is linked. The aligned rod-like segments

of a main-chain polymer elongate the average shape of gyragissentially stretching the backbone, along
their principal axis the directon; see Fig[3J6(a). Side-chain polymers may have the backivodéferent

Figure 3.6: The shapes of nematic polymer back-

bones. The MC polymer (a) shows very high

backbone anisotropy, the intermediate case of

side-on PLC (b) shows weaker, but still substan-

tial backbone alignment, while in the two end-on

SC PLCs (c,d) the mesogenic groups may be only

weakly coupled to the backbone; here the choice
U between the oblate (c) and the prolate (d) back-

@ (®) © (@

bone arrangement is made by the spacer selection.

conformations for the same degree of nematic ordering oflpeinrods depending on the type of linking the
mesogenic groups to the backbone, Figs] 3.6(b)-(d). Thal lmgiaxial symmetry of a nematic is preserved
whatever the coupling.

The mean square end-to-end vector remains sufficient tacteaise the shape of a chain and its probability
distribution, if it is long enough to be Gaussian. In a prpadiframe there are now three such mean square
quantities and in general we have:

(RRj) = 34;jL (3.17)
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Figure 3.7: Nematic polymer radii of gyra-
tion from neutron scattering. (a) MC ne-
matic polymers DDA-9 (filled circles) and

AZA-9 (open diamonds) in the isotropicand ~ [R A) (@) R g‘) (b)
nematic states.R| ~ ,/7|L alongn be- % ° I % 5{?3%@
comes much larger than that perpendicular, e, 1 b H#

R, ~ 7. L. (b) A side-on polysiloxane Nem o Iso o 18

in the isotropic, nematic and smectic states.*’ S f

The backbone'®| (filled circles) flattens to i R * ] b

become shorter thaR, (open circles) when oo g g o © T(C) Smec Nem  Iso
smectic. %00 10 140 160180 204060 T(EC)80

where now the effective step lengths form a tengpfcompare with the analogous isotropic form, efin](3.1)]
and define an anisotropic Gaussian distribufRiiR), uniaxial if the mesogenic units form an ordinary nematic
phase. Neutron scattering from deuterated test chainslis giees the mean square radii of gyration.

Figure[3.7(a) shows the shape anisotropy of the polymer BDAig.[3.5(a) [(d’Alleset al, 1988). The
main-chain PLC melt anisotropy jumps from zero to a finitareadn cooling through the transition temperature
Thi- With ever increasing nematic order at low temperaturesatiisotropy can increase to very high values as
the main chain polymer stretches out its backbone, se@ ()3 For instance &t = 108°C, the ratio of radii
of gyration isR| /R, ~ 8 giving a ratio of effective step lengtlis/¢, ~ 60. Still larger values obtain below this
temperature. This ratio determines mechanical effecteimatic elastomers.

Side chain polymers of both the extended and flattened baekkarieties have been studied as well (Gétral,, 1988;
[Cotton and Hardouin, 1997). In general their anisotropgss lextreme because the backbones are less strongly
coupled to the ordering rods — see [Figl3.7(b) (Lecommandobak 1997).

In uniaxial polymers, mean square sizes in all directionth@plane perpendicular toare identical R =
Ry =R, . For such nematic polymer melts with the direataalongz we have the accordingly uniaxial tensor of
step lengths:

¢, 0 0
¢ = ( 0 ¢, O) — 41 8 +[f — £, ]nn in a general coordinate system (3.18)
0 0 ¢

where/| and/, are the effective lengths of steps in the directions pdraiid perpendicular to and depend on
Q. Thus(RZ) = /L and(RZ) = (R%) = 3¢, L (cf. Figs[3.6 anf3]7).

The tensok defines the spheroid of gyratidR R;), eqn [3.1F). Figure_38 extracts only the backbone from
the sketches in Fid._3.6, in particular ignoring the rodsideshain polymers. We then have the appropriate
uniaxial prolate and oblate spheroids, with> 0 andd/ < 0, respectively. The isotropic phase has its gyration
tensor in the shape of a sphere and hencedias 0. The Gaussian distribution of chain conformatiopd),

Figure 3.8: The gyration tensor spheroids.
The arrow indicates the nematic director. R
The rods are suppressed in the diagram.
Their coupling to the backbone may pro-
duce prolate (elongated alonnj or oblate
chain conformations.

must be generalised for the anisotropic case:

P(R) = l(%)s Detl[e]

1/2 3
] exp(—Z Rifilej) . (3.19)
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The inverse step length tensoris' = Diag (Eil,ﬂll,ql) in its diagonal frame (see edn(R.2) for a reminder
of this notation), with the distribution in this frame being

2
p(R)Nexp< R SR 3R§). (3.20)

C20L 2L 2L

This distribution determines nematic rubber elasticigt jas the isotropic distributioh (3.3) led to the entropic
spring energy[(318) and thus to classical rubber elasticity

It is possible to give explicit expressions for the step tarignsorf within specific models of polymers
that turn out to work very well. See for instance that of alfréeinted nematic main chain polymer treated in
WT§3.2, exercise 3.1. The anisotropy for a nematic main chaiglyrjointed polymer is

. ﬂ - 1+2Q
4 1-Q
Experimentally, side chain polymers in fact obey the samd kf dependence of shape tensor on order parameter

although one would expect for such polymers the angulatioalship between chain steps and the rod alignment
to be different.

~1+43Q for Qsmall (3.22)






CHAPTER 4. CLASSICAL ELASTICITY

The deformation tensok has arisen naturally in the derivation of classical rubtesteity. In the form given

by eqn [3Y) it is appropriate for small and large strainkealiwhich is as well since rubber is capable for
strains up to many hundreds of percent. Since we are corttevitie elasticity of a new and unexpected form,
with hitherto unsuspected phenomena to be summarised imetttechapter, we devote some space to reviewing
the symmetry character @&, from whence the effects will arise. We also examine thectiine of non-linear
elasticity and the connection with linear elasticity commyased to describe solids at small strains. In contrast
to classical elasticity, nematic rubber elasticity rel@sthe coupling of the rotations of internal degrees of
freedom (the directon) to not only elastic strains but also body rotations. We tiHustrate the geometry of
deformations and local rotations in order to prepare fa ttaw type of elasticity. We note that incompressible
distortions are all essentially shears; even the simplensibns and compressions of the rectangular block in
Fig.[3.3 are shears, just viewed from a rotated coordinai®dr Deformations, not in general symmetric or
anti-symmetric, can be broken down into symmetric (pureghend rotational components. This will be useful
in considering the mechano-orientational responses astdbitities of nematic elastomers. Intimately related
to this symmetric/anti-symmetric resolution of straine #re square roots of tensors. We discuss them in this
context, though principally to introduce them for the ldteatment of soft elasticity.

There is a large literature on the fundamentals of elagtift instance, the book by Atkins and Fox (1980)
gives a good and compact overview, including the definitmfithe various distortion and strain tensors and the
more general requirements of invariance. Murnaghan (188¢usses non-linear elasticity, symmetry require-
ments and the roots of tensors. Treloar (1975) also reviéassigty in the context of rubber.

4.1 THE DEFORMATION TENSOR ANDCAUCHY—GREEN STRAIN

Consider a reference spa$g of the relaxed body before deformation to a target sig&ceA material pointR,

in Sz becomeR = R, + U(Ry) in St, see Figl4]1. The deformation records how differently hie@uring points
are displaced (by) and hence how their relative separation is deformed fremeiixed value. The deformation
gradient tensor is defined as:

_9R
=R

see Fig[41l [compare with eqn (B.7)]. It is clear that onky tiladients of displacement contribute to physical
effects: the uniform displacement fieldcorresponds to the movement of the body as a whole. Somerautho
denoteA by F. We shall sometimes refer to it simply as the deformatiosden

If the target space transforms under rotations, repreddmyt¢he matrixJ, asR = U - R, and the reference
space transforms under rotatioi®sR) = V - R, then the deformation tensor deforms as

Aij (4.1)

oR;
Aa = Ui ORo; A (4.2)
A" = U-A-VT orconversely A =U"T-A"-V. (4.3)

See Sec{_4.3.1 for more on rotations, in particular the dntiat section for explicit forms of matrix repre-
sentationd) andV of finite rotations. Thus\ records the character of both the target and referencesstate
The connection with both spaces is quite different in chtardcom the Cauchy tensors to be introduced below.
Approaching large amplitude elasticity throughmakes dealing with non-linearities easier than via retgjni
non-linear terms in the Cauchy strain formalism of convamdi elasticity which we outline in Se€l_#.2. Also
rotational information about the mé&g — Sy is retained.

Isotropic systems are invariant under rotativhef Sg and the system’s final energy must be invariant under
rotations ofSr. (If Sgis crystalline, the invariance under the relevant pointgrimstead of undeY is required).
The rubber free energly (3]13) is a good vehicle to discusskhis a function of the combination
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Figure 4.1: The deformation of an elastic body. A point wik toordinatdR, in a reference spac® is moved
to a new positiorR in a target spac&r. The deformation is fully described by a field of displaceinesttors
u(R,) at each point in the initial body shape. The material p8gis thereby displaced by(R;) to R. The
matricesV andU are the rotations relevant f& andSy respectively.

Thus the producéT -A is invariant under body rotatiord of the final (target) spac8r; it is called the right
Cauchy—Green deformation tensor

o

AT

EvidentlyC transforms as a second rank tensor in the reference Space
The rubber elastic free energy in the initial (unprimedjrfeacan be expressed in terms(:ﬁf

(1>

, c=Vv'.cv. (4.4)

= duTr(eVVT) = u(C) 45

F = 1u Tr(C):%uTr(\:/T-g’-V)

(by cyclical properties of the tracely. is invariant under rotations of the reference state bectngstace of the
productiT -A is. The form of the free energy in terms@fis then identical to that in terms g’

For completeness, the left Cauchy—Green tensgrﬂséAT. In contrast tC, it is invariant under rotations
of the reference state and transforms like a second rankrténthe target stat&r:

B-AA" B-U-BU )

Importantly, the elastic energy can be equivalently exggdsn terms of the left Cauchy—Green deformation
tensor, although this is much less common approach bedagis®/ariance of the current (target) state is often a
more relevant conditiof (Lubenslkey al,, 2002).

In general, the scalar free energy densitynust be a function purely of the rotational invariant€Cofor B,
if this is the chosen representation). Such invariants @casd-rank 3« 3 tensoiCjj are well known in linear
algebra, and are usually called I, andls. Explicitly:

u=Tr(C). te=3|(Tr(e))"- (c"-¢)|. 1= pei(c). @.7)

Since these are rotational invariants, they are the sanikframes, including the diagonal frame. It is therefore
sufficient to write their expressions in terms of the eigéuesC;, C, andCs of C. Thisyieldsl; = C; +Cy +Csg,
I, = C1Cy +CoC3 + C3Cq andlz = CLCoCs. -

We have seen that the separation of compressional and relastic energy scales ensures that distortions are

2
at essentially constant volume, thalis= ( Det (/\)) =1 and is not considered further. Classical molecular

theory, eqn[(3.12), producés= %u I1 which is a reasonable first approximation, valid up to ssipgly high
extensions into the non-linear (large strain) regime. ltMpossible to adopt a simpler result. The Mooney-
Rivlin attempt to account phenomenologically for deviaa@ue to entanglements and other causes, invokes the
simplest possible correction, giving fbr.

F=cli+coly. (48)
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This modification is not entirely successful and gives nedibout the origins of the deviation from purely
classical behaviour measured by the phenomenologicdicieet c, in eqn [4.8). More fitting scope is given
by the Ogden rubber elastic free energy (Ogden, 1972). Hemvere are concerned with much more dramatic
departures from classical behavior than thosediitg and concentrate on generalisation$;afontributions.

We shall re-examine the above rotational symmetry requérgsffor nematic elastomers in Séct. 8.2.3: there
is, in fact, an additional hidden symmetry that leads toa@ited ‘soft elasticity’ or a ‘Goldstone mode’ of their
mechanical response. This is the subject of Chapter 6. Fge Beformations and for these new elastic modes,
considerations at the level bf, or rather its generalisation for nematics, will turn oubtsufficient.

COMPATIBILITY CONSTRAINTS

Distortions are in general non-uniform and thudR,) depends on the position in the body where it is measured.
There are then certain conditionsggfometric compatibilitthat the components &f must satisfy. The elements

of this matrix cannot be completely independent becaussféat, there are only three independent components
of the vectoru(R,) that determine all components &f. Mathematically, this geometric compatibility is most
obvious when one calculates the second derivative, in whielorder of derivatives is immaterial:

oAj %R, _ %R,
ORok  ORyjORok  IRwkIRy]
, 2R
I.e. r&k —_ FR()J (4.9)

for all possible combinations of indicésj,k from the setx,y,z. Of course, when the components of strain
tensor are constant, all second derivatives are zero angatdbility is satisfied automatically. However, in
many cases, for instance in modulated structures such asstiic elastomers or around topological defects,
the deformations are naturally non-uniform and have to dgmvjih this constraint.

In cholesteric elastomers with the pitch axis al@athe director and the anisotropy associated with it rotate
in thexy-plane agz advances. One might expect elastic deformations suah,ég which would demand shears
Axz(y) from compatibility, whileAx(z) can freely exist without the need for further attendant, patibility-
induced shears.

4.2 NON-LINEAR AND LINEAR ELASTICITY; STRESSES

Strain-based descriptions of elasticity break down themedtion tensoA into a unit tensoB (no deformation)
plus a displacement gradient tensgr= du;/9dR;:

Aij = &j +uij - (4.10)

Considering the change in squared distances between meighb points on distortion leads to the right, finite,
symmetric strain tensag; :

ou;  duj du; du
L 1(xT 5 _ i, oyj i 0U;j
gi=3(A"2 6) = (axJ tox tax ax.) 5 L (uij +uj) (4.11)

the latter being the small strain limit. The strain is symuicdiy construction.
The right strain tenscg has the symmetry oiT -A —itis invariant under rotatiorld of Sy and transforms

like !T-g-\:/ under rotations of the reference sta$g, The left strain tensog could be derived fror@AT;
it would be invariant under rotations of Sz and transforms IikchJT ¢ U under rotations o&r. Thus when

nematic ordeQ arises inSg andQ arises inSr, we can coupIQ to £ to form true scalars, such as <Fa Q )
andQ couples to¢ since each transforms as tensors in the - same space. Thesesy requirements are vital

for developments of nematic rubber elasticity using Caistrgins, rather thaA.
In the linear case, consider forcéscting on the surfaces of a small volume element in a bodyrigeE.2.
The streswi, at this point is the component of forc§, acting in thei™ direction, divided by the area of the
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Figure 4.2: Stresg — a force per unit area of

a body element. (a) Forcefs acting normally to 4 ky I

the i element of surface generate diagonal (ex- f; =>
tensional) components of stress;, the normal =) fz
stresses. (b) Forces acting in the plane of the sur C=>

face element yield shear stress, off-diagonal com [

ponents of stresii. (a) (b) >

element of the surface with normal in tk# direction on which the force is acting. Diagonal elementshef
stress tensor are normal forces divided by the relevanaserérea, the surface normal vector defined to be

outwards from the body. The hydrostatic pressurg is —% Tr (g), that is the average of the normal stresses

with a minus sign since pressure acts inwards. Since forperdis on the change of energy with extension,
actual expressions for the stress turn out to depend oratiegg of the free energy denskEywith respect to the
strain: o = (0F /d¢€i)1. See WE4.2 where these issues are discussed with reference torrubbe

However, conventional elasticity breaks down for largaiss on physical and geometrical grourids (Landau and Itfs
(i) The harmonic approximation te is inadequate. Additional powers of invariants can be uséd iexpansion,
but ultimately at hundreds of percent strain only a moletylzasedr will be adequate.

(i) One has to be more careful finding the stress than we hega Bbove. The true stress is the ratio of the force
to thecurrentarea, that is the area in the deformed state. The enginesregs is the ratio of the force to the
initial area. As area changes at large distortions, there aredfistis between the two.

