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Excluded volume & Self-Propulsion

€ Hard rods order in a nematic phase upon increasing density due solely to
entropic excluded volume effects (Onsager, 1949)
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@ Do self-propelled (SP) hard rods order in polar or nematic phase?
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It turns out SP order rods do not exhibit polar order in bulk,
but only nematic order. This is because a hard rod collision
aligns SP rods regardless of their polarity:
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But: many novel properties not present in equilibrium hard

rods nematic:

=Self-propulsion enhances nematic order

"Traveling density sound-like wave in both isotropic (at finite
wavevector) and ordered states

=Polar packets or clusters at intermediate density (Peruani et al, 2006; Yang
et al, 2010; Ginelli et al, 2010)

sSpontaneous phase separation and density segregation: stationary

bands



Self-propelled hard rods on a substrate:

Interplay of self-propulsion & excluded volume

friCtion C = SP Speed VozF/C

= overdamped dynamics

= Noise kgT,

= Hard repulsive interactions: energy and
momentum conserving collisions

>

Alignment arises from collision of SP hard rods, it is not imposed as a rule
(unlike Vicsek-type models)

ov.+(-v, = Fv. + ET(lj)Vj + noise
< —— :
_ _ friction self \J )
Langevin dynamics: propulsion L

0,0, +( w, = ZT(ij) W, + noise
j

N

Simulations: Peruani et al, PRE 74 (R) 2006; Ginelli et al, PRL 104 (2010); Yang et
al, PRE 82 (2010).
Experiments: Deseigne et al PRL 105 (2010).
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Tutorial

From Langevin to Fokker-Planck to hydrodynamics for one particle in
one dimension.

R. Zwanzig, Nonequilibrium Statistical mechanics (Oxford University press, 2001), Chapter
1and 2.



Langevin dynamics

From Langevin to Fokker-Planck dynamics
Low density limit & Smoluchowski equation
Hydrodynamics

Summary and Plan

A Tutorial: From Langevin equation to Hydrodynamics

Langevin dynamics

Spherical particle of radius a and mass m, in one dimension

m% = —¢v +n(t) (= friction
noise is uncorrelated in (n(t)) =0
time and Gaussian: (n(Hn(t')) =2A4(t — t)

Noise strength A

In equilibrium A is determined by requiring
iMoo < V(D2 >=< V2 >gq= T = A= el

m2

Mean square displacement is diffusive

< [ax(t)p = 2KeT [t _ T(1 _ e—C"/"")] - 2kth — 2Dt
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. . . . Langevin dynamics
A Tutorial: From Langevin equation to Hydrodynamics From Langevin to Fokker-Planck dynamics
Low density limit & Smoluchowski equation
Hydrodynamics

Summary and Plan

Fokker-Plank equation

Many-particle systems

When the Langevin equation contains nonlinearities or when
dealing with coupled Langevin equations for interacting particles, it
is more convenient to work with distribution functions by
transforming the Langevin equation(s) into a hierarchy of Fokker
Planck equations for noise-averaged distribution functions.

Here | will first show how to do this for a single particle.

First step:

Transform the Langevin equation into a Fokker-Plank equation for the
noise-average distribution function

f1(X,p, t) =< f1(X,,D, t) >



Langevin dynamics

From Langevin to Fokker-Planck dynamics
Low density limit & Smoluchowski equation
Hydrodynamics

Summary and Plan

A Tutorial: From Langevin equation to Hydrodynamics

Fokker-Plank equation - 2

Conservation law for probability distribution

JaXFX D) =1= aF+ - (%F) =0
of+%- (Vi) + % (nf) =0 = af+Li+5-(nf) =0

t
f(X, 1) = e Hf(X,0) — / ds e‘L(t‘s)%n(s)f(x, s)
0
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Langevin dynamics

From Langevin to Fokker-Planck dynamics
Low density limit & Smoluchowski equation
Hydrodynamics

Summary and Plan

A Tutorial: From Langevin equation to Hydrodynamics

Fokker-Plank equation - 3

Use properties of Gaussian noise to carry out averages

~ 8 o 8
f —_ V< f —. —Ltf(X. 0
op<f> + X < >+ax<n(t)e (X,0) >

0 t 0 -
——.<n(t) [ dse =) —n(s)f(X,s) >=0
<) [ a5 e M9 Ln(s)iX.

