
Active Matter 
Lectures for the 2011 ICTP School on Mathematics 

and Physics of Soft and Biological Matter 
Lecture 4: Hydrodynamics of “Living” Liquid Crystals 

M. Cristina Marchetti 
Syracuse University 



  Liquid crystals hydrodynamics 

  Active hydrodynamic: active stresses, nematic vs 
polar order  

 Generic instability of ordered states 

 Confined active film: spontaneous flow 

Outline 



Active liquid crystals can exhibit two types of 
orientational order: polar and nematic  

Polar: fish, bacteria, 
motor-filaments 

Polar order 

Vector order parameter: 
polarization 

n 

n≠-n 

Apolar: 
melanocytes, 
rods 

Apolar order: 
nematic 

Tensor order parameter: 
alignment 

n

n=-n 

  
Qij = ν̂α iν̂α j −

1
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α
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P = ν̂α

α
∑ = P  


n

Hydrodynamic eqs written in terms of director n in both cases, taking 
into account different symmetry 



Liquid Crystals Hydrodynamics 
Hydrodynamic fields  
  Conserved variables: density   , momentum   , [energy] 
  Broken symmetry fields: director n 
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single - elastic constant approx:
K1 = K2 = K3 = K

 

g

Nematic: symmetry n  -n 

ρ

Polar:  n ≠ -n 



Conservation Laws & Fluxes (nematic case) 

 

g = ρv

σ ij = σ ij (

∇v, 

h

driving forces
 

)    (convective flux neglected)

 


h = −δFδ n     molecular field 

∂tρ = −

∇ ⋅ g  

∂t gi = ∂ jσ ij

∂t
n = −


J  

  

• ∂tρ = −

∇ ⋅ ρv( )

• σ ij = 2ηuij − pδ ij − λ
2 (hinj + hjni ) + 1

2 (hinj − hjni )

• ∂tni +
v ⋅

∇ni +ω ijn j = δ ij

T (λuijnj + 1
γ hi )

 

single-elastic constant approx, 2d:
                  K1 = K2 = K ,   K3 = 0
                               


h = K∇2 n

uij = 1
2 (∂iv j + ∂ jvi )

ω ij = 1
2 (∂iv j − ∂ jvi )

δ ij
T = δ ij − ninjCoupling of orientation and flow 

Flow alignment parameter λ depends on 
microscopic properties of nematogens: 
λ>0 rod-like molecules, λ<0 discotic 
molecules 

Asymmetric part of stress tensor 
torque exerted by orientational degrees of 
freedom on the flow 



Flow alignment parameter λ�
determines the response of the director to shear 

L 

v 

v=0 

Nematic film uniformly 
sheared between two plates 
•  no-slip boundary conditions 

 

n = (cosθ,sinθ)
uxy = 1

2 ∂yvx = v/2L
Homogeneous state (away from 
boundaries): 
∂tθ = −uxy (1− λ cos2θ)

⇒ cos2θ0 =
1

| λ |
   if   | λ |> 1

|λ|>1  flow alignment 

| λ |<1 flow tumbling: 
inhomogeneous rolls  



Active Liquid Crystals 
Three new ingredients: 
1.  Active LC can order in nematic and polar states 

2.  Activity yields an energy input on each particle that provides an 
additional driving force, not unlike a chemical potential 

3.  We need to develop a two-fluid model that incorporates the 
exchange of momentum between active particles and solvent 

 
→σ ij = σ ij (


∇v,

h,Δµ)

• motor-filament mixtures: Δµ~ rate of ATP consumption 

• swimming bacteria: Δµ~ force exerted by swimmers on fluid 



Active stress 
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Active particles (e.g., bacteria) extert a force dipole on the 
surrounding fluid. Active stress is the mean force density by active 
particles on a fluid element (Hatwalne et al, 2004; Baskaran & MCM 2009): 

Coupling between orientation and flow induced by activity. The 
simplest active terms allowed in the stress have the form 

  

σ ij
active = αρninj

       + βρ ∂in j + ∂ jni( )
nematic & polar 

polar only  α,β ~ Δµ

  

α > 0→ contractile / pullers
α > 0→ tensile / pushers



Contractile/tensile stresses 

E-coli  
“pushers
” 

Most swimming bacteria push 
fluid out at the head and tail  
tensile or pushers 

The algae chlamydomonas pull fluid in at 
the head and tail  contractile or puller 
(but see Guasto et al, PRL 2010 indicating more 
complex flow field  Tom Powers’ lecture ) 

Actin filaments crosslinked by 
myosins are contractile 
(see F. MacKintosh’s lectures) 

α > 0

α > 0

α < 0



Active Hydrodynamics: single 
incompressible fluid 

 

incompressible → ρ = constant,    

∇ ⋅ v=0

Re<<1 →  Stokes aproximation   ∂ jσ ij = 0

∂tni +
v-β n( ) ⋅


∇ni +ω ijn j = δ ij

T (λuijnj +
1
γ
hi )

σ ij = -πδ ij +η ∂iv j + ∂ jvi( ) +αρninj + βρ ∂in j + ∂ jni( ) +O(∇2 )
active stresses 
exclusive to polar 
systems 

mechanical 
stresses 

active contractile/tensile 
(α>0 /α<0) stresses in 
polar & nematic 

 