Murnaghan, 1967, explicitly derives the expression fasgiin terms of derivatives of the free energy density
with respect to strain in the non-linear regime, taking iat@ount changes in area. Take for example simple
extension along the vertical axis (caljtof a classical rubber, sketched in Hig.]3.3. We considentially unit
cube so we can use the energy density in place of the totaenés current length in thedirection isA. The
force f, acting on thez ends of the body is the rate of change of enefgyyith lengthA, eqn [3.15):

oF 1
f,=A—=—=Au(ArA—-—
2= gy — K < A2>
whereA s the initial area of the sample cross-section facingz#tizection A = 1 in the unit cube). However the
real surface area of the cross-section in #yiplane is no longer unity, but has been reduced by iecause of
constancy volume (the two perpendicular dimensions eactraxt by a factor 1v/A). The current area is thus
A, = A/A. Dividing the force by thicurrentarea we obtain for thue local stress in the elastic material:

Oy2= /Ay =A0F /OA = u(A%2—1/7). (4.12)

Microscopically, as the rubber is extended there is the sanmeber of strands (connecting crosslink points)
crossing arxy-section of the rubber and conveying force (proportionadEy/dA), but the sectional area is
diminishing thereby increasing the force per unit areaa@yeA dF /dA increases more rapidly that /dA.

By contrast, thengineeringstress is the current force divided by tihdial area A, atA = 1 which makes it
much easier to measure. Whence

o5,=u(A-1/A%;  f,=0ZA.

Accordingly, the production of mechanical work on such ateegion is simplydw = —0£,0A, using the en-
gineering stress if we only measure the extension factomahdhe change in cross-section area. To account
for this, and for the true stress, the work density should hem taking into account the changing area of the
element at constant volume:

Sw = —azz<%> SA = —a;3(In A). (4.13)

Of course, both versions converge to the same linear expreassmall deformations: wheh = 1+ ¢ with
€ < 1 one obtain®A = 5(In A) = d¢. (Both the stresses expanddg, ~ o5, = 3ue for a rubber in this limit.)

4.3 (GEOMETRY OF DEFORMATIONS AND ROTATIONS
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In conventional elasticity of isotropic bodies, the eneigiyvariant under y
body rotations. We illustrate below how body rotations eflie anti-
symmetric partAA, of the deformation tensar. To automatically render

rotations irrelevant, one can take the symmetric |zl:§‘rt0f A. Alterna- C

tively, one can work wittC = AT - A which is symmetric by construction
and where any rotations of the target state, which would apae a mul-
tiplicative factor asU - A, are also removed by construction. In liquid
crystal elastomers there exists an internal rotationatfoen (the director)
with respect to which body rotations are important, see @hih pag€B.
Accordingly we recall the geometry of rotations and of pureas's in more
detail than is usual in elasticity. We then give exampleshefdecompo-
sition of A into its two componentsﬁS and rotations). A more mathe-
matical treatment, Sedf_4.8.2, on how this decompositicexchieved in
general, can be skipped. Itis however ultimately relatetiéaquestion of rigyre 4.3: The geometry of rota-
the square roots of tensors, which we discuss. Roots of tease needed tjons.

later in soft elasticity.

ry

4.3.1 FROTATIONS

Consider infinitesimal rotations about a particular afsdepicted in Figl_4]3. The displacemanis u = Q x
r =’ —r where the magnitude of the displacemeniis r | Q, given by the rotation of an arm of length by
an infinitesimal angl€ about the axi€. Returning to the definition;; = dr{/dr; we find theA corresponding
to body rotations to be:
17}
Aij = 0r}/dr; =aj+ﬁ(9xr)i . (4.14)
i
One can write this more simply using the totally anti-syrmicetevi-Civita tensore;j since then(Q xr); =
€ilmQIm. Usingdry/drj = djm we have

Aij = & +€iljQ = &j + Qieji - (4.15)
We can invert this relation to give:
Qu=—3eijAij = —Af (i#]#K (4.16)

since the Levi-Civita tensatjj, selects out the antisymmetric paP:‘t',“, of A For instance, for infinitesimal
rotations (about the axig, we have:

_ <éy fY> —&i+d (i,j=2%). (4.17)

Here, and in the worked examples below in SEct. #.3.2, wersspfor compactnessand just present the
non-trivial, 2x 2 part of matrices describing effects in thkeplane. The appearance in e§n_(4.17) of the anti-

symmetric component of straig’," = (8 ’OQ) is the signal that rotation is involved.

The matrix representing rotation by a finite an@l@bout the axiy, in thexzplane, is
cosQ 0 -—sinQ
W, = 0 1 0 : (4.18)
sinQ 0 co

(1>

In the most general case, the rotation maWxis determined by three Euler angles: two defining the orien-
tation of the axis,Q, and one specifying the amount of rotatid®, about this axis. It clearly agrees with
eqn [4.1b) av'(Q). Recall that matriced/ representing rotations have the properllesﬂT :gT ‘W =4 and

Det (V:V) =1, thatis they are proper orthogonal matrices. The abovapbeawas of transforming a body, that is

a position vectoR transforms aiR = W.-R. More discussion of finite rotations and their coordinatéeipendent
representation is in WT Appendix E, on-line.
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4.3.2 SHEARS AND THEIR DECOMPOSITION
PURE SHEAR IS COMPOSED OF STRETCH AND CONTRACTION

The symmetric part ak, at constant volume, is pure shear. Despite appearancgsesxtension and compres-
sion at right angles are in fact pure shear (at constant v@juibut viewed in a rotated coordinate system. In the
infinitesimal case the rotation is by 25T his is a trivial observation since any symmetric tensaliagonalisable
and in diagonal form the elements are only stretch or consesFor the illustration below, we are rotatifg
andSy in the same way.

Figure 4.4: Small, simple extension and
compression (broken lines; arrows indicate

—
the principal extensions and compressions) //
-

when rotated by 4%is pure shear. The orig-
inal coordinate axes are shown unbroken.
Pure shear rotates vectdRs embedded in
the solid towards the stretch axis.

Exercise4.1: Confirm that the purezplanar shea(f ’/l) , sketched in Fid. 414, is simply a uniform

extension/compression viewed af48Vhen at constant volume, determine the valligandA_, in
the associated diagonal frame.

Solution: Transform asi’ = gégT with ﬂ(n/@ = \%2(,111) Whence:l = (AE’\ Ag)\) =
(/\o/ 1/01\/) whereA is fixed by Det(é) =1 asA=+1+A2 Atlowest order as shears are small,
A < 1,thenA= 1. Inits original frameA is recognisable as a familiar form of pure shéér’}) In
the new frame, it corresponds to an extengita= A+ A ) alongx’ and a compressioryd’(=A—A)
alongZ, at constant volume, see Fig. 4.4. Infinitesimaiﬁ/g (13’\ 19/\).

When the original diagonal elements are not equal, thenriheipal axes are not at 2%nd 138, but must still
be orthogonal, sinca is symmetric. For(ﬁg), with A > B say, the principal extensiords. and their angles
X+ to thex-axis are:

2(AB-1) e
(A+B)2—4% (A-B)/(A+B)2—4|

Ae=1 (A+ B+/(A+ B)24) and x» = +cos ! (4.19)

We have invoked incompressibility, thati€ = AB— 1. The two angleg.. differ by /2.

Exercised4.2: An example of shear strains in the context of rubbetielas Consider a pure, planar

x—zshear of magnituda. The deformation gradient & = (f g) and the equivalent small strain

A A-1
that the elastic energy densityfis= (A% +A?) = u(1+2A2). Hence the modulus associated with
this distortion is 41 which derives from the curvature of the free energy dengitf /9 A 2) at
zero shear.

isg= (A’l A ) (suppressing the unchangipgomponents for compactnessrand ing). Show

A=0
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SIMPLE SHEAR IS COMPOSED OF PURE SHEAR PLUS ROTATION

Consider a deformatiogS = (f{‘ g) acting in thexzplane. Themyy = 1 and we suppress theparts ofA in

the discussion. Figufe 4.4 shows the body initially andraftpureshear At 45° these are shown to be simple
extensions and compression, at least approximately ferfihite deformation. Figurds4.5(a) and (b) show

simpleshearsA® = (é’}) andA® = (} 2) For infinitesimalA, since deformations are then additive, we can

Figure 4.5: Simple shears (a) and (b)
add to give pure shear, Flg. 4.4. Sim-
ple shear can also be decomposed
into the rotation and the pure shear
components (c)Smallsimple shears

A are pure shears in a coordinate sys-
tem (x-Z), followed by a rotation of
—half the shear angleé\(2) from the
original (x-2) system.

(@) (b)

regard the pure shegrs = (f ’;) Fig.[4.3(c), as being made up of two such simple shears imtbeelevant

directions:
a A 1 0 0 A 00
<)\ a) ~ (0 1) + (o o) + (A o) (4.20)

The entrya~ 1+ ¢(A?)in AS ensures volume conservation:

Det(A°)=1=a2-A%2 - a=+/1+A2 (4.21)
(A v

Material pointsR, at a8, # 45°, see Figl4}4, are transformed to poiRtsvhich have a different final angle
which increasesj > 6,, for initial anglesf, < 45°. The angle diminishe®f] < 8,, for initial anglesf, > 45°.
Thus vector®, are drawn toward the extension diagonal and repelled frencéimpression diagonal. Overall,
there is no rotation of the body. Recall Chagikr 1, where alpe®; for director rotation relative to body
rotation of the solid was anticipated. We can regard@Dhecoupling as being that of the director to the anti-
symmetric part of deformations. Figurel4.4 and the abovaudision of the attraction &, toward the extension
axis suggests another couplify of nto A , but this time toA S rather than taA

Simple shear has been seen to possess a component of puréstiEonally, simple shear has a component
of rotation. For example in the limit afmalldistortionsA:

<é i) N <—A1/2 /\{2)+<A32 Aéz) (4.22)
W etEy: (4.23)

Thus,A"’1 of Fig.[£5(a) is a rotatioﬂi}\/2 through an angle-A /2 and a pure, symmetric shegi}\r/2 of small
amplitudeA /2, see Fig4l5(c). Simple shear is not so simple as pure!shear

THE POLAR DECOMPOSITION THEOREM

For finite deformations the decomposition is more compdidabut it is still true by the polar decomposition
theorem that any non-singular, non-symmedrican be broken down into products of a symmetric deformation
gradient tensor and an orthogonal tensor, in effect a pugargireceded or followed by a body rotation:

A=AV or U-AR. (4.24)
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The rotations are denoted as before\byor U depending upon which space they act on. The form of the
accompanying symmetric deformatioﬁ§ will also depend on whether they precede or follow rotatiand

have been denoted @F andéL becau;e they yield the Cauchy-Green ten€basdB respectively. Since they
are symmetric, a frame can be found in which they are diagamal in which the deformations are therefore
simple:

M O O
AS= ( 0 A 0) thus Ry = A1Ro1, Ro = ARy, Rs = A3Ro3. (4.25)
0 0 As

Hence all deformations are extensions £ 1) or compressionsi( < 1). ThusAR and AL are the right
and left stretching tensors, respectively. This procedsir@n example of the polar decomposition theorem

(Horn and Johnson, 1991) which holds for non-singular mesA. One requires that D(é&) > 0, which

means geometrically (i) that deformations do not shrink dytto a point, De<é) = 0; or (ii) cause the body
to pass through itself, Dé&) < 0 (Atkins and Fox, 1980).

Exerciset.3: Show that simple shear can be broken down into a combimattsymmetric distortion
and body rotation, that is:

1 A\ _[(cosQ sinQ\ 1 2 A _U.AS
0 1) \-sinQ cosQ) araz\A 2+A2) ==

where si) = A /v/4+ A2, Check that the symmetric shear tensor is volume-presgrinat is
Det(és) = 1. Note that for small amplitudes the rotatiorfis- A /2, see Fig.4l5. For large shears
the rotation i) = 17/2.

Exercise4.4: Break down general xzdistortionA into a combination of symmetric distortiog,s,
followed by body rotationlJ ,, abouty.

Solution:LetA be broken down as:

A O\ [cosQ sinQ)\ (fa d —u_.
0 Az)  \—sinQ cosQ/\d b/ =a
Multiplying out the right-hand side and comparing with therresponding elements on the left-
hand side, one obtains four simultaneous equations. Hitinigg between them in pairs one obtains

equations for each af andb and two equations fad. Equating the latter two, one obtains for the
rotation:

S

1>

tanQ = (6 — 0')/ (Axx+Az2) (4.26)

ThussiQ = (8 — &) /AwhereA = \/(Ax+ Azz)2 + (6 — &)2 and similarly for co® in the rotation
matrix. Note, there is no body rotation fdrsymmetric, that i® = &’. Restoring sin and cos to the
expressions foa, b andd gives for the symmetric shear tensor:

l <)\XX(/\ZZJr Axx) —8'(8 - &) AxxO +0'Az; >

S_
A - A )\XX5 + 6/)\22 Axx()\zz+ )\XX) + 6(6 - 6/)

(4.27)
We use this decomposition in Sdct. 6]12.4 to under stand fhdeformations of nematic elastomers
since the rotational component takes great physical sigmifie when director rotation dominates
the response.
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PRINCIPAL EXTENSIONS

Symmetric distortionsA have no rotational component and their principal exterssimmd compressions are
perpendicular to each other and-a45° to the laboratory axes (exercisel4.1) when distortions arals We
have seen that any asymmetry Animplies there is a component of pure (irrotational) sheais@ certain
degree of local rotation. In nematic rubber elasticity itgful to identify these components separately. It is
also interesting to examine the principal directions ofaston/compression of an arbitraky These are the
directions in which an element of the body is extended or aessged without being realigned; in the general
case they are not perpendicular to each other.

Exercise4.5: Find the eigenvectoes. and eigenvalued. of a deformatior& = (AA, ’/l) in thexz

plane, wherd = v/1+ AA’ ensures De@A) =1.
Solution:The eigenvalues are the roots of the characteristic equitidhe non-symmetrid :
Det(A—A:8) = A2~ 2Ahs + A= AN = A2 2AA. 10,

also using De(é) = 1. This quadratic equation does not always have a solut®ndgevery non-

symmetric matrix can be diagonalised), e.g. the case oflsisigearA’ = 0 is degenerate. When
the solution exists, the principal extensions(+) or corapi@s(-) are:

AL =V1I+FAAN VAN
with the corresponding (normalised) eigenvectors andealbgtween them:

1 A=A
== (1,+/A7/A —cos!(e,-e )=cos? .
e. TIWVX( /) X (e,-e) (A+AJ
The symmetric cask = A’ clearly yields perpendicular directions. The limit of siegheard’ —
0, with pure shear and rotation in equal measure in the iefimtal case, is degenerate.

We shall describe soft distortions of nematic elastomermsre/ihotations are important. When determining direc-
tions associated with pure extension/compression thedalglements ok will not be equal as here.

SQUARE ROOTS AND POLAR DECOMPOSITION OF TENSORS

The square root of a tensor is, most simply, a tensor that windtiplied by itself returns the original tensor.
Representing tensors by matrices and adopting the prirfcimae, tensor multiplication is achieved by multiply-
ing the corresponding diagonal elements. It is then easgrstouct the square root tensor by taking the square
root of each diagonal element. One can then subsequerdhgrat a general coordinate frame. This procedure
is only valid for the roots of symmetric tensors. More gehegaults are required when such tensors are used
to describe soft and semi-soft rubber elasticity. By theapdecomposition theorem we discuss below, we can
find a symmetric tensor followed by a rotation to represegitdiormation. In fact this theorem and the roots of
tensors are deeply related. We conclude with the connebgbmeen decompositions of non-singular matrices
in general and a practical algorithm for finding the pure shiezes rotation for general deformations.

Exercise4.6: Show in a general frame, where a symmetric ma{rig not necessarily diagonal, that

the product of roots is as expecte¥t/2- X¥/2 = X. (We shall only require the roots of symmetric
tensors in these notes.)

Solution:Let U be the rotation that takes one from the current frame to tmeipial frame where
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Xp O 0
X is represented by the diagonal mat¥x = | O x 0 ]. The definition of the root in the
0 0 X3
diagonal frame is:
VX1 0 0
1/2 y1/2 1/2
éD :éo/ 'éD/ , With éD/ = 0 V& O
0 0 VX3

Post- and pre-multiply this equation QandgT to give on the left hand sic¥ = gT X5-U. On
T

the right-hand side insert between the factorggf2 the unity in the formd =U -U . Judiciously
inserting some brackets to guide the eye, one obtains:

T T 1/2 T 1/2
u 'éo'g:(u 'éo/ U)-(U 'éo/ V),

:

which can be rewritten as

(1>

_ Xl/Z.Xl/Z )

The result is evidently true in all frames.