O/f = _,%8,(f — Op[—U'(x) — Cp/m]f + DS

Fokker-Plank eq. easily generalized to many interacting particles

e

7 = —CVa = Zaxa V(Xa - XB) + na(t)
B

8tf-| (1 , t) = —V 8)(1 f1 (1) + (8p1 Vq f1 (1) + A8§1 f1 (1) + 8p1 /d2 (9)(1 V(X12)f2(1,2, t)
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Langevin dynamics

From Langevin to Fokker-Planck dynamics
Low density limit & Smoluchowski equation
Hydrodynamics

Summary and Plan

A Tutorial: From Langevin equation to Hydrodynamics

Fokker-Plank equation - 3

Use properties of Gaussian noise to carry out averages

2 9 z 9 Lt
o < f TVt 2 < ne (X0
< f> + 8X SERd < n(t) (X,0) >

—— <17t)/ ds e~ L(=9) x n(s)f(X,s) >=0

orf = Lot — 0p-U'(x) — co/mlf + AB

Fokker-Plank eq. easily generalized to many interacting particles

e

= V- D 0%, V(Xa — X3) + na (1)

g
atf-| (1 9 t) = —W 8,(1 f1 (1) + §8p1 V1 f-| (1) + A@; f-| (1) + 8p1 /d2 8,(1 V(X12)f2(1 9 2, t)
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Langevin dynamics

From Langevin to Fokker-Planck dynamics
Low density limit & Smoluchowski equation
Hydrodynamics

Summary and Plan

A Tutorial: From Langevin equation to Hydrodynamics

Smoluchowski equation

@ One obtains a hierarchy of Fokker-Planck equations for f;(1),
©(1,2), 3(1,2,3), ... To proceed we need a closure ansatz. Low
density (neglect correlations) -(1,2,t) ~ f(1,t)f(2, 1)

@ ltis instructive to solve the FP equation by taking moments

c(x,t) = [dp f(x,p,t) concentration of particles
J(x,t) = [dp (p/m)f(x,p,t) density current

Egs. for the moments obtained by integrating the FP equation.
ore(x,t) = —0oxJ(x, 1)
Brd(x1) = —CJ(x1) — TR 0x c(x1) — [ dxp[Ox, V(x12)]c (x4, D)c(xe, t)

For t >> ¢(~1, we eliminate J to obtain a Smoluchowski eq. for ¢

8tc(x1, t) = D@i C(X1, t) -+ %8,(1 / [6X1 V(X12)]C(X1 , t)C(Xg, t)
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. . . . Langevin dynamics
A Tutorial: From Langevin equation to Hydrodynamics From Langevin to Fokker-Planck dynamics

Low density limit & Smoluchowski equation
Hydrodynamics
Summary and Plan

Hydrodynamics

Due to the interaction with the substrate, momentum is not
conserved. The only conserved field is the concentration of particles
c(x, t). This is the only hydrodynamic field.

To obtain a hydrodynamic equation form the Smoluchowski equation we recall that we
are interested in large scales. Assuming the pair potential has a finite range Ry, we
consider spatial variation of c(x, t) on length scales x >> R, and expand in gradients

1
8tC(X1 , t) = Da)2(1 C(X1 , t) + Zax1 / V(X/)[axl C(X1 + X,, t)]C(X1 , t)
X/
1
= D% c(x,t) + Z(‘)X1 /X/ V(X")[0x c(x1, 1) + X' 0%, c(x1, 1) + ...]c(xq, 1)

The result is the expected diffusion equation, with a microscopic
expression for D,e, Which is renormalized by interactions

Ore(x, 1) = Ox[DrenOxc(X, 1)] =~ Drend>c(x, t)
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Langevin dynamics

From Langevin to Fokker-Planck dynamics
Low density limit & Smoluchowski equation
Hydrodynamics

A Tutorial: From Langevin equation to Hydrodynamics

Summary and Plan

Summary of Tutorial and Plan

Microscopic Langevin dynamics of interacting particles
Approximations: noise average; low density: ,(1,2) ~ f;(1)f(2)

4

Fokker Planck equation

4

Overdamped limit: t >> 1/¢  Smoluchowski equation

1
8tc(x1 , t) = 8)(1 D8X1 C(X1, t) — E / F(X12)C(X2, t)C(X1 1

X2
Pair interaction F(x12):
@ steric repulsion — SP rods
@ short-range active interactions — cross-linkers in motor-filaments mixtures
@ medium-mediated hydrodynamic interactions — swimmers