α,β  activity
       ~ ATP consumption rate
       ~ forces exerted by swimmers

α ~ mean active force
β  ~ self-propulsion/treadmilling



“Generic” Instability of ordered states 
                                         Simha & Ramaswamy, PRL 2002 

   


v =

0 + δ


v


n =

n0 + δ


n⊥       


n0 = x̂        


n0 ⋅δ


n⊥  0→δ


n⊥ = δn ŷ

Small fluctuations about the quiescent ordered state 
(nematic, 2d) 

  

vi =
iα
νq2 δ ixqy + δ iyqx

⎡⎣ ⎤⎦δn ~ 1
q

       ν=η / ρ

∂tδn = λ−iqyvx + λ+iqxvy           λ± =
λ±1
2

For |λ|<1 unstable growth of bend fluctuations for pullers/tensile 
(α<0) and of splay fluctuations for pushers/contractile (α>0)  



 Suppressing the Generic Instability 

The generic instability is intimately related to the ~1/r2 behavior 
of the flow field generated by swimmers due to hydrodynamic 
interactions (Baskaran & MCM, PNAS 2009) 

It can be suppressed by any mechanism capable of cutting off 
or screening this flow field, such as 
 Boundaries 
 Elastic or viscoelastic component of the medium response 



Confined Nematic y 

x 

free boundary 

L 
θ(0) = 0

θ(L) = 0

no slip: vx(0)=0  
n̂= cosθ, sinθ( )

Only solution is aligning and homogeneous
  θ(y) = 0  anchoring
  vx (y) = 0  no flow vx(y) = 0  

n

Passive Nematic                                 
∂tθ = K∂y

2θ − 1− λ cos2θ( )∂yvx

σ xy = η∂yvx + K 1− λ cos2θ( )∂y2θ

ρ = constant
∂yσ yy = 0→ pressure

∂yσ xy = 0→σ xy = const
σ xy (0) = σ xy (L) = 0

⎫
⎬
⎪

⎭⎪
→σ xy (y) = 0

θ 



“Spontaneous flow” in confined active nematic 
(Voituriez et al. 2005) y 

x 

free boundary 

L 
θ(0) = 0

θ(L) = 0

no slip: vx=0  
n̂= cosθ, sinθ( )
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π
L
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spontaneous flow if lα ≥ L / π  

 

Active Nematic                                 

∂tθ = K∂y
2θ − 1− λ cos2θ( )∂yvx

σ xy = η∂yvx + K 1− λ cos2θ( )∂y2θ +α sin2θ

⎫
⎬
⎪

⎭⎪
  →   ∂y

2θ  − 1
lα

2 sin2θ

n̂vx(y)

ρ = constant
σ xy (y) = 0

lα
−2 =

α(1− λ)
K[2η + (1− λ)2 ]

steady state 

θ 



“Spontaneous flow” in polar active film 
(Giomi, MCM & Liverpool, PRL 2008) 

Variations in filament concentration cannot be 
neglected  two-fluid description needed 



Hydrodynamics of active suspensions 

 

ρ = ρsolvent + Mc = constant   

∇ ⋅ v=0

∂tc = −

∇ ⋅

j = −


∇ ⋅ c v+β n( ) + D∇2c “self-propulsion”: only 

in polar systems 

∂ jσ ij = 0

σ ij = -pδ ij +η ∂iv j + ∂ jvi( ) +αninj + β ∂in j + ∂ jni( )
active polar 
stresses 

mechanical 
stresses 

active contractile\tensile 
stresses in polar & nematic 

 

∂tni +
v+β n( ) ⋅


∇ni +ω ijn j = δ ij

T (w∂ jc + λuijnj +
1
γ
hi )



“Spontaneous flow & banding” in polar films y 

x 
θ 

free boundary 

L 
θ(0) = 0

θ(L) = 0

no slip: vx=0  
n̂= cosθ, sinθ( )

 

α >α c 
η
1− λ

π
L

⎛
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spontaneous flow &  
concentration bands 

∂y jy = ∂y (βny - D ∂yc)=0   →   ∂yc = β sinθ / D

K∂y
2θ = 1− λ cos2θ( )∂yvx

σ xy = η∂yvx +α sin2θ = 0

n̂

vx(y)

ρ = constant
σ xy (y) = 0

Active currents balance diffusion 
across the channel yielding 
concentration gradients and 
spontaneously “banded” flow 

}
} high 

density 

low 
density 



Spontaneous Flow in Active Polar Fluids 
Giomi, MCM & Liverpool, PRL 2008 

Active currents across the channel 
balanced by diffusion yield 
additional  concentration gradients 
∂tc+∂y jy = 0  
→   jy = β csinθ − D∂yc = 0

y 

Steady Spontaneous Flow (SF) 
for α>αc(β) 
PF=Periodic or Oscillating Flow 



Actin waves in cultured Drosophila cells  
Y. Asano et al. HFSPJ 2009 

Hydrodynamics of actin 
cytoskeleton as a polar LC in 
an annulus yields propagating 
actin waves above critical βc, 
as seen in experiments 
β~ treadmilling rate 
α~ myosin contractility 

Pak3 depletion polarizes the actin 
lamellipodium  migration of non-
motile cells & actin waves in 
immobile cells 



Lesson: 

Active liquid crystals exhibit “spontaneously” many 
of the nonequilibrium phenomena that occur in 
passive LC under the action of external fields 