A sketch of the proof of the polar decomposition theorem dgins into contact with the more general
properties of the square roots of tensors. '@@AT -A, which is symmetric by construction. Since [(ézl) =

2
Det(AT A) = ( Det(AT)) > 0, the matri>C is also non-singular. A non-singular matrix has at le&st@n-
similar roots, wherg is the number of distinct eigenvalugs &ndB are non-similar if they cannot be related by

A= gég’ whereW andg’ are proper, orthogonal matrices). There are also not mare2hnon-similar
roots, withv the number of Jordan blocks @ At least one of these roots is a polynomialBn Since in this

caseC is symmetric, then so will the polynomial roots be symmetiienote such a symmetric root @5{. Now

constructa matrit) = A - (AR)*l. Then test whether this matrix is proper orthogonal by cmmsiihggT U
-1 -1 -1 -1

() 2 () () e (1) @20

u'.

e
\

SO RIURIUR: w20

which confirms thal is indeed orthogonal. Inverting the definitionldf we recover the desired decomposition
A= Q-AR. Thus the utility of constructing Cauchy tensors franand that of roots of tensors are intimately
related. -
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Nematic networks can be highly rubbery, that is capable mjel@&xtensions and composed of molecules with
liquid-like mobility. The difference between nematic anassical elastomers is principally only that of molecular
shape anisotropy induced internally by the liquid crystalborder, FigL511. The simplest description of nematic
rubber elasticity is essentially an extension of classicalecular rubber elasticity, reviewed in Chagter 3. We
shall accordingly call this nematic rubber elasticity theoeo-classical’, referring to the identity of approadth.
will be introduced in this chapter phenomena not involviogtions of the director and complex strains explored.
Its further richness is explored in subsequent chaptersahiector rotation is considered.

Ny

Figure 5.1: Chain shape changes drive the shape
changes of the network as a whole. The de-
Iso cool tailed chains of Fig[(3]3 have been replaced by
spheroids characterising their (anisotropic distribu-
Am tion of shapes. For example, a chain extending
from on average a sphere to a prolate spheroid in-
cool ) ) .
\ N, ‘ duc_es a macroscopic elongatidp, > 1. For a
» chain that flattens to an oblate shape, the shape
v change would be a contractiohy, < 1, along the

Am  principal axis, that is along the nematic direamor

A=1

5.1 NEO-CLASSICAL THEORY

The number of configurations of a test strand, connectingctweslinks separated by a distalR& a nematic
network, is proportional to the anisotropic Gaussian itistion we saw in Chaptéi 3, eqn (3119):

1/2
1 3 _
PR < Det(£)> oo R LR). e

The effective step length tenséreflects the current nematic ordering in the network. At fation however,
the span between the links wR, say, and the shape of the chains at that time was describad3aussian
distribution similar in form to eqri.(5l1) but with a step-tgh tensorgo. One reason the distributions might differ
is that the temperature, and hence the nematic order, ofwhetates differs. If the formation condition was
nematic, another reason might be the current director aupptdirection different from the director orientation
at formation.

The probability of having crosslinked the current sgimto the network ispo(Ry), that is the probability
of finding at formation the spaR; thatR derives from. The distributiop, is of the same form as eqh (5.1),
but instead governB and has the step length tensg())r For the moment we take the subscripto denote
formation which we identify with the conditions before defation is imposed. As in Chapter 3, we assume
affine deformation: the total deformation tenéqrfrom the formation to the current state is what took theahiti
spanR; to becomeR, that isR= A - R;. The subscript on A denotes total deformation, which is needed in
case there were several deformation steps between fonm{Bipand currently R). For instance there could be
a spontaneous distortion associated with changing conditfollowed then by an imposed distortion. The free

35
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energy of a strand%s, averaged over formation conditions, is then:

yg = —kBT<|np(R)>po(Rf)
3kgT ,_ kgT Det(£)
- T<W‘11Rj>+7'”( a3_)
3kgT

oL (RELVR+.... (5.2)

The In(Det)-term arises from the normalisation of the probability, prefactor in [GJ1). Inserting tha® in

the normalisation logarithm gives an arbitrary, additiemstant. It is done simply to make the argument of
the logarithm dimensionless. The In Det contains the nenmatier, via the step-length tenséyrbut not the
deformationA. We shall generally only display it when it plays a role, tisatwhen themagnituderather than
directionof nematic order changes. The free enefgycan be simplified by usingt andRs for R:

3keT

or
Ts= 1

(Re-A] £ A Ri)p, . (5.3)

EATY

The average over the initial span is easy — the second morhtetre Gaussian distribution iR(Ry) o r,) = %gOL
whence the free energy of a strand is finally:

(5.4)

Det(£
ys: %kBT Tr (éoi;r ,é*l,ét) +%kBT |n( t(:)) -

a3

This is what we call the neo-classical free energy of an @yeenetwork strand since it is a simple generalisation
of classical, Gaussian rubber elasticity. To convert it toee energy densitf we should simply count the
number of such network strandsg, per unit volumeF = ns.%s. We have seen that the combinatieigT is y,

the linear shear modulus of an isotropic rubber with thissitgrof network strands. The free energy density is
then

F=3uTr(g,-Al £2) (5.5)

All the nematic rubber phenomena we describe will arise fthis free energy and some non-ideal deviations
from it. The deviations will arise from entanglements, casifional fluctuations, crosslinks of finite size and
related random field effects. We shall frequently refer tasttheTrace formula Ideally, it is valid for all,
including very large, deformations and is only limited bytensions sufficient to so stretch network chains that
they violate Gaussian statistics. It records,&iand{, the initial and current directorg andn of the elastomer,
unlike the free energy of a liquid nematic whétalepends only on the current director. The initial and curren
magnitudes of the local nematic order paramépgrandQ, are also contained iR through the anisotropy (go
and/.

Smectics have an underlying nematic order and in a moleth#ary of such elastomers we again employ
this free energy, but heavily modified by the dominating ieflce of the layers.

The free energy (515) has a very rich structure comparedthétislassical result 1(rAT . A) . The distortions

appear now not as simple forml:sT -A, but rather in the combinatiogT -gl-é Thus the current (after
deformation) nematic state of the body is encoded into tastielenergy via the sandwiched factorgéﬂ. The
main principal direction og*l, the directom, is not necessarily along a principal directionf Diagonal
elements ofA (simple extensions and compression) can now couple witidiafjonal elements (shears), for
instance giving terms likyAzx in the free energy. This does not occur in classical rubkestieity. The
structureiT -fl-i also allows local torques and rotations to be applied to tierakastomers, thereby coupling
mechanical effects to the internal nematic freedom. Rmtike combinationlT ~[1~A couples toﬁo, that is to

the original directoin, of the state before deformation, thereby coupling the cusgains and director to the
original anisotropy of the solid matrix, see Chajfer 1, f@ge
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At first sight F seems rather tensorial, but it is easily dissected with adeamples where directions are
unchanging (for instance that of the director and the stegtletensors) and where the tensor structure is always
diagonal and hence trivial. Most trivially, if the formatiand current states are both isotropic, thg(t)is ad and

!1 =a 1§, then [5.5) collapses to the classical re§ukt %u Tr (AT -A). For the remainder of this chapter,
we shall consider simple examples not involving directdation: We defer until the next chapter questions of
shear, of continuous rotations of the director induced Bgisieand of torques in general. These lead to yet more
new phenomena and in effect a new elasticity.

5.2 SPONTANEOUS DISTORTIONS

Consider an elastomer formed in the isotropic state, thaitls £ = ad. It is cooled to its current, relaxed,
monodomain nematic state. The chains now have a naturaé stegeribed by the tenséy, the subscrip{r}
denoting ‘relaxed’. No stresses or constraints have begleaito it and thus an,ﬂ_t is aspontaneoudistortion,
A From the symmetry of the phase that has developed on cothieglistortion must be uniaxial and directed
anngn It must also be volume preserving. Taking the director talomgz, that isn = z, the deformation
tensorA must have its principal extension element alangall this componem , whence the whole matrix
can only be:

1/VvA 0 0
A= o yvx o]=A". (5.6)
0 0 A

The inverse step length tensgrl in the same system of coordinate axes is:

/¢, 0 0
ei= o e oo |. (5.7)
0 0

Evaluating the free energy reduces to the trivial problemoltiplying four diagonal matrices that forr[r@ag) .
AT ~§l A] and then tracing the result, that is summing along the dialgde take

a/(Af) 0 0 a4 2a
0 0 aAZ/E‘r‘ fu gl

The free energy is close to that of a classical elastomerrgodey uniaxial extension, but there are separate
factorsa/f"‘ anda//', for the parallel and the two perpendicular directions —thiedlance between the directions
induces shape change.

Unconstrained, the system will adopt a spontaneous exteAsminimising the elastic free energy density
(5.8). TakingdF /dA = 0, we immediately conclude that on cooling from formatiorctorent conditions, there
must be a spontaneous uniaxial elongafigin of (Abramchuk and Khokhlov, 198[7; Warnet al,, 1988):

1/3
Am = ( WL) =13, (5.9)

defining the anisotropy, the ratio of the step lengths. The result offers possiédifor temperature controlled
actuation. We have assumed in this example a chain elongstéd nematic order to a prolate shape. If by
contrast the chain backbone were flattened by nematic ood&n bblate shape, then the above elongation on
leaving the nematic state would become instead a contractio

Does the solid that the chains form allow them to becomeagatrin shape on average when they leave the
nematic state? One might doubt whether this is possiblesherubber is constrained to preserve volume as it
reacts to changing order by deforming. De Genhes (de Geh#69) posed this problem; for ideal chains it is
possible — see WT Ex. 5.2 for a discussion. Ideal chains havecdropic shape distribution after entering the
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Figure 5.2: (a) Spontaneous distortidn,and nematic order paramet€r(Clarkeet al, 2001), plotted against
temperaturd ; (b) the optical birefringencén, against temperaturg (Finkelmaeal, 200%). Q is measured

from X-ray scattering, mainly from the aligned pendant sitiain rods. The birefringence is also a direct
measure of), expressing the ordering of the most polarisable comparfeht elastomer, the mesogenic rods.

orientationally isotropic state. There is therefore no ragnof the chain shape anisotropy that pertained at the
crosslinking of such chains. Animportant theorem due tax@oVic and Lubensky (Golubovic and Lubensky, 1989),
about the attainability of deformatiamithout energy codor nematic elastomers, rests upon being able to obtain
such perfectly isotropic states despite topological cairgis. We explicitly construct such soft deformations for
nematic elastomers.

Exerciseb.1: If the formation state was nematic, with goncharacterised by principal valué%
and/9, and the current state is also nematic (vgirth show that the spontaneous distortion in going

r

1/3
. b e
from formation to current states would g = (Z‘” %) . Check that for prolate elastomers there
1

is indeed spontaneoestensioron further cooling.

The spontaneous distortidp, = (EH/EL)U?’ from the isotropic state turns out to be central to all of néena
rubber elasticity. Indeed, after relaxation has occuritei, the only input to neo-classical rubber elasticity.
For Gaussian chains it is a direct, and indeed the only, measichain anisotropy at current conditions. Since
chains must be Gaussian to be rubbery, and since Gaussiegrstimely determined by their second moments, the
ratio of these second moments= ¢ /¢, is in Gaussian rubber elasticity tbely measure of chain anisotropy.
In discussing the shape anisotropy of nematic polymers, ie.gq. [3.21), we denoted the rat(@H/fL) by
r. The step length ratio can be thus deduced from thermal sigmameasurements,= A3, see[5.D. It can
be correlated with direct measurements from neutron saajtérom labelled chains in nematic elastomers at
the same conditions. This is a demanding situation for theimice there are finally no phenomenological free
parameters in this theory of ideal nematic rubber elagticit

Side chain nematic elastomers spontaneously distort[5Elgy. Simple models of nematic polymers (freely
jointed for instance) relateto Q. Figure[5.2(b) shows th& andAn, can be superposed, just as such models
propose they are closely related. We are interested in neshamécs and don’t pursue these molecular models
here; see W36.2 for that connection. Most anisotropic of all in shapersgmatic elastomers composed purely
or partly of main chain polymers. Figuresb.3 show spontaeashape changes of 350% are easily achievable.
FromAs = 3.5 = r/3, we can conclude th&® /R, = ri/2 = )\53/2 must give a ratio of the radii of gyration of
6.5. This large value is consistent with the values that gmér main chain polymers from neutron scattering,

Fig.31(a).
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Figure 5.3: Large shape changes300%) in a mixed main-chain side-chain nematic monodomlast@mer,

with the director aligned along the vertical axis. (a) Cantion with temperature depicted as a series of stills. (b)
Quantitative measure of changing natural length; diffeceinves correspond to the sample lifting an increasing
weight (Tajbakhsh and Terentjev, 2001), and work is donéf-&sembling thermoplastic nematic elastomers

allow drawing of thin fibers with a very high nematic alignnéAhir et al, 2006), giving spontaneous length
changes of 500% and more.

Monodomains

To obtain spontaneous distortions one requires a uniforecttir field, that is a monodomain elastomer. They
result from several procedures: One c¢an (Laeegl., 1998) align a nematic polymer melt with a strong magnetic
field and then crosslink it. Two-step crosslinking (Klpded Finkelmann, 1991) first lightly crosslinks to form
a weak gel which is then uniaxially stretched in either tharigpic phase al > Ty; or in the nematic phase.
The stretched sample is second crosslinked, which fixesrtf@aed uniaxial alignment. Provided the strain
imposed between the two crosslinking stages is great entlugfinal elastomer will be a nematic monodomain
below a clearing temperaturk,. Figurds.4/(Klpfer and Finkelmann, 1991) shows both pahd monodomain
versions of the same elastomer. The polydomain is opaqueubef the strong light scattering by random
director textures. The monodomain is optically clear, viithbirefringence axis (nematic directny uniform
over the whole sample. This is in contrast to monodomainsdihary nematic liquid crystals, which are cloudy
and turbid, because of director fluctuations. Nematic ruletesticity is very different from liquid nematics.
Chaptel]L, padé 3, briefly discusses this difference betliggid and solid nematics. In elastomers, the director
is anchored to the rubbery matrix and there is an energy fyeeaén for long wavelength (nearly uniform)
director distortions. In ordinary liquid nematics thesstditions are of vanishing energy and thus uncontrolled,

R

H

Figure 5.4: A monodomain nematic elastomer prepared bystep-crosslinking and the corresponding polydo-
main sample, which was not stretched before the secondiatdrg stage|(Kipfer and Finkelmann, 1991). The
free monodomain elastomer is perfectly transparent , vithdgolydomain sample is opaque unless stretched.
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whereupon they strongly scatter light.