Smoluchowski — Hydrodynamic equations

Marchetti Active and Driven Soft Matter: Lecture 3



Diffusion of self-propelled (SP) rod

The center of mass of a Brownian rod
performs a random walk

AX(t) = \/<[A)?(t)]2> ~ Dt

The center of mass of a SP rod
performs a directed random walk

\/<[A>?(t)]2> ~ D+£ t O

Ballistic motion at speed v, _."{r'-—-
randomized by rotational diffusion at \J\
rate D, )

v, =
LS

20 um

Howse et al, PRL 2007
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Smoluchowski equation for SP rods Langevin dynamics of SP Rods
Smoluchowski equation for SP rods

Smoluchowski equation for SP rods

The Smoluchowski equation for c(r, o, t) is given by

dic+ vodjc = Dgrdjc+ (D) + Ds)dfc+ Didic
—(I¢R) " 09(Tex + Tsp) = V- ¢+ (Fex + Fsp)

oy =0-V Ds = v§ /¢ enhancement of

0, =V -0 V) longitudinal diffusion

Torques and forces exchanged upon collision as the sum of Onsager
excluded volume terms and contributions from self-propulsion:

Tex = _60 Vex . . ~
F,, = -V V., Vex(1) = kg Tac(1, 1) fgm f,;z (D1 X Do| C(r1 + &12,D0, 1)

E2=& — &

Fsp ) 2/’ / K N € : a
_ V N -~ Z' V4 X UV 7
( TSP O Js 5o J2k \ 2- (& xK) [2- (21 22)]

xO(—1s - K)c(1, t)e(2, ) !
2\/
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Smoluchowski equation for SP rods Langevin dynamics of SP Rods
Smoluchowski equation for SP rods

SP terms in Smoluchowski Eq.

@ Convective term describes mass flux along the rod’s long axis.

@ Longitudinal diffusion enhanced by self-propulsion:
Dy — Dy + v§/§||. Longitudinal diffusion of SP rod as persistent
random walk with bias ~ v, towards steps along the rod’s long
axis.

@ The SP contributions to force and torque describe, within
mean-field, the additional anisotropic linear and angular
momentum transfers during the collision of two SP rods.

' V/kgT,
Mean-field Onsager: <M> ~ Vth Bla _ kgTa
Al Teoll  £/\/kgTa ;

: Apeoll W WlP1XDo| 24 o2
SP rods: < At ) gp ™ Tvolbr X Dg] Vg |D1 x Do
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Hydrodynamics of SP Hard Rods

p  density |g/
P polarization vector: ‘IS‘ # 0 — polar order //Vy

Q alignment tensor: ‘é‘ # 0 — nematic order /

Z
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ﬁVz) p +KQV2C3
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2,Q+v,|VP| =-D (1L]Q BQ*Q+D, (VY-




No bulk polar (moving) state - ordered state is nematic

SP lowers the density of the isotropic-nematic transition
(Baskaran & MCM, 2008)

;G ; 7 v . week endin
PRL 96, 258103 (2006) PHYSICAL REVIEW LETTERS 30 JUNE 2006

Enhanced Ordering of Interacting Filaments by Molecular Motors

Pavel Kraikivski, Reinhard Lipowsky, and Jan Kierfeld
Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
(Received 12 November 2005; published 29 June 2006)

p IN A p _ ID Ons 74 4 A = [sotropic (8)<0.2
IN 2 -~ A Nematic 0.2<{S»<0.7
POns 1 + VO / 3kBT 64 A A 4 Nematic (8)>0.7
2 A
° - nematic
Yo
y Q. -
: A (b) A A
\
2 A
- gl gEmEm N A
° 0 2 4 6 8 10 1 ) . ]
Isotropic
VO 0 ] L] ] LJ | L] 1
0.00 0.05 0.10 0.15



SP hard rods- Results:

=*No uniform polar (moving) state, only nematic order (Baskaran & MCM 2008)

*Enhancement of nematic order & longitudinal diffusion (Baskaran & MCM, 2008)

=Uniform nematic state unstable - pattern formation (Baskaran & MCM, 2008)

=Strongly fluctuating nematic phase:
*Polar “flocks” (Peruani et al,Yang et al.)

«Nematic bands (Ginelli et al 2010) Yang, Marceau & Gompper, PRE 82,
031904 (2010)

104, 184502 (2010)



Three “universality” classes?

: . .. 1024 o 'I
Active polar = polar particles+aligning B

interactions (bacteria, birds, motor-fils) M e
- polar moving state, traveling bands S12 5 St AL
—LRO in 2d, is the transition first order?

(myxobacteria, epithelial cells?)

— enhancement of nematic order, stationary bands,
2% polar clusters

Active nematic: apolar particles+apolar interaction
(melanocytes, motor-fils,epithelial cells?)

Ubiquitous giant number fluctuations