5.3 NEMATIC PHOTOELASTOMERS

Figure 5.5: (a) The effect dfrans-
cis isomerisation on the nematic or-

der. Bentcisrods dilute the straight
transrods and reduce the order. For  Nematic ﬁj’\i\ Isotropic

Spontaneous

azobenzenes, photon absorption is UV /

around 365 nm; reversis-transiso- 365 o T
merisation is either by thermal re- H <@ g‘xﬁc’“ation
laxation, or stimulated by light at

465nm. (b) Potential landscape of a /

dye moiety withcis andtrans states T o UV Stimlated decay’\ ¢

and an intermediate absorption state.  (a) 465nm b)

Photoisomerisable rod-like molecules undergo a moledtdasition from thdransto cis state on absorbing
an appropriate photon, Fig.5.5. Azo benzene is the mosiestu@hey strongly bend and no longer contribute to
the nematic ordering; in fact, they act as an impurity andadekse the nematic order. In effectillumination plays
a role equivalent to temperature elevation in reducing rieroader. One might then expect UV illumination to
induce contractions in nematic elastomers containing sodf analogous to those observed thermally, which is
indeed observed (Finkelmaenal, 20015; [Hoganet al, 2002). Figuré5l6(a) shows a sizeahteZ0%) photo
contraction and subsequent dark-state thermal recovhiig #ig [5.6(b) shows the same photoelastomer exhibit-
ing the usual uniaxial thermal contraction, for comparisbmthis photoelastomer (Finkelmaenal, 2001),
the rods that bend and thus disrupt the order are the crlssdinlirradiation and temperature increase play equiv-
alent roles; the common element between photo and thersdnse is the dependence of length@rbe it
changed by heat or illumination. Figures.7 shows stressathel parameter changing together on illuminating
a clamped sample. Stress is a measure of the contractiortivgesample to be free. Photo-effects can be simply
modelled, for instance by mapping photo-response on to aikrtbermal response. Equally, the dynamics of
the response is simply and accurately modelled by desgrthendynamics of photo transitions in the population
of dye molecules and assuming that the mechanical stam®these changes in dye population. See§@vZ.
With photo-elasticity it is easier to obtain a new element spatially varying response since light is necessarily
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Figure 5.6: (a) The retractioh against timet of a nematic photoelastomer, on exposure to UV radiation at
various temperatures (Finkelmaenal, 2001b). The reference statd, = 1, is at high temperatures. (b) The
underlying thermah (T ): arrows indicate the temperatures of the UV-experimenta)n
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Figure 5.7: (a) The build up and decay of the fractiorcisfmonomers on illumination with appropriate UV
light (Eisenbach, 1978). (b) The simultaneous plot of thereed mechanical stressg — left axis, of a clamped
irradiated sample and the material birefringeAoe- right axis, which is a direct measure of order param@ter

(Cviklinski et al,, 2002).

absorbed and hence its intensity varies with depth. Therdeasignificant bending of photoelastomers due to
the gradient of contractile strain across the sample tl@s&nassociated with the gradient of light intensity in the
sample, Fig. 5]8. Itis possible if light is being convertetbiheat at each dye molecule that some of the response

2mm A
Figure 5.8: Bending of a nematic elastomer

doped with a photoisomerising rod-like dye

molecules. The full range of motion, on il-
o lumination, is achieved in fractions of a sec-
t=0 , t =80ms . ond (image: P. Palffy-Muhoray).

is also thermal, but temperature too clearly varies withtlleip diffusion is not too fast, and adds to the bend.
How thin the absorption region must be relative to the eflastothickness to optimise bend is an interesting
question|(Warner and Mahadevan, 2004). Too thin means tbstt of the volume is unaffected by the light and
resists the contraction of the upper skin and thus alsorftest bend. Too thick, and the elastomer contracts
uniformly with depth and there is overall contraction indav of bend. Theory suggests that the absorption
length optimal for bend is about 1/3 of the sample thickniesthe case of exponential decay of intensity.

So far we have considered monodomain elastomers — for westanFig [5.8 the director is along the long
dimension of the sample. The contraction in this directietedmines the direction of bend. Polydomain nematic
polymer glasses have been shoyn gfal, 2003) to bend too, the direction of bend being in the dicecthf
the light's polarisation. The direction of bend readily obas as the plane of polarisation of the light is rotated.
Such photo-actuation in the equivalent elastomer polydiesnaould offer a greater degree of control than in
the monodomain case. The specificity of bend direction tanEdtion suggests strongly that such mechanical
response is indeed due to photo-response and not simplyteaction in response to optically-generated heat
which would be nugatory in a polydomain. The mechanism fatraxtion of polydomain photo-elastomers is
thought to be subtlé (Corbett and Warner, 2006). Contractmnot be monotonic with increasing light intensity
since the isotropic sample achieved at very high light isitgrmust have the same shape as its polydomain parent
state that too is effectively isotropic. Contraction byediior rotation of the passive domains with director at an
angle to the light polarisation to accommodate those dosraffiected by the light is a possibility — the following
Chapter addresses the role of director rotation and it wilklecurrent theme in all of these notes.







CHAPTER 6. SOFT ELASTICITY

Nematic elastomers possess a mobile internal degree afineethe rotations of a director. We now investigate
their elasticity allowing director rotations and shearshe3e influences render them unlike any other solid.
Director orientation allows a significant reduction in tHastic energy cost of shape change. For example a
nematic-mechanical instability occufs (Mitchetlal,, 1993) where the director jumps discontinuously to allow
a nematic network to accommodate an imposed perpendidtdém.sSee the cartoon of Fig_6.1; if the chain
distribution (aligned withn) rotates byr/2 without change of character, the sample elongates peiqéad
and contracts along the original director direction. Budréhhas been no essential distortion of the polymer

A Figure6.1:  Accommodation of
chains by the shape changes of

j i Contraction: . . . .
/ _ Jumpinn <_@ I the embedding solid. A solid with
ﬂ M A=y EL/KH dimensions in proportion to chain

D dimensions changes by the given
S m Extension: A =2,=1 £, /¢, factors when the director jumps by
Je. 9.

network and hence no energy cost associated with this shegrege. This transition is reminiscent perhaps of
the Freedericks transition in nematic liquid crystals verean electric field is applied perpendicular to the director
and induces rotation at a critical voltage, see 3.7 for discussion of this mechanical analogue in elastemer
[Since the anchoring will turn out to be in the bulk and not@afaces, and the field (stress) is applied at the
surfaces and not in the bulk, this should perhaps be callédrainFreedericks transition”.]

In this chapter we initially illustrate the role of rotatidny discussing the relative rotation coupling con-
stantD; (briefly mentioned in Chaptéd 1). The analogous coupbagf symmetric network strains to relative
rotations is also discussed. More generally, the diredtates in a continuous fashion. We then address the
observed singular nematic rotational response to straidste apparent liquid-like mechanical response (low
storage moduli) observed for some strain geometries. Wehiskffect ‘soft elasticity’. Experiments confirm it
is indeed nematic rotations that make the new elasticitgiptes

When softness occurs, its effect can extend up to 50-60% stn@ much more than that-(300%) in highly
anisotropic main-chain nematic elastomers. Then, ideagn an infinitesimal applied stress will induce such
large strains before any elastic resistance is felt thatabgonse to a stress is always non-linear — far beyond the
validity of linear theory. The full non-linear possibitis of the Trace formula offer the simplest way forward.

6.1 DIRECTOR ANCHORING TO THE BULK

Non-classical elasticity arises when the director rotateginuously during distortion; as preliminaries we con-
sider rotation either with no deformation, or with symmeshears, the latter giving the first pointers to soft
elasticity.

6.1.1 DRECTOR ROTATION WITHOUT STRAIN

Let the director rotate relative to the fixed matrix by an an@labout they axis. The free energy density
with A = d is thenFg = %u Tr (éogfl). Ignoring changes in the magnitu® we have the current step-

length tensol = U; éo Eg, rotated by6 from its original configuration before deformation. Redhiht
£=1(,6+(¢)—£L)nn. If we take out a factor of  , we havef = ¢, (& + (r —1)nn) wherer = /| /¢, measures
the anlsotropy of the average chain shape spheroid, thia¢ |d€tV|at|on from a sphere Equally, the inverse is

s 1_ a§+ (4_1\\ - —)nn and one can take out a factor of/l to give ;~ (6 — (1-1)nn) where again there is

a negative deviation from spheriodl — —) for the invers¢ ! of a prolate ( > 1) spheroid. Back in the Trace
formula the?, and /¢, factors cancel and the whole result is characterised byitigéesparameter, the ratio

43
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Using such step-length tensors reduced byactors,

Fu = (3 0+ -2 (o) 6)

_ 3 1 (r — 1)2 n2 n2
= SH+3SU : sinc 6 = u+2DlS| 6. (6.2)
For small6 we get, apart from the ground state constant vélpe
BEY
T (6.3)

The coefficient is identified @; = p(r — 1)2/r, giving the harmonic penalty for small rotatioB®f the director
with respect to the matrix.

The distribution of chain conformations (and hence its gipal axis, the directon) is rotated with respect
to the background as in Fig.®.2 and without the shape of the sllanging to accommodate the spheroid as it
rotates, there is clearly an elastic penalty to be paid. Wherrotation is byd = m, in the nematic sense the

z
O O O
(r-1)
Figure 6.2: Rotation of the anisotropic pért— 1)
of the step-length tensor with respect to the fixed
rubber matrix; (a)— (b) hasf — £. Axisy is
into the paper; the director is rotated abygin the (a) (b) A=
positive sense. O O O 0

system has recovered its initial state and the energy i®torrero, as we indeed see%iDl sir? 6. We require
the full non-linear form of the nematic rubber-elastic gyenvolving sirf 6 rather tharf?.

As the rubber becomes isotropic,— 1, the rotation of anisotropy loses its meaning @~ (r — 1)?
vanishes, as it must. Note also that both prolate- (1) and oblater(< 1) elastomers have a positive cost,
D, > 0, of rotating their respective anisotropy directionaith respect to the rubber matrix, FIg. B.2.

6.1.2 QOUPLING OF ROTATIONS TO PURE SHEAR

Apply a symmetric (rotation-free) sheal,s, to a nematic elastomer in a plane that includes the dirattor
Sect[Z3R and Fif._4.4 show that such shears are reprd$sradocal combination of extensions and compres-
sions and induce director rotation toward the extensiogatial despite having no rotational component.

To preserve volume, the tensor of pure shear must be writen a

AS(\/l‘i‘/\Xzz /\xz Z)
= Axz V1+AZ)’

diagonal elements ensuring that [égts) = 1; nothing is assumed to happen in the third direction, odhef

shear plane — see the exercises in $ect. 4.3. We take terfiG\@f) in the Trace expression fd%,, so retain
the /14 AZ contributions. Multiply the tensor - AS £ ! AS and take the trace, for instance by taking diadic

forms such ags V1+AZ (xx+z2) + /\Xz(xz+ 2x), andf = ¢, (8 + (r — 1)NoNo) etc. One obtains:
r—1 .
Fa = Lu [1+ 4200+ DA% - — ((r —(r—1)sirP0)(1+A32) +

(14 (r — 1) S 0)AZ+ 2(1+ ) Ayey/ 1+/\Xzzsinecose)] .
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Expanding to take terms at harmonic order, thatis 82 andAy.8 only, one obtains terms in the energy:

r+1 r— 1
%u ( - ) XZ— 4C5A %IJ ( ) 92 lDlez I,[(r — ?)/\XZG = _DZAXZB . (64)

The imposed shear induces the director to rotate with réspéte unrotating background matrix with an energy
costD;. There is also a purely elastic penaltfs4 2 to symmetric shears in a plane encompasging he shear
modulus, called:5 in small strain elasticity, does not vanishras> 1; in isotropic solids pure shear still costs
energy 42, as we saw in EX_412.

The new coupling-D2Ay,6 between the elastic shear and the director rotation denzamels elastic constant
(de Gennes, 1982, = u(1—r?)/r. As expected), — 0 as isotropy is approacheads» 1, and there is nothing
to rotate. On going from prolate ¢ 1) to oblate { < 1) chains, the sign d), reverses — in contrast to the always
positiveD1. This means that the sign of a rotati6rinduced by a givey, will be the opposite for prolate and
oblate elastomers. Prolate elastomers have their direstited byAS to the extension diagonal, as is suggested
by Fig.[4.3. Oblate elastomers have their director attchttighe contraction diagonal — it allows them to put a
long dimension of their shape ellipsoid along the extendiogction and thereby lower the elastic energy.

We see another astonishing elastic effect. The teaAx.0 in the last of eqn{6]4) is bilinear which means
its overall sign can always be made negative by a suitablecetaf the sign of the responggto a given
imposedAy,. For instance fob;, > 0, taking both6 and A, to be positive, or both negative, lowers the energy
by —D2Ax0 < 0. Thus, although th€sA2, andD162 terms are positive, thB, term offers a mechanism for
reducing these penalties. The next section derives théstefibr general geometries and large amplitudes.
is found ideally that the three terms can cancel overall Y@ gio net energy cost to such symmetric shears
encompassing the director! We call this soft elasticity sl rotation-dominated response drives most nematic
and cholesteric rubber elastic phenomena.

6.2 SOFT ELASTICITY

A gas adopts the volume and shape of its container. A liquightits container’s shape but has its own volume
which then costs energy to change. A solid has both its owarweland shape, both of which cost energy to
change. Let us see how nematic elastomers fit into this cllssitegorisation of the states of matter.

Consider the deformation gradient represented by the sgijore(Olmsted, 1994)

1/2 —1/2
A=L2W g1 (6.5)

whereW is an arbitrary rotation by an angke. The current and initial chain step-length tensbrandé
specify the current state, characterised by its direstand order paramet€), and the initial state witim, and
Qo. Considering the rotations connectingandn, and those associated Wﬂﬁa, this A represents a large
number of potential distortions. If we insert such a defdiareinto the Trace formula, as well as its transpose

AT =£12.WT . £"/2 since thef are symmetric, we obtain:
For= 3UTr (€, 4,72 WT- €202 0P W Y2) = e (8) = . (6.6)
—
)

The middle sectio™/?- £~* - £*/2 gives the unit matrbd, by definition. The rotation matriw then meets
its transpose to also give unltwT W =3. Likewise d|sposmg of thd terms, one obtains the final value

Fel = 2“- This is identical to the free energy of an undistorted nekwd’he non-trivial set of distortion3 of
the form eqn[(€J5) have not raised the energy of nematicosteet

We see in Fig_6]3 snapshots of soft response as directdiomtaoceeds. On applying a extension perpen-
dicular to the initial director, rotation of the chain dibtition is accommodated by the very elongation we have
applied, together with a shear. Two remarkable conseggericeematic elastomer response via rotation follow:

o All the distortions accompanying e.g. an imposed extendjgmust be in the plane of rotation, that is a
transverse contractioky; and a shear (onlyy; is evident in the figure, buk,x would also accommodate
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the rotation of the distribution). No distortions perpendar to this plane, that is involving thedirection
(Ayy, Ayx, ... etc.), are needed. For a classical isotropic elastoipes A,; = 1/1/Ax is demanded by
incompressibility, whereas in soft elasticity there is harskage in they direction @Ayy = 1 and the appro-

priate Poisson ratio is zero).

Softness must come to an end when the rotation is complet¢herdimension has diminished in the
proportionz;= /¢, /¢ and thexdimension extended in the proportidg = | /¢ /¢ .. The original sizes

/7 and\/Z; have transformed t@/7, and /¢ respectively. Thus softness would cease and director
rotation be complete at, = r/2 = A% The familiar characteristic deformatidny, = (£)/€0)3 s the

spontaneous extension suffered on cooling to the nematisepisee Se¢t. b.2. This final deformation, we
denote by\, = r'/2, is that associated in Fig_6.1 with change in extent peripetat to the director, and
for the same reason, namely that the long dimension of thia shape distribution now points there.

Likewise one can imagine starting from one of the obliquepsisan Fig[[6.B, that is the initial directog
(the long axis of the shape ellipsoid) is not af @0 the imposed strain. Then rotation and thus softness is

complete at a smalleéry < Aj.

Shape change without energy cost suggests that nematicretas fit the classical category of liquid! However
their non-soft deformations are rubbery, that is at leatbnally solid-like.

6.2.1 SOFT MODES OF DEFORMATION

We now explore the general character of soft modes.

Exercise6.1: What distortion does the soft mode . = /7. 2% represent? (The arbitrary

rotation matriW _is absentin this example.)

Solution: The soft mode is characterised parametrically by the afidie whichg0 is rotated toge,
that is by whichn, is rotated ton:

(54 (F—1)nn)- <g+<% ~ )ngno)

S+ (1/vF = Dnono+ (v —1)nn+(n-no)(2— v —1/y/rnng.~ (6.7)
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If ng is alongz and is rotated by towardx, it becomed = zcosb + xsin6. We can write down a

particular representation gfsoﬁ:

1. . .
A = (17(17W)sm29)zz+ (1+ (VI —1)sir? 8)xx+yy
Jr(l%)sinecosexzqL (/T —1)sin6 cosf zx
1+ (yF—1)si*8 0 (1—1/\/)sinfcosd
= 0 1 0 (6.8)

(yf—1)sinfcosh 0 1—(1—1/\/r)sirfo
which is illustrated in Fig._613.

The distortions are parameterised by the director rotaipowhich ranges between 0 amri2. Thex-extension
is A =1+ (/1 — 1)sin2 @ > 1 and the perpendicular contractiomig=1— (1— 1/\/F)sin2 6 < 1. Both are
proportional to siRB. Thus the infinitesimal diagonal strain componenis= A;;— 1 andeyx = A,,— 1, at small
rotations@, are proportional t@@?. By contrast the shear, andA,x are proportional to sifl cosd and hence
the infinitesimal strainsy; ande,y are linear in small rotation angk— a lower order thaly ande,,. The soft
mode, eqn[{6l7), starts at no stralh= &, and as the director rotates frofn= 0 all the way tor/2, the soft
regime eventually ends @t = Diag(./r,1,1/+/T), that is ax-extensionAyx = /I, a ztransverse contraction
Azz=1/+/r and no remaining shear.

Director rotation is taken up by shape change so that thare entropically expensive deformation of the
chain distribution as when a conventional elastomer deforithe anisotropy of step-length tensos ¢ /¢
characterises the ratio of the mean square size along thetaito that perpendicular to the director. The square
root of this ratio,/r, gives the characteristic ratio of average (r.m.s.) direrssof chains in the network.
During a soft deformation, the solid must change shape sattttie rotating eIIipsoigl/Z, characterising the
physical dimensions of the distribution of chainis accommodated without distortion, Fig.16.3.

In the isotropic limit ¢ = 1) both chain step-length tenso(s and£,, reduce to a unit matrix and the general
soft deformation matriX{6]5) reduces\Ma an arbitrary body rotation. Certainly, we would expect fastc
energy rise when we turn and rotate the sample as a whole!oftiaedes become real, non-trivial deformations
when the material becomes a nematic elastomer.

The nematic order, so crucial for the availability of interorientational microstructure leading to soft defor-
mations, does not change through such a distortion. At tkeebthe valu€ minimised the nematic component
of the free energy. Since the elastic component of the erdwgg not rise, then the initial optimal magnitude
of Q remains optimal during the soft deformation. Unchandihimplies an unchanging distribution of chain
shapes, that i is strictly a rotated form of . Thusf, = MT £ -M whereM(6) is a rotation, represented by
an orthogonal matrix with D&M ) = 1. Note that one cannot simply take an orthogonal maMiX,= M1,
without Det(M) = 1. Even though such matricé would also generate a volume-preserving deformaAuon
yielding Fg| = 2;1 they would at the same time change the shapé fobm that of£  which already has the
optimal aspect ratio. The consequent chang@ @uring such a deformation means the thermodynamic nematic
part of the free energ¥nem would rise and deformation could not be soft.

Thus elastomers can be soft through a changing macrosduage ©f the elastic body by rotating the distri-
bution of chains at constant average shape of network chaimis implies that chain entropy, normally at the
root of rubber elastic response, does not drop. Equallyetieeno change of the nematic order; it has merely
been rotated in alignment direction. The energy changeris. z€he overall change in free energy density,
AF = AU — TAS, is thus also zerd[ andSbeing the internal energy and entropy).

Alternatively, the soft deformations of the cartoon FFig3,6\ Zl/ 2 N /2 can be viewed as two mul-
tiplicative deformations (since they may correspond tgéastramsfs F|d3]4 |IIustrates their successive action.
The flrst,g0 /2 takes the original solid to a cube and the anisotropic ctimitnibution to the isotropic spherical

The ellipsoid is described by the conditiéh £~ - R = 1, or in the initial principal framex? +y? +22/r = 1, that is, thexzsectional
ellipse has semi-major axes of 1 apd.
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one. The intermediate distribution, being isotropic, carrétated through an angk without energy cost or
physical effect. The second/’?, then restores the current anisotropic distribution, btihe new anglé. The
cube suffers a non-trivial distortion to the new shape wieixécribes the rotated ellipsoid.

In factgl/2 is related to the spontaneous elongation on coo&nﬂg,by a simple constant. Likewisggl/2 is
related to the inverse spontaneous deformation on heating:

N 30 0

ﬁl/z _ 0 10 Erl/G 0 rfl/G 0 Erl/GAm

- 0 0 1 0 0o rvse B
1/fF 0 0 r3 0 0

e = 0 1 0|=r o /6 o |=r0" (6.9)
0 01 0 0 rYe

The two tensors are expressed in their principal framesfitstebeing rotated by with respect to the second.
The prefactors cancel when we take their product and werabtai

- -1 -1
£5-£,"7 = 4,(0)-4, 7 =UT(0)-4, -U(6)-A, . (6.10)
The notationA (6) means we take the spontaneous distortion along a direcibtts been rotated bf.

The final form of eqn[(6.10) explicitly displays the rotatioratrices. The existence of a (virtual) intermediate

isotropic state, as in Fi§._8.4, is the basis of symmetry ments that prove the soft response associated with
Fig.[6.3 is universal. This state is often taken as the rafarstate, although it is far from the physical reference
state associated with experiment.

6.2.2 SYMMETRY ARGUMENTS FOR SOFT RESPONSE

Golubovic and Lubensky (1989) first demonstrated that satigssmust, on general symmetry grounds, possess
soft elastic modes. Imagine an initially isotropic elasticly, where all material points are labelled by a ve¥tor

in the laboratory frame. The reference state possessestational symmetry, that is, the state described by the
set of pointsX is completely equivalent to the détax which have been rotated lg/(with gco a rotation matrix).

On transition into a uniform single-domain nematic thesgemal points undergo a spontaneous deformation, see
Sect[5.2. They are noR= Am ~g¢ -X. Another nematic state may be obtained from the isotropéreace state

without such a rotatiorR® = A - X. Inverting this we find an expression for the reference p&int A’l ‘R°,
which we insert in the expression fBr The latter now gives a matrix relation between the st&!emdl{’b, that
is: R= Am . gco . A;}l -R°. The deformation gradient tensor that connects these ttessis therefore

A=0R/ORP=A -U_-A L. (6.11)

When the intermediate state is truely isotropic, then thertematic states must be physically equivalent and the
deformationA between them costs no energy. Fiduré 6.5 shows the routhede equivalent deformations and
a picture ofA (Warner, 1999} Lubenskgt al, 2002). Equation§(6.11) and (6110) are of the same formsThu
this symmetry argument yields the detailed soft modes aseeid explains thereby their universality.
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N\ S has occurred. The nematic states, although equiv-
\""4 ‘5‘-""" alent in energy, differ in shape (see the cartoon

[ = Fig.[6.3) and are connected by a safparame-

terised by rotations of the isotropic reference state.

6.2.3 FORMS OF THE FREE ENERGY ALLOWING SOFTNESS

Symmetry arguments show softness exists in solids with &mrial degree of freedom and where an isotropic
reference state is accessible. The underlying reason iswagance of the free energy under both rotativinsf
the reference staf®, andWU of the target stat® Recall, eqn[(413), that the deformation tensor transfdikes

T

(1>

/:g.

(1>
<

The first index, see eqh (4.2), Afrefers to target spades which transform byJ and the second index refers
to reference spad®,s which transform b. There are thuswo sets of symmetry operations, referring to the
reference and final states independently. One route tdaasheory we saw in Sedi. 4.1 was to construct the
Cauchy Green tenso&= AT -AandB=A- AT which transform as second rank tensors under referenee stat

rotations a€’' = v.-C -\éT or under target_stz;te rotationsBs=U -B-UT. They can be used to form suitable,

scalar expressions for the energy. In nematic elastomers #re now other tensors to draw upon, narg%bmd
£ with the charactefRoR, } and{RR}.

Invariant expressions now include @Tiﬁo) and Tr(AAT-K). The first non-trivial expression that

records the structure of both initial and current statesuisfondamental Trace formula, (ﬁo -AT -gl A)
More complex possibilities exist that have the correctiiarace properties undér andV, for instance the trace

of a product Tr{ (A-go . AT) " (gl)” .. } and other scalar functions constructed from combinatiépewers

of the tensor expressions: £ - AT andAT -£-A. These all have the capacity to possess soft elasticityh Suc
more complicated forms arise when one considers deviafrons the concept of an ideal Gaussian network
— for example the effect of finite chain extensibility, thatwhere chains are sufficiently short and extensions
sufficiently large that they no longer behave as Gaussiatiser@ven more more complex forms arise when
considering the effect of entanglements in nematic elastspsee W¥6.8. The above symmetry considera-
tions show these elastomers must remain soft despite te@seanstraints. Indeed the precise form of the soft
response, eqi (6.19)-(6122), emerges independently édtheof the free energy adopted, see Sect. 6.2.2.

6.2.4 RRINCIPAL SYMMETRIC STRAINS AND BODY ROTATIONS

The soft deformations in Fi¢. 8.3 and eqhs{6.7) (6.8pefltody are in general non-symmetrk; . is
neither simple nor pure, but a mixture of pure shear timeatiawi. The element of body rotation, irrelevant
for conventional solids, is vital for nematic elastomeres&ts [4.26) and (4.27) of exerc[sel4.4 break the soft
modes down into a symmetric sheg? followed by a body rotatiorQQ through an angl€ about the axis
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perpendicular to the shear. Thus, . =U | -AS. Parameterising the soft modes by the director rotafiptine

(/T—1)%tand
2/r+(r+1)tarf 0

2
Q~ GWZF%. For large rotations@ — 11/2, the rotatiorQ vanishes as we have seen in [ig] 6.3. Inbetween,
body rotation helps to accommodate the rotating chainibigton. The corresponding symmetric shear strain,
the off-diagonal component gs, is

body rotation is througl®) = tar?! . For small director rotation, body rotation is also small,

sin@ cosf(r — 1) e(r—l)

Ae=A%= _ ~
VI(44sirf8(r —1)2/r)1/2 2\r

for small distortions.

Symmetric shear also vanishes at the end of the soft regiigég B (0 = 11/2), where no further accommo-
dation of the shape tensor by body rotation and shear islgessi

More general soft deformations have the arbitrary rotatﬂg, embedded in the form of soft deformation
eqn [6.5). Its effect is trivial if its rotation axis is aloygr n,. If the axis vector has components not along either
of these directions, then it gives shears involvingyiugrection.

6.3 OPTIMAL DEFORMATIONS

Having seen soft deformations generally and a little ofrtekear and rotational character, we now look at two
methods for calculating their form in more practical sitoas. The first is more general and offers insight
into how the director angle follows the best direction seirbposed and relaxational strains. The second is a
concrete example of how the best deformations are founchioptactically important geometry of extension
imposed perpendicular to the director.

6.3.1 APRACTICAL METHOD OF CALCULATING DEFORMATIONS

In some situations the nematic elastic free energy is s$ttfaigvard to calculate and to optimise. For instance,
the Freedericks transition of Fig._¥.1 has only a single fénshear) distortion and a director rotation. Others
we have seen to be more complex. Sedfion 6.3.2 calculateiedes by a direct attack in a practical geometry,
but seems quite involved since one minimises over a largeoruof components oX and the director rotation.
A more elegant way is to describe the distorthparametrically by the associated director rotation, thehoe
of Olmsted in Secf_612, but then one does not have controlaspects of the distortion that may be constrained.
A more straightforward way exists to evaluate the optime¢fenergy and this offers insight as to how the final
director rotation is achieved. Moreover, for planar digtors (with, in general, relaxation in the third direction)
finding the free energy only involves solving a quadraticagiun.

Consider the Trace free energy density, with its tensor aorapts conveniently cyclically permutated:

F=duTr(AgAT-2) . (6.12)

The first three tensors can be combined to form a te@sdinat is symmetric by construction and thus also has a
frame in which it is diagonal:

ss 0 O
S=AL A= |0 s 0], (6.13)
0 0 s3

the latter form displaying the three eigenvalgesf Swhich have been ordered so tisat> s, > s3. The principal
frame ofSis in general rotated a reference frame aligned with the tieraeder in whichg0 is then diagonal

and in which we conveniently defie. We now have to multiphB by g’l and take the trace in order to find the

. L _ /1 . L L
free energy. The trace will be minimised by ahgn@g1L = (18 g §) (as it appears in its own principal frame)

with the principal frame o such that the smallest elementgﬂl (that is I/r) meets the largest element $f
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(i.e. s1). This is equivalent to demanding that the final direetgwhich describes the orientation 6&nd hence
é’l) is aligned with the eigenvector &corresponding ts;. The free energy is

F=3H(s/r+9+s) . (6.14)

The difference between this approach and others isthahply follows the direction established Bythat is by
the distortions combined with the original director. It islave to these and is not minimised over. Névean
be minimised over the elements Adfthat were not imposed or clamped, but which are allowed taxreDnly
after this should the eigenvectors®be explicitly determined in order to determineThis is best illustrated by
an example:

Exercise6.2: Find the relaxations and director rotation associatithl an extensiom imposed
perpendicular to the initial director. Only shears comsistvith displacements along the extension
direction are allowed.

Solution:As before, take the general strain and initial (reduceg)-&agth tensors:
A 0 Axz 1 00
A =10 l/ (A Azz) 0 X £O =10 1 0].
0 0 Azz 0 0 r
From these we construft
A 0 Az (1 0 O A 0 0
0 1/AAz) 0|0 1 0|0 1/AAn O
0 0 Azz/ \O O r Axz 0 Azz

A24rAZ 0 I AxzAzz
0 A2 0

I AxAzz 0 rA2

5

and the determinant condition for its eigenvalues:
Det (g— sg) =0=(1/(A%A2) = 9) [ — (A2 + 1A%+ TAZ)s+TAA 2]
where we have gathered terms in and simplified the final fasdorewhat. Because shears were

limited to thexzplane, the matrix is blocked and one eigenvalue emergasllyiand the other two
can only come from the roots of a quadratic. They are

S12=13 [)\ 2 4rAZ 4+ rASE \/ (A24T1A2+T1A2)2—4r) 2/\222} andss=1/(AA;)?>  (6.15)

whence the free energy density is:

r+1 1

r— 1
F= %IJ |:T (A2+”\x22+ r/\222) B

This is most easily first minimised with respecttg, yielding:

AZHTAL+TAS

r+1)—(r—1) 0

which on squaring and simplifying gives:

A2 IAL 1AL = (r+ DA (6.16)
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the left hand side of which pervadEsand can clearly be used to advantage. Returning this com-
bination toF then givesF = 1 [2A,A +1/(A?A2)]. The optimald, is then trivially A,z = 1/A.
Returning this\z; to eqn [6.16) for, givesAZ, = —=5(A2 — 1)(r — A%); compare with eqri{6.20)
below for the shear generated during the soft response folesistretch imposed perpendicular to
the initial director. The matri§is now:

A2H1AZ 0 rAg/A
s=[ o 1 o0

Mxz/A 0 /A2

and its eigenvalues are:
S1o=13 [(r+1)i (r—l)z] =rorl andgg=1

on returning the left hand side of edn(6.16) aag= 1/A to eqn [6.15).
The eigenvectore can now be trivially found. That correspondinggo= r, and thus tm, is
(x,0,2) wherex andz are related by(r /A% — s;) +XrAx,/A = 0 using the bottom line of the matrix
equationS- e; = s1€;. Each of the three equations$i1e = seis equivalent whes is set equal to a
particulars. The simplest can be chosen to find the connection betweenahez components of
the associatedq.
Sincex/z=tand = (A — +)/Ax, itis straightforward to find eqfiL{(6.]9) for the directoration
angle#, that is
. r A2-1
sif 6 = 7
This method offers the advantage ttthtthe director rotation angle, is not a variable to be optdisver. It
emerges naturally as the director rotates towards thetitireaf biggest extension.

6.3.2 S RETCHING PERPENDICULAR TO THE DIRECTOR

Although it has been easy to construct soft deformationarpatrically throughg, it is not easy this way to
visualise strains imposed in practical experiments. Ugwale component is directly imposed by clamping and
stretching the sample. The other strains, pluselax to their optimal values.

To the long rectangular strip of nematic elastomer of[Ei§vée impose am-extensiony = A perpendicular
to the initial director,n,, which is alongz (Verweyetal, 1996). The cartoon of Fi§. 8.3 suggests that soft

= Mx:
Figure 6.6: The extension of a long strip of ne- \Z =
matic elastomer perpendicular to its initial di- no
rector. One shear componen,, develops. 1 n M />
The other, A, is suppressed by the counter
torque that would develop from such a distor- ‘ A (:Xxx)
tion in the field of a force applied along the x 2\
axis. = M-

deformation requires rotation @k towardx and that sheard,x and Ax; accompany the imposed. We limit
ourselves toly; which derives fromx-displacementsyx. ShearA,y is suppressed by the turning momefiy;,
generated by ang-displacementy;,, in the presence of ar force, fx (should it arise on extension in the
direction). Equally, the large length to width ratio of thesin Fig.[6.8 allows us to defer to Chaplér 7 the effect
on shear of the clamps gripping the sample when imposingssume there are no impediments to any simple
shearAy; necessary for optimising deformations. The vanishing efgheart,« (and also the shears involving

yX, yzetc.) means the incompressibility, [(@) =1, is ensured by takingyy = 1/(AA;,). The reduced inverse



6.3. OPTIMAL DEFORMATIONS 53

(1-1)sin6cosd 1+(1-1)cod6
Considerg1 and{_ as 2x 2 matrices spanning, z) since only theix — z components mix during rotations
about they-axis; fyy = f;yl = 1 (sincef is reduced by ).

The free energy density, puttirgg1 andA in the Trace, becomes (in units ép):

1 1)si 1 1)si
step-length tensor, on director rotation abgwdf 6 from thez axis, isgl = ( (7 -ysiro (7-1) smecose)_

Fel
U

2
5 /\ZZ) +rAZ—(r—1) {ZAH/\xzsinecose + <%)\ 222+ /\,-?Z) sirn? 9} .(6.17)

1
= A24A%+ (
The first group is the energy of deforming an isotropic rulpet 1). The second group represents additional
effects due to rotating the anisotropy{1). The elastomer relaxes its transverse dimensighand its shear,
Axz to minimise this elastic energy. See WT3.2 for the straightforward algebra leading to the freergp at a
fixed imposed extensioh, now a function only of the director rotation angle (throsif 6):

Fel(A,0) = 3u (/\2(1— r;—lsinz 9)+3;> : (6.18)

A J1-lsike

On symmetry grounds rotations;0 are not distinguished - the extensi@nis imposed at 90to the initial
director and it does not matter which way it rotates. Beingiaatic,0 = 0 and@ = 1T states are also identical.

The optimal angle condition, best examined as the deriatith respect to si rather tharg itself, yields
the director rotation anglé(A ) and the accompanying shear and transverse relaxationsrtbis 6:

I r A2-1 1
6 = siny/——7(6.19 Ae = 5 (6.21)
27 . 2 =
Ne = (Aa# (6.20) o= 2

These results givey = %u for the free energy density, which is also the value in thexedl stateX = J), even
though the mechanical shape of the elastomer has maniéésthged. -

The sheady; and the anglé both start at zero in a singular fashion wher- 1. When the extension reaches
A = /I, the rotation is completed — 11/2. The sheady;, returns to zero since off-axis shape accommodation
associated with oblique director angles is no longer reglibDirector rotationf (A ), is central to the new effects

Figure 6.7: (a) Director rotation
6 against the imposed extension,
for anisotropies = 2.78 andr =
10, see eqri(6.20). (b) The shear
Al /. ‘ 1 o4l i Axz and transverse relaxatioisg,
/ ‘ A § and Ay, for r = 2.78. The soft
o 02y n 7 region isA =1 t0 A = =
: s w 0 - : 1.67, beyond which the response
@ " 2 25 30035 1 (b) L5 2 A25 is conventional.

T2 o :

and is of a distinctive form. Its singular form &t= 1 arises from the square root. The singular form at /r
and the saturation levé = 71/2 arises from the sift function. This reflects si@, rather than the angle itself,
being the natural variable of the elastic free enelrgy (6. 1B accompanying shear is also singular at 1 and
A =/r. TheO response, Fi§. 6.7(a), is seen in experiments which we ssouSec{_614.

In the soft interval, the-transverse relaxation &, = 1/A and they-dimension is unchangedy, = 1, see
Fig.[6.7(b). As in the cartoon, Fif_6.3, the shape sphemtiates in thexzplane, Noy-dimensional change is
needed since ng molecular shape change has to be accommodated. The freg éneonstant and thus the
stress is zero — ‘soft deformation’, see Fig]6.8.



54 CHAPTER 6. SOFT ELASTICITY

T T
- F —
Figure 6.8: Deformatiol applied perpendicular
to the initial director, that is along thedirection,
does not cause the free energy dengityfo rise -
until A = /r. Thereafter the energy density rises %M
as for a classical elastomer, of apparent natura

elongation along of /r, see eqn{6.23). 1

WhenA > /r the rotation is completed(= 1/2) and the imposed shape change cannot be further accom-
modated by directing the long dimension of the moleculesitdw. In eqn [6.1B) set siél = 1, whence

A2 r
Fel= 3H (T +2A£) . (6.23)

The free energy now rises withand the stress is non-zero. The rubber responds as a noas@lrakr, but with
an apparent natural length ofr. If the strain along the axis is measured as' with respect to this state, that is
if we apply and extensiogr first followed byA’, then overalh = A’,/r. We can rewrite the free energy density
asFe(A) = zu( A’242/A"), which appears entirely conventional.

6.4 SEMI-SOFT ELASTICITY AND EXPERIMENT

Softness is a delicate phenomenon. It depends on being @bledte a chain distribution at constant en-
tropy by accommodating anisotropic chains with suitableesions and shears of the body the chains com-
prise. We would partially lose softness if for instance wd hamixture of chains in the network with differing
anisotropies. An optimal sofk for one population might not be optimal for another and sutirts would
then cost energy to deform along the trajectory selectedhffirst population — compositional fluctuations
(Verwey and Warner, 19%j. Other causes of semi-softness could for instance belerksdeing themselves
rod-like and therefore able to record orientational ori¥erfvey and Warner, 19%7Popov and Semenov, 1998).
See WTER7.4 for a discussion of more general aspects of semisofamebis causes.

The general soft mode\; o =02 V_Va 2% are intimately related to the structure of the Trace formula
for the elastic free energy density. Some additions or mzatifins to the Trace formula preserve softness, others
(see Secf. 6.2.3) lead to deviations from ideality, whilk steserving the lower-energy path of deformations —
which we call semi-softness.

The requirement for softness is that an isotropic referstate be in principle achievable. If there is always a
residual anisotropy, even at high temperatures, then timatie phase cannot be truly soft. We will see that that
chemically identical networks with differing thermomeaizal histories can have drastically different stress-
strain characters; the softest networks were formed ingb&dpic state, the least soft were prepared in the
nematic state and had more anisotropy permanently imglrinte them. Imprinting means only the gradual loss
of nematic order afty,; for some nematic elastomers compared with the discontsjuap to zero order for the
melt at this point.

The phenomenon of a threshold strain is related. Nemattiootinduced by an imposed extension and with
it a nearly completely flat soft stress plateau do not onsetty atA = 1, as the stretch starts, but instead at a
small but noticeable threshold > 1. Itis as if the matrix first holds back the rotation of chaithe memory of
an intrinsic or imprinted anisotropy must first be overcorlewever, despite any non-ideality and partial loss
of softness, elastomers nevertheless retain the quaditaipects of soft elasticity, namely the same universal
form of the director rotatior®(A) and the non-classical transverse contraction charatiteoisthe soft state:
Azz01/A andAyy = const.
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One can derive from models (WT.4) additional terms, weighted by non ideality that cause the Tr(—)

result to be non-ideal:
Fss= 31 Tr (£, AT A ) + ua Tr(8"-AT-nn-2) (6.24)

Whereé(tr) = d — Ny is a perpendicular projector and inhabits the plane peiipatzd tonon,. The form of
the additional term is in fact the most general possible Biget al, 2008) at second order ik: consider a
non-ideal nematic elastomer subject to a deformafiprirom a reference to a target state. We #sbecause
we reserved for deformations from relaxed states, and this referenae shay not be relaxed. If it is not
relaxed, there is first relaxing deformatigh,. Functions ofA can be recast in terms of deformations from the
relaxed stateX) by substitutingA = A - /\ The first subscrlpt o\ (i) lives in the target state and can only
be contracted with subscripts from other target state bkasa The secondj] lives in the reference state and
must be contracted only with reference state subscripttational invariance is to be observed. Therefore the
most general free energy we can write down that is quadnaticis, if we assume that the reference state is
characterised by a single directinpand the final state by a single directinrfso both states are uniaxial),

F = Tr(HATA + InonoATA + KnonoATnnA + LATnnA ). (6.25)

Relaxation at constant volume over the component ofA reduces the number of coefficients to 3 which can
then be re-caste to give Ef.(6.24) which also has 3 paramataranda.

The symmetry of deformations relevant to the additionaterm is determined bg“’). For instance thay-

plane is perpendicular tm, and the projector takes the fo@”) = XX-+Yy. It selects out th& andy components
of objects it encounters, see [Ex.]6.3 for shears importaseitai-softness.

Exercise6.3: What shears are vital to the semi-soft fluctuation teAmfume for concreteness that
n rotates in thexzplane.

Solution: As n rotates in thexzplane starting fromn, = z, it becomes co8z-+ sin6x. Sincenn
is sandwiched betwee@T andA in the new semi-soft term of eqh (6124), theandn- operations

bind it to thez or x legs ofAT andA. There are ndyy, Azy, Ayx andAy; elements of. Butg“’) lives

in the xy-plane and thus the only part Qf”) that can be active ixx. Recall that the diadic form
0f A iSA = XXAxx + XZAxz + ... The vectom- A = (AxSINO + AzxC0SO)X+ (AxzSINO + A,c080)Z
contracts withxx, selecting out the shedgy and the imposed extensidgy. The non-ideal term in
Fss €qn[6.24), is then:

LA (AZSIN? 0 + A3,c08 0 + A2 sin6 cosh) . (6.26)

The extensioMyy perpendicular tan, and the shearing displacements alapggenerate semi-
softness.

6.4.1 APRACTICAL GEOMETRY OF SEM+SOFT DEFORMATION

Reconsider the long strip of Fig._ 6.6 with arextensiomd = Ay imposed|(Verwet al, 1996). Sheara,, are
suppressed. In this case the non-ideal correction of €@l 6s simplya sin®8A2. It does not change the
minimisation ove,; andAy; and simply adds to the soft free energy €gn (6.18):

Fes= 2 [ A3(1- Esinze)ji; +aA?sirt o | . (6.27)
r A J1-lsire
r

Optimising over siAH gives

_ 1 \23
rTlsinZG: 1- L (i)

A2\r—1—ar (6.28)
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The solution for siR8 is exactly as before, but as a function of the reduced exianéh /A1), instead ofA.
Accordingly, the onset of director rotation and all otheattees of soft regime will now take place notat 1

but at a threshold = A4, with
r_1 1/3
M= ——— > 1.
! (rlar) -

The threshold is the measure of the non-ideality. Below #gmissoft nematic elastomer responds exactly as a
conventional rubber. The transverse contraction is thalusu/A for bothy- andz-directions and neither shear
Axz nor director rotation arise. The semi-soft regime starts atA; and is complete ax = /rA;. The strains
and the director rotation take forms very similar to thosedns[6.2P):

1/2
N T e
@ = sin 1z Az = o
2 x2(ra2_ 32 1
rA2)3 A

Both 6 and Ay, have exactly the same singular response as in the ideatlgasé. All the strains and rotations
are thus as in Fi. 6.7, X is scaled byA;. Soft and semi-soft response are qualitatively the sanueptthat the
elastic energy rises slightly in the latter case (see below)

The threshold strain depends generally on the form of cbort¢o the ideal free energy of the typein
eqn [6.24). For the particular model of compositional flatimns that we have chosen as an illustratimrand
r are connected with; as:

Cr—1x3-1
o Af

(6.30)

wherer is a mean anisotropfr) = (¢, /¢ ). Itis extracted experimentally from the reduced width @ temi-
soft interval, the ratio between the final and the initiaksirold strain of the semi-soft regime(\/rA1)/A;.
More anisotropic chains compel greater shape change ofitier before their rotations are complete.

ELASTIC FREE ENERGY

Before there is nematic rotation, < A1 (region A of Figs[6.10), the response must be classical,ish@ =
0, Az =0,Azz=Ayy = 1/\//T, with Fa = %u(/\2+ 2/A). Between the semi-soft threshold and the end of
semi-softness,/TA1, we express the elastic free energy denBifyA, 6) in terms ofA2 rather tham, as these
two parameters measuring the degree of semi-softnessramlylielated in a fluctuations model by e§n (6.30).
Thus re-expressing eqn_(6127) one has instead

Fss:% /\2<1%—Sin29)+/\g; .
rAf \/1- it
Using the optimal director rotation from edn(8.29), the senft free energy density in the region B of Hig. .10

takes the form:

3

1
Fs = 1p (Az(l—F)JrA—l) . (6.31)
1

For A1 = 1, the case of ideally soft rubber, one recovers the unchgkgi= %[J as in Secf_6]2. The larger the
threshold)y, the hardeFgs becomes; the modulus, the coefficienaf?, is (1 —1/A3).

Exercise6.4: What is the free energy fdr> A;./r, that is when the director rotation is complete?
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Solution: Recall that the free energy {$deal Trace + aA?sir? 8. The rotation ofn by 9C° to
align along the stretching directioninterchanges the non-trivial diagonal element entfyif 1
from thezzto thexx position. TheA matrices in the ideal trace formula are diagonal as weksraft
a rotation ofrt/2 in £ there are no remaining shears. Adding on the semiesadérm with 8 = 71/2

yields overall:
Fo = Iu(Ea2emazy 2 ) 4 iuan?
2E\r Zia2p2 ) 2
A2 r—1. 21
= 1 Z -y 2V
= 2u< —(r % )+ ) (6.32)

To obtain the last formula one needs to minimise o\grto give A2 = 1/(,/rA) and then return
this strain to thé= expressionFc looks almost classical, with? and 1/A terms but with modified
factors, as does the idef); in eqn [6.2B).

ELASTIC STRESS

We imposed an extensiokyx = A in the x direction, with other strains and rotations being a natopimal
response of the nematic elastomer under a uniaxial extendibat is the stress needed to make this imposition?
Taking a sample of initially unit dimensions (and hence aiisib volume), the work done by a force normal to the
x surface in extending the sample &by is — oAz AyydA . The(AzAyy)-factor is the cross-section area reduction
which, when multiplying the force per unit areg (the stress), yields an actual force which does the work. The
(—) sign indicates the reduction in energy when the system dst@id > 0) in the direction of the force. If this
work is added to the change in free energy per unit voldfgthendF — gyxdA /A must vanish in equilibrium

for the body (volume conservation givésAyy = 1/A). Thus the true stress is:

oF
G — A(a_/\) (6.33)
1 1
O = H(AZX) %H<)\p)
oS = u/\2<1/\—13> — KA <1 /\13>
1 1
r—1 r r—1 r
oS, = y(}\z(l—ﬁ)—)\i) %u(A(l—W)—/\—\/;). (6.34)
1 1

where the latter in each case are the nominal or enginedragsgss, that is, the force per unitinitial area. Without
correcting for transverse shrinkage as strain proceedspadminal stress from eqh(6133) ag, = dF /dA =
Oxx/A for our deformation.

One can easily confirm that the true stress is continuous torrdng between regions A, B, C, that is
o (M) = 0(A1) andog(vTA1) = GG (V/TA1).

Equally important is that the free energy is everywhere egngspecially in the semi-soft region B. Here the
curvature i9?Fg /dA2 = p(1—1/A3) > 0. Convexity rules out strain-necking and related clasgistabilities
known in the polymer physics that might otherwise be invotedxplain the semi-soft constitutive relation in
region B.

STRESS EXPERIMENTS

Nominal stress-strain data (Klpfer and Finkelmann, 13 rkeet al, 2001), Fig[6.b, is qualitatively as in
Egs. [6.34), that is essentially piecewise linear. On esttanperpendicular to the initial nematic director, the
measured nominal stress initially rises withThen at a certain threshold it reaches a plateau or a refjiower
slope. Finally, after the plateau, the stress increaseis.agaich experimental data unambiguously illustrates
the effect of soft elasticity and allows extraction of theotkey material parameters. The value of semi-soft
threshold straim; is directly related to the residual non-zero slope on thesstplateau, Eq.{6.84), while the
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Figure 6.9: Nominal stress (in units of kPa for all three dpsds plotted against deformation for three different
nematic elastomers (experimental data from Freiburg andb@idge groups). The composition of side-chain
polysiloxane rubbers in (a) and (b) is very similar, but thetenials differ in thermal history of crosslinking, i.e.
residual order, resulting in different threshold and stnglsiteaux, while the chain anisotropys similar. The
main chain sample in (c) has a much higher chain anisotrep®5-30, and hence a plateau ehyd= /r ~ 5.
The straight lines are fits to the nematic elastomer conistittelations, eqri(6.34).
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Figure 6.10: (a) Director rotatiof after a straim applied perpendicular to the original directyy; see Figl 66.
Curves correspond to different crosslinking densitiehiefdame polymer, and therefore also to different thermo-
mechanical histories, or to elastomers of differing cheindomposition|(Kundler and Finkelmann, 1995). (b)
The functionf (8) = [(r — 1) /r] sir? 8 of the director rotation plotted against the reduced deétionA /A;. Data
from the wide range of samples in (a) collapse onto a mastgeauhen plotted according to edn (61.22).

average chain anisotropy= /| /¢, can be estimated from the plateau end position. Three digan(ihreshold,
plateau slope and plateau extent) are determined by twoneseas o andr, and the latter actually relates also to
the separate experiment of spontaneous elongation omgodlhus the match of theory to experiment is vastly
over-constrained, and the agreement therefore remarkable

ROTATION EXPERIMENTS

The director rotation expected after the threshold is iddeend, see Fid. 6.10(a) (Kundler and Finkelmann, 1995).
Different samples have different thermo-chemical higm@and hencd; thresholds, and different molecular
anisotropies and hence differing lengths of plateau. E¥@h curve however has initial and final singular be-
haviour (/) and an inverse sine shape. Then plotted according to [E&8)(6(A /A1) adopts its universal form

— all elastomers behave in essentially the same way[Eig(I6) instead plots the function of the rotation angle
given in eqn[(6.28). The threshaM is taken out via\ scaling, the anisotropy by the — 1) /r factor, the sin*

and the, / by the sirf 6 factor.




CHAPTER 7. HOW NEMATIC ELASTOMERS DISTORT

Soft or semi-soft deformations are energetically the besponse to shape changes imposed on a nematic elas-
tomer. When the director can be rotated, for instance whamgaltions are not simply along the director, then
an elastomer will always deform softly if the necessary agganying relaxations can be reconciled with the
boundary conditions. We examine distortions of nematistelaers where the imperative to deform softly is in
conflict with the external constraints imposed on them. &lezee generically two ways to resolve this conflict.

Nearly soft deformatioA sample may deform almost but not quite softly because o$traimts, for instance
with an energy cost quartic in the deformation or the direattation (and not quadratic, as usual). For small dis-
tortions, the rubber is thus essentially soft or semi-db&,anchoring effect of the matrix being first felt at large
amplitudes. The Freedericks effect for nematic elastoiseas example, see experimerjts (Chabgl, 1997),
the analysis of W¥8.3, and simulation$ (Skaj’and Zannoni, 2006). See Fig.]7.1 for the set up and theasintr
with the liquid case. Some deformation, limited by the neattlie boundary plates not to move in their own

Figure 7.1: Field-induced director rotation in a
conventional, liquid nematic (a) and in a nematic
elastomer (b). The liquid has its director anchored
at the surfacex = 0 andx = d to be alongz
The solid has its initial director everywhere aligned
alongz The electric fieldE is applied across the
X cell. The shear strain,x accompanying the di-
rector rotation in nematic elastomers is shown on
the right. The conventional Freedericks effect has

E _— _ .
/ one half wavelength of director rotation between
>

the plates, while the solid nematic Freedericks ef-
fect has the full wavelength. The shear has to pass
through a full cycle of variation — otherwise there
(b) is a netz-displacement of the upper boundary with
z respect to the lower.

zX

plane and relative to each other, still has to occur othenthie rubber-elastic penalty, giving bulk anchoring
of the director, leads to prohibitively high electric fieldsinduce dielectric response: equating the elastic and
electric field energy densitiegAcE2 ~ Dy givesE ~ (r — 1)(u/eohe)Y? ~ 107V /m, for typical values of rub-
ber moduli, of chain anisotropy and of dielectric anisoyrdya. It is as if there were effectively a very strong
aligning field u acting along the axif,, unless the sample is mechanically unconstrained and ao@xte
soft deformation can be found (Terentgelal, 1994). The Freedericks effect is different from classiplid
crystals since the transition occurs at a critical fieldeathan critical voltage since the anchoring is in the bulk.

Soft or semi-soft deformatighsample deforms softly, but with a local stra‘n that differs from region to
region. For example a given soft extensiamf Sect[6.3.2, comes with S|mple shears of eith@r) or —56(A),
and director rotations=6(A). By judiciously putting together neighbouring regionstwithear deformations
of opposite sense, one can obtain an extension that ovesiht net shear and hence may satisfy zero-shear
boundary conditions in some gross sense. Fine microstegtuie required in mechanical experiments to achieve
global softness. We examine such microstructures in a cefiatment of a clamped version of the simple
extension of Sedf. 6.3.2 which produces the stripes first bgé-inkelmann and coworkers.

Coexisting neighbouring regions of dlffen@% create inhomogeneous interfaces in the nematic elastomer.
Their energetic cost turns out to be extremely smaII and doehinder elastomers resorting to microstructures
to eliminate the otherwise considerable elastic costs fufrdetion. Ignoring interfacial energies and reducing
elastic energy by judicious choices of sets of coexistingiis$ is called ‘quasi-convexification of the free en-
ergy’. It was invented in a more difficult problem of discretets of low energy crystallographic distortions in
martensite, a shape-memory alloy (Ball and James,|1992).

59
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The same geometric and physical ideas were independemqiedgVerweyet al, 1996) to the very much
simpler problem of a nematic elastomer with an ideal formlafrping. We shall examine this problem in this
chapter, including the details of the interfaces. We theiere the formal quasi-convexification of the nematic
elastomer free energy and describe the general microstascthat aris€ (DeSimone, 1999). The method has
been applied to give a full numerical solution of the extensf a nematic elastomer strip and the evolution of
its complex microstructures (Cordt al, 2002), in effect a multi-scale analysis.

We conclude with a modern application of the ideas of DeSintmnextreme softness found in isotropic
genesis polydomain nematic elastomers.

7.1 STRAIN-INDUCED MICROSTRUCTURE STRIPE DOMAINS

Elastomers elongated perpendicularly to their directéome (semi) softly if they shear. The cartoon in Hig.16.3
shows graphically how elongation must be accompanied bgrshenergy cost is to be eliminated. However
clamps, through which stretch is imposed, prohibit shedhdir vicinity. Then microstructure, in the form of
stripe domains, offers the best compromise between the fimsoft deformation and the constraining boundary
conditions. Figur€7]1 in the Freedericks case illustrétessolution to the problem when the shears are less
complicated: the upper plate is fixed with respect to the iqlegte. If shear is required to soften the response (to
make it quartic in that case), there must be two compenssltiegrs in order that they create no net displacement.

For imposed mechanical fields, such as uniaxial extensemi-soft simple shear is a good example with
which to illustrate the emerging microstructure. See Eig. Where a strip is extended beyond the semi-soft
threshold for director rotation = A;. In the bulk of the strip, the local shear and director rotafiollow the
optimal, semi-soft values consistent with the extengiorA compensating pair of stripes is shown magnified;
on traversing the pair (in thedirection, along the initiah,) the totalx-displacement averages out. Real systems
have a collection of many stripes stretching along the eltedjelastomer strip, see Hig.17.3. The elastic softness
is unattainable only at the ends and in the sharp interfagweden stripes. The bulk of the elastomer deforms
softly, at least until the director rotation is complete la £xtensiom,. This is seen macroscopically in the
stress-strain and opto-mechanical relations.

The precise details of the clamp constraints will deternfioe the stripe domains evolve. In general the
problem with simple, realistic constraints is extremelyngiex, see Sedi. 7.2.3. A simplification is to consider
rigid but sliding/rolling constraints or clamps that theztves deform at a compensating rate. Shear is suppressed
at the end while allowing any necessary transvagseelaxation required to conserve volume while extension
Axx proceeds, see Fig. T.4. Some residual curvature at the étigsrobber strip may still occur evenzfmotion
in the clamp is free: in the bulk the relaxatiomig ~ 1/Axy, as with all soft modes, whereas at the ends it is only
Azz~ 1/\/)\_XX, since the response is hard in the absence of shear. Adallfiptihe extensioyy is itself smaller
at the ends than in the bulk because the nominal stress hasdoniserved. We ignore curvature in the clamp

A prohibited shear

,,,,,,,,,,,,,,,,,,,,,,,

\’local shear

Figure 7.2: Microstructure in a nematic elastomer strimbeixtended perpendicular to its initial directwy,
assumed along theaxis. A section with only two neighbouring stripes of widtland opposing sheaky,, and
rotation is shown. At the ends the displacement associatbdsaft shear is shown suppressed by the clamps.
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il

Figure 7.3: Stripe domains in a nematic elastomer extensl@dthe schematic Fif.4.2. All three images are the
same stripe system at a fixed extension but viewed at diffaregles (8,15° and 77P) with respect to a crossed
polariser-analyser pair. Different details of the stripbstructures then emerge (images: I. Kundler).
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Figure 7.4: Ends of a strip are rigidly constrained, forlimdshear but allowing for transverse relaxation.

region and use the idealisation of Hig.17.4 as a model for hewhiform texture of Fid. 712 is finally terminated
far enough from the ends that the complications of statimpkcan be ignored. The problem is examined in
more detail in Secf.7.2.3.

If the imposed elongational deformation in thelirection isA (greater than the rotation threshalg), the
optimal semi-soft shear and director rotation within th@ividual alternating stripes ateAy; andf;. = +6,(A),
with

(A2 —AD)(rAf —A?)
rA2a2

r A2—)2
6, =sin 1y — 1
o = SIn r—1 A2

M= (7.2)

see Secf.6.4.1, eqn (6]129). We now see how alternatingstecign be fitted together.

STRIPE STRUCTURE AND ENERGY

The director generally responds to an imposed strain. Nofoim mechanical distortions such as in the coars-
ened stripe structure of Fig._T.2 generate regions of nafowum directors which in turn cost a Frank nematic
elastic penalty. We therefore, indirectly, have an enégeist to non-uniform elastic strain. As usual in elas-
ticity, we ignore the direct elastic cost of gradients oéstr(dA;j /dxy). Since the elastic cost of not deforming
softly is so high compared with Frank effects, the a ratharginterface region must separate two domains of
optimal deformations obtaining in one sensg @nd in the opposite sense ), An areaA of interface has an
energyAF ~ yA wherey is an effective interfacial tension, which we now estimaidull treatment combines
Frank elasticity with nematic rubber elasticity. Strainattcan relax are set equal to their minimal value, subject
to a givenf and to the strain components that are imposed. The totalcetasergy, depending oé for the
elastic part and ofl6 for the Frank part, must be minimised; see ¥813 for a full analysis.

Take strains and director rotations to vary in théirection, but to be basically of the simple shear type we
have already considered in Sdct. 61.4.1 The director varigszin going between stripes. It rotates in the
plane, making a local ang® with the z-direction,n = (sin8,0,cos6). The Frank energy density involves only
splay (K1) and bendK3) in this geometry, see SeEi. P.4. Itis:

. de\? do\?
Fr = 3 (Kysin? 6+ Kzcos' 0) <E) — 3K <E> .
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The latter simplification arises in the single constant agjpnationK; = Kz = K.

Consider the interfacial width to b& where all theB-variation occurs and thus is also where the elastic
energy density is- i since there the soft deformations of the bulk of each stripenat achieved. The cost of
an areaA of interface isyA ~ A& u +AEK /&2 sinced?8/dx% ~ 1/&2. Optimising overf, theny/d& = 0 gives

= /K/u ~ 10-8m andy = /K ~ 10~3N/m if we take some typical valueg, ~ 10°Pa andK ~ 10~*N.
The interfacial energy scalgis relatively small. The surface tensions of liquids, by gamison, are in the
range 40< 10 3N/m (benzene) and 72 10 3N /m (water), at least an order of magnitude higher. We & e
nematic penetration depth — director variation is confireeleéhgth< ¢ if there is an appreciable rubber elastic
penalty~ u otherwise being paid for not having an optimal (soft or seoft) distortion. This is why stripes are
always coarsened and their interfaces play no role in maopis elastic response.

Experimentallyitis indeed found that in stretched nemelistomer the stripes are immediately coarse when
they form [Kundler and Finkelmann, 1998; Zubasdal, 1999), that is the majority of the sample is taken by
the regions of relatively uniform director rotation, atiating in neighbouring stripes, with interfaces narrow
(~ &) compared with stripe width.

7.2 GENERAL DISTORTIONS OF NEMATIC ELASTOMERS

The Freedericks and stripes examples have shown nematiomlers deforming softly (or with energy quartic
in strain) even when soft modes are in conflict with boundanyditions. The answer is to satisfy boundary
conditions on average, by the establishment of inhomogensucrostructure. The ideal clamps of the above
example allowed the whole sample, except in a small voluraethe clamps, to deform softly — for instance the
elongations\ and the transverse relaxatiohs were uniform. Shears differed between stripes, but averge
zero, as demanded by the clamps.

\§ 7
r=1 A>>1

Figure 7.5: Successive steps in the 4 N
elongation of a rubber strip. (a) (b) (c)

A more realistic clamping and extension scenario is sketan€&ig [7.5. The clamps do not permit transverse
relaxation in their vicinity. The sample develops curvedesiand a complicated shear pattern as a result. Com-
binations of soft shears to give a soft, non-uniform respare now more complex than in our example above.
Moreover we have spatial non-uniformity both at the scaléhefstripes and on the scale of the whole sample
strip — it now becomes a problem of multiscale compatibilitye discuss the general problem of constructing
the appropriatd from combinations of varlout , to achieve a macroscopic situation that is also nearly-soft
so-called ‘quasi-convexification’. We then sketch the fulinerical solution to the problem of general distortions
and compare it with experiment.

7.2.1 ONE-DIMENSIONAL QUASI-CONVEXIFICATION

In the previous section we have, in effect, presented an pkaof quasi-convexification of the nematic free
energy, considering stripe modulation of the sample ordyglthez-axis This serves as an illustration of a more

general problem. Suppose one wants to achieve a deforn?aﬂer( ) without paying any energy cost.

Without shear, this deformation is only without cost at tladaodmatlons?\ =1 and forA = /r, that is at the two
positions (of equal energy) in Fig. 6.1, that is at #healues where the soft plateau starts and finishes il Fib. 6.3.
For all intermediate deformations with<dA < +/r, we have achieved, Fig._T.2, an overall soft deformation by
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splitting into equal volumes with opposite sheatgy,, and rotation:

A0 0O A0 A A0 —Ag
A= {01 of=33f01 0]+|0 1 0
0 0 IA 0 0 1/A 0 0 1/A
= 1A () F A (A}
A = <Asoﬁ> +Axz (72)

The effectively soft outcom# is achieved by a suitably weighted mean of ‘real’ locallytstfains. If we make
the microstructure sufficiently fine, then this overall BtrA has the status of a uniform deformation that is soft,
despite having no visible shears associated with it as ogbtrhave expected. With this assumption of indefinite
fineness (certainly finer than any scale of the problem orldatélr attempt to address) one has:

Fac(Ago) 1a) = (FAg4(Ax))) =0 (7.3)

(the additive constant (gu being ignored). One ignores the cost of interfacial enefdh@narrow regions that
separate the individual soft domains. In practical caseeetis only a negligible volume of hard deformation
associated with the interfaces.

The free energy is said to have beequasi-convexifietb Foc. Finally, in a sense thEgc points to more
general ‘low roads’, elastic trajectories between theahénd the final states of deformatidi, (A ) andFc(A),
of Fig.[6. In the soft-deformation expressiéﬂﬂ{2 Z 1/2 , egn [&5), we were able to identify an infinite
number of such deformations, the cartoon of Figl 6.3 belrmmal case where the matrix mat is simply
W= &. However withFgc one creates more freedom, for instance to eliminate shearsgoft modes.

One further preliminary consideration is required; therpaif deformationsk <ot Must be chosen to be
kinematically compatible Deformation gradientd displace the material pomRo of the initial body to new
positionsR in the target stateR = A - R,. Figure[Z.2 shows two stripes within the sample, separageanb
interface. The accumulateddisplacement is only that corresponding to the exterriallyosedA, while the
additional modulation due to local shears averages to rei@ging from the bottom of the lower stripe to the
top of the upper stripe. One sees this also in [Eid. 7.1 for teedericks effect, where there is no overall shear
generated between the lower and upper plates which are ingpibe overall boundary conditions. Moreover, at
the interface between the stripes, the posiiirs given equally by the displacement in going from the tophef t
upper stripe or from the bottom of the lower stripe - the defations are compatible. The decomposition of the
deformation gradient presented in eGn{7.2) trivially sfags this condition. In general thes on the two sides
of the interface must be “rank-1 connected”, that is, thedweétions applied using eithdron a material point
in the interface must agree so that the interface’s defoomsiare uniquely definefl (Bhattacharya, 2003).

The compatibility requirement on thes of the quasi-convexification arises less trivially alrigathe simple
example[(Verwet al, 1996) where the initial directay, is not perpendicular to the imposed extensiomong
X, but has a pre-tilt angle, see Fig["ZJ6. The concept of soft deformations as a low greuge for director

Figure 7.6: A strip of nematic elas-
tomer with initial directorn,, at an-
Z gle ¢ to the zaxis (a). On exten-
o sion byA alongx it breaks up into a
— —  microstructure which avoids macro-
scopic shear (b). Pairs of stripes suf-
(b) fer soft deformations with director
@) rotations to angles-0, and shears,
Nz +Axz such that there is no net
displacement on passing through two
/ " (c) stripes (c).

g/
3

re-orientation remains valid. For a uniform system gemegabnly simple shear and the transverse relaxation



64 CHAPTER 7. HOW NEMATIC ELASTOMERS DISTORT

1/A in response to the imposed extension, the optimal directation to angled with respect taz, and the
associated sheag;, take the form in alternatingt) stripes:

. 1
sir’ 0 Y]

[r(A2=1)+(r—1)sirf ¢| (7.4)

1

— “A%(r —1si
Mz = A[r—(r—l)sinz(p]< A%(r—1)singcosp+ (7.5)

i\/r(/\21)+(r1)sinzqo\/r)\2(r1)sin2(p) .

Note there are two modes of shear in consecutive stripe dwnfiai each value of sfrB, that IS/\(+) and)&'z)
corresponding to director orientation anghe8 and— 0 respectively. Before the deformation is applidd= 1)
one had = @, the initial orientation oh,. When director rotation begins, the ‘positive’ domain oéah) >0,
in which the existing director pre-tilp is in the same direction as the rotation can start its shefarmation
continuously fromy; = 0. However, in order to form the ‘negative’ stripe with shaft < 0 of opposite sense,
it is necessary to overcome a barrier. Stripes withmust jump to that state from the initial orientatiewp. If
the transition takes place immediately/agxceeds 1, the jump i) takes the value (Verwest al., 1996):

2 2(r—1)sin2p
MYPA =1)=— : 7.6
e ( ) r+1+(r—1)cos2p (7.6)
To satisfy the requirement of no net transverse displaceaféar traversing a pair of stripes, see Figl 7.6, one
needs the connection between the widhthof stripes and their shear:

hA® +hoAD =o. (7.7)

Thus, as extenS|on begins and) is effectively finite whileAy; &) is still zero, then the ratio of stripe widths
h_/h. = S /sz must be zero and increases greater than 1. However, the relative width of the opjgosit
stripe domains remains different — which would also be ré&dldén the different intensity of the two pairs of
X-ray scattering lobes, cf. Fig. 6110

The mean deformation is still without shear, on averageidottmposed as a mean of the two soft deforma-
tions with modified weights, according to their relativewole in the system:

A0 O h A0 AP h A0 AP
A 01 0)=r—"—(01 0|+—[0 1 0
0 0 1A +t-10 0o ya) ™TN-Vo0 o0 wa
_ 1 (=) - (+)
_ W{AX(;)ASO“( )= AQA (A )}:<Ason>Ax<;> _ (7.8)

The quasi-convexified energy is volume-averaged over thegéss of the two component distortionsf

1 . - :
Foc(A) = A0 {A)ﬁZ)F(ASOﬁ(/\)EZ ) ~AZF A @))} —0. (7.9)

The deformatiom = (A P o ) is still effectively soft since thé (A soft A (i))) both vanish, but the details

0 0 1/A

of the microstructure are not as before — the volumes takednyuhe two new types ok <oft Are now different
and the interfacial structure problem is modified. The fudiigem is much more difficult than simply taking an
initial director at an angle to the principal stretch. Thiedldimension becomes involved and sample shape as a
whole plays an important role.

7.2.2 FRJLL QUASI-CONVEXIFICATION

So far we have only dealt with planar soft problems. The dineltas rotated in thexplane and hence there has
been no/-relaxation:Ayy = 1. We may need to make soft imposed deformations that aresiviated to this spe-
cial value ofAyy. For geometrical reasons (the ideal clamping), we so far cmhsidered simple shears, whereas
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Figure 7.7: Schematic of the free energy denBitggainst (a) simple extension in two directions perpendicul
to n, with no shear. At the centre is the minimum associated watdistortion. The minimal values at= ./t
corresponds to soft distortion associated with directtation by 90. The concave interval & connecting the
centre and the ring a¢r can be flattened to zero by quasi-convexification via theticreaf microstructure. An
example of a continuous soft path around the barrier wasdiv&ig.[6.3. (b) Soft paths using the component
deformations of eqri{7.2) are shown in a plot (S. Conti) usinandAy; as variables (with the other in-plane
strain /A not shown). Two dots and the connecting path correspondtd ¢ ) curve in Fig[6.17(b).

the full geometric representation of soft deformationg, f&.3), tells us that more complex local strains may be
needed, even for the planar problem. The quasi-convexditatoblem has been solved in complete general-
ity for ideal nematic elastomeris (DeSimone, 1999; DeSimamntDolzmann, 2002) and applied in a numerical
multiscale analysis of the response of a strip with realiskimps and suffering extensian (Coetial, 2002).
Nematic elastomers admit of a fuller analysis of their seftodmations than Martensite and other crystalline
transformation problems$ (Bhattacharya, 2003) since #wfirmodes are described by the continuous rotations
of a director, rather than by discrete crystal symmetries.sRétch the philosophy of the quasi-convexification
of nematic elastomers and then examine the response ofssmiph practical geometriés.

It is difficult to represent the free energy density, everesaatically, since it is a function of eight variables
(when deforming at constant volume). We attempt this in [£i@.where we display a free energy density as a
function of externally applied extensidnin any of the two directions perpendicular to the initiglbut with no
shear). The energy has a central minimuriha, Ayy) = (1, 1) representing no distortiofr, = 0 on ignoring the
3u/2 constant. Without sympathetic shear relaxation, thedreggy rises on distortion as it would in a classical
elastomer. At simple extensions df= /r the free energy density is again naturally minimal; it is totated
and again shear-free state of Hig]6.1. These two states] and,/r) have the same energy as the large space
of soft deformed states which are generally of greater ceritylthan these simple extensions and contractions.
Between the origin and the simple extensioR/@f there is a finite energy cobt> 0 since we do not allow shear
in this scheme. It would be obvious in a depictionFofn higher dimensions that there are soft routes around
this barrier, the cartoon of Fig.8.3 offering one of an irtfirif such routes that require shear. One can therefore
replace this interval of concavity i by Foc = 0 as in eqn[{7]9). This introduces inhomogeneous micrastreic
of no elastic cost, as we have seen in the previous sections.e®lier, simple examples of convexification
corresponded to traversing along one axis only in[Eid. 7.@reMomplex geometry, including shears induced in
more than one direction, is required to quasi-convekifi all directions. Outside an ultimate distortion (at most
an extension of/r applied perpendicular to the initial and less for oblique directions) nothing more can be
done — the director is fully aligned with the direction ofrripal stretch and no mechanism of soft deformation
now exists: this elastically hard region is convex and cabeocquasi-convexified away. This is represented by
the large strain regions of Fig.T.7, but is of course muchencomplex in eight dimensions.

The need for the most general quasi-convexification candrefsem Fig[Z.b. With extension and transverse

1We are grateful to A. DeSimone and S. Conti for their help @rimaterial of these sections.
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contraction in the bulk of the sample, but not near the clartipssample develops curved edges and the local
principal stretch is not uniformly along examples of where this is so are indicated by arrows on thedign
some regions, especially near the clamps, it may be imgegsilfind soft combinations of distortions at all —
the free energy density may then be quartic or even hardengtance ifA,;is constrained to ba,,~ 1 near a
completely rigid clamp. On the other hand, the obliquitylod tocal principal stretching direction may require
shears for softness that do not demand inhomogeneous mimtsal variation at all: there could be regions of
soft response without stripes.

Figure 7.8: (a) The sequence of im-

ages illustrating the stretching of an
elastomer film. The middle image
shows the sample with stripe do- A=1
mains strongly scattering light, the
bottom images shows the sample be-

yond the soft plateau, still retaining 1>
scattering regions near the clamps. !
(b) The expanded image of the clamp
region (atA > A,), showing the com-

plicated pattern of areas with local A>0,
stripe microstructure.

One can see that the precise pattern of deformation depentteeanacroscopic shape of the sample, in
particular its aspect ratio (length to width ratio). Depieigdon this shape, oblique stripes will occur in different
places at different macroscopic extensions (externalbjiegA, distinguishing these from the local extensions
in the material) and that the stripe pattern will shift spili as extension continues. For instance, Eigl 7.8
shows an enhanced view of the clamp region of an elastomewtsastretched well beyond the end of the soft
plateau denoted by, which was determined a = /rA; in Sect[6.4; however, there are several regions
where the stripes remain (seen as white areas, stronghgsogtlight, in contrast to the transparent areas of
uniformly aligned nematic director). If there is a contiusgath of regions across the sample that can deform
softly, then they will do so first until sufficient are exhaaegstthat the path of soft regions across the sample is
broken. The macroscopically soft response will harden dugaé non-soft regions through which stress can
now pass. Thereafter, other regions of the sample that dithitially have softness available to them will also
start deforming. In doing so there is a change of geometryitasgossible that some other regions can then
start deforming softly while others are deforming nondsoftlard and soft deformations can coexist whenever
there is a path of non-soft deforming material along the darsp that there is an ultimate continuity of force
transmitted along the sample.

7.2.3 NUMERICAL AND EXPERIMENTAL STUDIES

A numerical solution of strip elongatioh (Cori al, 2002) reveals the non-uniformities that arise because of
the clamp constraints and which are intensified when softrd&dtions in the bulk come to their end. In Hig.17.9
they show the force against deformation for an ideal elastoffhe ‘affine curve’ corresponds to a model case
where no clamp effect is exerted on the stretched elastoameple. Naturally there is no force until director
rotation is complete at, = /r with 8 = +71/2, depending on which stripe one is in. The clamped sample wit
aspect ratio of 3 can get closer to the ideal soft cut off theat with the aspect ratio = 1 (the square shape),
since the former has a relatively smaller volume fractidtuenced by the constraints exerted by the clamps. A
salutary lesson emerges — the apparent length of the safinresga function of the macroscopic aspect ratio of
the sample. Fortunately experiments discussed before[65&d, were carried out on samples with large aspect
ratios, long rubber strips with aspect ratiol0-12. This sensitivity to aspect ratio was explored in expents
(Zubarevet al., 1999) and revealed a spatial distribution of microstrrectbhat depended on strain differently in
samples of different aspect ratios.

As we have seen in Fif_1.8, when samples are stretched bélyermhset of hard responsk,> Ay, the
stress patterns are non-trivial, especially near the ckargurd_Z.10 shows larger stresses diagonally towards
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7777777 Affine Ry

1 - AR=3 o // _|

Force (a.u.)

Figure 7.9: Force against extension calculated nu-
merically for an ‘affine’ sample, with no clamp ef-
fect, and for clamped samples of aspect ratio (AR)
of 3 and 1, respectively. The anisotropy parame-
ter was takem = 2. The two arrows point at the
Strain ' specific extensions examined in Hig. 7.12.

the corners and much less in the central clamp regions, espated in Fig[Zb. The macroscopic shape is also

Figure 7.10: Spatial distribution of stress
is indicated by levels of shading in a sam-
ple with r = 2, of initial aspect ratio = 3,
stretched ta\ = 1.38, see Fid._7]9.

rather different from that of a classical elastomer undiexgthe same macroscopic extension. The edges near
the clamps tend much more directly and with less curvatutied@entral, straight region. This is a consequence

of the microscopic constitutive relation and its macroscopasi-convexified forni (Conét al, 2002).

Figure 7.11: Different labelled regions of an ex-

tending nematic elastomer with their correspond-
ingly labelled X-ray patterns, indicating the local

director orientation.

Inhomogeneous microstructure is evident not only by dingictoscopic observation, but also through X-ray
scattering. Since the beam area is generally large compatiedhe width of individual stripes, of several mi-
crons, both nematic directions are revealed in the somesveaiged picture. Figufe 7]11 shows X-ray patterns
taken from different regions of a sample at a fixed extensfarbérevet al, 1999). Central regions of the rub-
ber strip (points @ and G) already have their director rotation complete. In thedas of the clamp region,
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where microstructure still exists, point Cthe rotation within stripes is not quite complete and sortfaxima
associated with the directors in neighbouring stripes atejuite coincident, leading to an apparently broadened
nematic azimuthal distribution of scattered X-ray inténsthe extreme regions A and E along the rigid clamp
have the directors pointing along the maximum extensioections, that is towards the corners and there is no
microstructure. At the middle-point C, there are still julleveloped stripes with directors-att/4 to the exten-
sion directionx, and thus four azimuthal maxima (see for comparison[Eidd)6.The X-ray pattern is that of
two nematics with orthogonal directors. B and D representenoblique regions. The distribution of extension
and microstructure emerges from the numerical solutioh@problem. Figure 7.12(a) shows the microstructure
of the top right hand quarter of a stripe with the type of patiedeveloping at different places shown as insets.
The deformation is still soft overall (determined by theest needed to deform the central region). Closer to the
clamp there is reaction but still not hardness at this value1.31, see Fid. 719.

Figure 7.12: Numerical calculations
of the distribution of microstructure
in a sample of aspect ratio = 3,
stretched to () = 1.31, and (b)
A =1.38, these strains being labelled
in Fig.[Z.9. Levels of shading in-
dicate the extent of microstructural
development. Director rotation in
the stripes at the central clamp re-
gion is less than in the bulk which in
(a) is undergoing essentially uncon-
strained soft deformation with the
expected director rotation. In (b) the
rotation in the bulk is clearly com-
plete and the director apparently uni-
formly points alongx.

Beyond the hard threshold &t= 1.38 , see Fid. 7.12(b), the director rotation at points aldwegcentre of the
sample (bottom of the figure) is as found in experiment, [Elfd7Where the director rotation is complete, that
is at@ = +71/2, one might expect a homogeneous director distributiotesim a nemati® = 11/2 is equivalent
to that até = —m/2. However, neighbouring stripes are separated by narrbenimgeneous walls. Within
such walls there must be directors of intermediate angletéfa the director field frond = /2t0 6 = —11/2
andvice versaon making the transition from stripe to stripe. A uniform redio texture can be made to appear
completely dark under suitably oriented cross polariséfith a dark background, any possible remaining regions
of deviating director will appear very bright and will be deted with great sensitivity. One could indeed see
bright, unresolvably thin lines where the separation wh#tveen stripes used to be, that were probably the
director traversing between the equivalent sté&es+r/2 over a short distance; ~ &, this volume of sample
then not being dark under the polarisers.

The effect of initial sample aspect ratio has been seen ifiaitee extension curves, Fig. 7.9, and has also
been visualised in experiment. In a square sample (AR=1jimtéinds pronounced stripe regions in the middle
(the region of highest local extension), which then grow ardrate across the sample towards the clamps, as
strain develops (Zubarest al,, 1999). This is qualitatively the sequence of results seehd numerical solution
(Contiet al, 2002), of which Figl_Z.12 (a) and (b) are examples at twadrstra
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